Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Review Article

A Unique Perspective on Lead Compounds for Dementia with the Lewy Body

Author(s): Menaka Subramani*, Amuthalakshmi Sivaperuman, Ramalakshmi Natarajan and Keerthana Dhinakaran

Volume 19, Issue 10, 2023

Published on: 01 August, 2023

Page: [946 - 959] Pages: 14

DOI: 10.2174/1573406419666230718121644

Price: $65

Abstract

Dementia with Lewy Bodies is a neurodegenerative disorder characterised by abnormal α- synuclein aggregate accumulation in Lewy Bodies and Lewy Neurites and the most common form of dementia after Alzheimer’s disease. The presynaptic protein alpha-synuclein (α-Syn) regulates synaptic vesicle trafficking and the subsequent release of neurotransmitters in the brain. These aggregates go through a number of crucial stages, such as aggregation, oligomerization, and fibrillation. Treatment of this disorder is generally symptomatic. This necessitates the development of cuttingedge therapeutic approaches that can either stop or change the course of the diseases. Many studies have shown that α-synuclein is a significant therapeutic target and that inhibiting α-synuclein aggregation, oligomerization, and fibrillation is an important disease-modifying strategy. Since α-syn is a defining feature of Parkinson’s disease, the current review provides an overview of plant phytochemicals and synthetic heterocyclic compounds that target α-syn in Parkinson's disease in order to develop new drugs for Dementia with Lewy Bodies.

Graphical Abstract

[1]
Walker, Z.; Possin, K.L.; Boeve, B.F.; Aarsland, D. Lewy body dementias. Lancet, 2015, 386(10004), 1683-1697.
[http://dx.doi.org/10.1016/S0140-6736(15)00462-6] [PMID: 26595642]
[2]
Spillantini, MG; Schmidt, ML; Lee, VMY; Trojanowski, JQ; Jakes, R; Goedert, M α-Synuclein in Lewy bodies. Nature, 1997, 388(6645), 839-840.
[http://dx.doi.org/10.1038/42166] [PMID: 9278044]
[3]
Stanfordhealth care.. Cause of dementia with lewy bodies (DLB). Available from: https://stanfordhealthcare.org/medical-conditions/brain-and-nerves/dementia-with-lewy-bodies/causes.html
[4]
National Institute on Aging. What is lewy body dementia? 2016. Available from: https://www.nia.nih.gov/alzheimers/publication/lewy-body-dementia/basics-lewy-body-dementia (Accessed on October 6, 2016)
[6]
Armstrong, M.J. Advances in dementia with Lewy bodies. Ther. Adv. Neurol. Disord., 2021, 14, 17562864211057666.
[http://dx.doi.org/10.1177/17562864211057666] [PMID: 34840608]
[7]
Taylor, J.P.; McKeith, I.G.; Burn, D.J. New evidence on the management of Lewy body dementia. Lancet Neurol., 2020, 19(2), 157-169.
[http://dx.doi.org/10.1016/S1474-4422(19)30153-X] [PMID: 31519472]
[8]
Connors, M.H.; Quinto, L.; McKeith, I. Non-pharmacological interventions for Lewy body dementia: A systematic review. Psychol. Med., 2018, 48(11), 1749-1758.
[http://dx.doi.org/10.1017/S0033291717003257] [PMID: 29143692]
[9]
Stinton, C.; McKeith, I.; Taylor, J.P. Pharmacological management of lewy body dementia: A systematic review and meta-analysis. Am. J. Psychiatry, 2015, 172(8), 731-742.
[http://dx.doi.org/10.1176/appi.ajp.2015.14121582] [PMID: 26085043]
[10]
Harding, A.J.; Halliday, G.M. Cortical lewy body pathology in the diagnosis of dementia. Acta Neuropathol., 2001, 102(4), 355-363.
[http://dx.doi.org/10.1007/s004010100390] [PMID: 11603811]
[11]
Klein, J.C.; Eggers, C.; Kalbe, E. Neurotransmitter changes in dementia with lewy bodies and parkinson disease dementia in vivo. Neurology, 2010, 74(11), 885-892.
[http://dx.doi.org/10.1212/WNL.0b013e3181d55f61] [PMID: 20181924]
[12]
Outeiro, T.F.; Koss, D.J.; Erskine, D. Dementia with lewy bodies: An update and outlook. Mol. Neurodegener., 2019, 14(1), 5.
[http://dx.doi.org/10.1186/s13024-019-0306-8] [PMID: 30665447]
[13]
McKeith, I.G.; Dickson, D.W.; Lowe, J. Diagnosis and management of dementia with lewy bodies: Third report of the DLB consortium. Neurology, 2005, 65(12), 1863-1872.
[http://dx.doi.org/10.1212/01.wnl.0000187889.17253.b1] [PMID: 16237129]
[14]
McKeith, I.G.; Boeve, B.F.; Dickson, D.W. Diagnosis and management of dementia with lewy bodies. Neurology, 2017, 89(1), 88-100.
[http://dx.doi.org/10.1212/WNL.0000000000004058] [PMID: 28592453]
[15]
Hershey, L.A.; Coleman-Jackson, R. Pharmacological management of dementia with lewy bodies. Drugs Aging, 2019, 36(4), 309-319.
[http://dx.doi.org/10.1007/s40266-018-00636-7] [PMID: 30680679]
[16]
Yamada, M.; Komatsu, J.; Nakamura, K. Diagnostic criteria for dementia with lewy bodies: Updates and future directions. J. Mov. Disord., 2020, 13(1), 1-10.
[http://dx.doi.org/10.14802/jmd.19052] [PMID: 31694357]
[17]
Tousi, B. Diagnosis and management of cognitive and behavioral changes in dementia with lewy bodies. Curr. Treat. Options Neurol., 2017, 19(11), 42.
[http://dx.doi.org/10.1007/s11940-017-0478-x] [PMID: 28990131]
[18]
Bentley, A.; Morgan, T.; Salifu, Y.; Walshe, C. Exploring the experiences of living with Lewy body dementia: An integrative review. J. Adv. Nurs., 2021, 77(12), 4632-4645.
[http://dx.doi.org/10.1111/jan.14932] [PMID: 34146346]
[19]
Tsamakis, K.; Mueller, C. Challenges in predicting cognitive decline in dementia with lewybodies. Dement. Geriatr. Cogn. Disord., 2021, 50(1), 1-8.
[http://dx.doi.org/10.1159/000515008] [PMID: 33780925]
[20]
Tahami, M.A.A.; Meier, G.; Perry, R.; Joe, D. Burden of disease and current management of dementia with Lewy bodies: A literature review. Neurol. Ther., 2019, 8(2), 289-305.
[http://dx.doi.org/10.1007/s40120-019-00154-7] [PMID: 31512165]
[21]
Kim, C.; Lee, S.J. Controlling the mass action of α-synuclein in Parkinson’s disease. J. Neurochem., 2008, 107(2), 303-316.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05612.x] [PMID: 18691382]
[22]
Lippa, C.F.; Duda, J.E.; Grossman, M. DLB and PDD boundary issues: Diagnosis, treatment, molecular pathology, and biomarkers. Neurology, 2007, 68(11), 812-819.
[http://dx.doi.org/10.1212/01.wnl.0000256715.13907.d3] [PMID: 17353469]
[23]
Volpicelli-Daley, L.A.; Luk, K.C.; Patel, T.P. Exogenous α-synuclein fibrils induce lewy body pathology leading to synaptic dysfunction and neuron death. Neuron, 2011, 72(1), 57-71.
[http://dx.doi.org/10.1016/j.neuron.2011.08.033] [PMID: 21982369]
[24]
Baba, M.; Nakajo, S.; Tu, P.H. Aggregation of alpha-synuclein in lewy bodies of sporadic parkinson’s disease and dementia with lewy bodies. Am. J. Pathol., 1998, 152(4), 879-884.
[PMID: 9546347]
[25]
Villar-Piqué, A.; Lopes da Fonseca, T.; Outeiro, T.F. Structure, function and toxicity of alpha-synuclein: The bermuda triangle in synucleinopathies. J. Neurochem., 2016, 139(1), 240-255.
[http://dx.doi.org/10.1111/jnc.13249] [PMID: 26190401]
[26]
Sode, K.; Ochiai, S.; Kobayashi, N.; Usuzaka, E. Effect of reparation of repeat sequences in the human α-synuclein on fibrillation ability. Int. J. Biol. Sci., 2006, 3(1), 1-7.
[PMID: 17200685]
[27]
Rajagopalan, S.; Andersen, J.K. Alpha synuclein aggregation: Is it the toxic gain of function responsible for neurodegeneration in parkinson’s disease? Mech. Ageing Dev., 2001, 122(14), 1499-1510.
[http://dx.doi.org/10.1016/S0047-6374(01)00283-4] [PMID: 11511392]
[28]
Atsmon-Raz, Y.; Miller, Y. A Proposed atomic structure of the self-assembly of the Non-Amyloid-β Component of Human α-Synuclein as derived by computational tools. J. Phys. Chem. B, 2015, 119(31), 10005-10015.
[http://dx.doi.org/10.1021/acs.jpcb.5b03760] [PMID: 26147432]
[29]
Hijaz, B.A.; Volpicelli-Daley, L.A. Initiation and propagation of α-synuclein aggregation in the nervous system. Mol. Neurodegener., 2020, 15(1), 19.
[http://dx.doi.org/10.1186/s13024-020-00368-6] [PMID: 32143659]
[30]
Ruipérez, V.; Darios, F.; Davletov, B. Alpha-synuclein, lipids and parkinson’s disease. Prog. Lipid Res., 2010, 49(4), 420-428.
[http://dx.doi.org/10.1016/j.plipres.2010.05.004] [PMID: 20580911]
[31]
U.S. National Library of Medicine. Genetics home reference: SNCA. Available from: https://www.wikidoc.org/index.php/ Alpha-synuclein (accessed on Nov14, 2013)
[32]
Maqbool, M.; Rajvansh, R.; Srividya, K.; Hoda, N. Deciphering the robustness of pyrazolo-pyridine carboxylate core structure-based compounds for inhibiting α-synuclein in transgenic C. elegans model of synucleinopathy. Bioorg. Med. Chem., 2020, 28(17), 115640.
[http://dx.doi.org/10.1016/j.bmc.2020.115640] [PMID: 32773095]
[33]
Chi, Z.; Liu, R.; Teng, Y.; Fang, X.; Gao, C. Binding of oxytetracycline to bovine serum albumin: Spectroscopic and molecular modeling investigations. J. Agric. Food Chem., 2010, 58(18), 10262-10269.
[http://dx.doi.org/10.1021/jf101417w] [PMID: 20799712]
[34]
Sashidhara, K.V.; Modukuri, R.K.; Jadiya, P. Discovery of 3-arylcoumarin-tetracyclic tacrine hybrids as multifunctional agents against parkinson’s disease. ACS Med. Chem. Lett., 2014, 5(10), 1099-1103.
[http://dx.doi.org/10.1021/ml500222g] [PMID: 25313319]
[35]
Crowther, R.A.; Jakes, R.; Spillantini, M.G.; Goedert, M. Synthetic filaments assembled from C-terminally truncated α-synuclein. FEBS Lett., 1998, 436(3), 309-312.
[http://dx.doi.org/10.1016/S0014-5793(98)01146-6] [PMID: 9801138]
[36]
Kumar, R.; Sirohi, T.S.; Singh, H. 1,2,4-triazine analogs as novel class of therapeutic agents. Mini Rev. Med. Chem., 2014, 14(2), 168-207.
[http://dx.doi.org/10.2174/1389557514666140131111837] [PMID: 24479860]
[37]
Ansari, N.; Khodagholi, F.; Ramin, M. Inhibition of LPS-induced apoptosis in differentiated-PC12 cells by new triazine derivatives through NF-κB-mediated suppression of COX-2. Neurochem. Int., 2010, 57(8), 958-968.
[http://dx.doi.org/10.1016/j.neuint.2010.10.002] [PMID: 20946929]
[38]
Irannejad, H.; Amini, M.; Khodagholi, F. Synthesis and in vitro evaluation of novel 1,2,4-triazine derivatives as neuroprotective agents. Bioorg. Med. Chem., 2010, 18(12), 4224-4230.
[http://dx.doi.org/10.1016/j.bmc.2010.04.097] [PMID: 20510620]
[39]
Jameel, E.; Meena, P.; Maqbool, M. Rational design, synthesis and biological screening of triazine: Triazolopyrimidine hybrids as multitarget anti-Alzheimer agents. Eur. J. Med. Chem., 2017, 136(136), 36-51.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.064] [PMID: 28478343]
[40]
Yazdani, M.; Edraki, N.; Badri, R.; Khoshneviszadeh, M.; Iraji, A.; Firuzi, O. Multi-target inhibitors against alzheimer disease derived from 3-hydrazinyl 1,2,4-triazine scaffold containing pendant phenoxy methyl-1,2,3-triazole: Design, synthesis and biological evaluation. Bioorg. Chem., 2019, 84, 363-371.
[http://dx.doi.org/10.1016/j.bioorg.2018.11.038] [PMID: 30530107]
[41]
Yazdani, M.; Edraki, N.; Badri, R.; Khoshneviszadeh, M.; Iraji, A.; Firuzi, O. 5,6-Diphenyl triazine-thio methyl triazole hybrid as a new Alzheimer’s disease modifying agents. Mol. Divers., 2020, 24(3), 641-654.
[http://dx.doi.org/10.1007/s11030-019-09970-3] [PMID: 31327094]
[42]
Maqbool, M.; Gadhavi, J.; Hivare, P.; Gupta, S.; Hoda, N. Diphenyl triazine hybrids inhibit α-synuclein fibrillogenesis: Design, synthesis and in vitro efficacy studies. Eur. J. Med. Chem., 2020, 207, 112705.
[http://dx.doi.org/10.1016/j.ejmech.2020.112705] [PMID: 32961434]
[43]
Wagner, J.; Ryazanov, S.; Leonov, A. Anle138b: A novel oligomer modulator for disease-modifying therapy of neurodegenerative diseases such as prion and parkinson’s disease. Acta Neuropathol., 2013, 125(6), 795-813.
[http://dx.doi.org/10.1007/s00401-013-1114-9] [PMID: 23604588]
[44]
Levin, J.; Schmidt, F.; Boehm, C. The oligomer modulator anle138b inhibits disease progression in a Parkinson mouse model even with treatment started after disease onset. Acta Neuropathol., 2014, 127(5), 779-780.
[http://dx.doi.org/10.1007/s00401-014-1265-3] [PMID: 24615514]
[45]
Ryan, P.; Xu, M.; Jahan, K. Novel furan-2-yl-1H-pyrazoles possess inhibitory activity against α-synuclein aggregation. ACS Chem. Neurosci., 2020, 11(15), 2303-2315.
[http://dx.doi.org/10.1021/acschemneuro.0c00252] [PMID: 32551538]
[46]
Pujols, J.; Peña-Díaz, S.; Conde-Giménez, M. High-throughput screening methodology to identify alpha: Synuclein aggregation inhibitors. Int. J. Mol. Sci., 2017, 18(3), 478.
[http://dx.doi.org/10.3390/ijms18030478] [PMID: 28257086]
[47]
Pujols, J.; Peña-Díaz, S.; Lázaro, D.F. Small molecule inhibits α-synuclein aggregation, disrupts amyloid fibrils, and prevents degeneration of dopaminergic neurons. Proc. Natl. Acad. Sci., 2018, 115(41), 10481-10486.
[http://dx.doi.org/10.1073/pnas.1804198115] [PMID: 30249646]
[48]
Mahía, A.; Peña-Díaz, S.; Navarro, S. Design, synthesis and structure-activity evaluation of novel 2-pyridone-based inhibitors of α-synuclein aggregation with potentially improved BBB permeability. Bioorg. Chem., 2021, 117, 105472.
[http://dx.doi.org/10.1016/j.bioorg.2021.105472] [PMID: 34775206]
[49]
Adolfsson, D.E.; Tyagi, M.; Singh, P. Intramolecular Povarov reactions for the synthesis of chromenopyridine fused 2-Pyridone polyheterocycles binding to α-Synuclein and Amyloid-β Fibrils. J. Org. Chem., 2020, 85(21), 14174-14189.
[http://dx.doi.org/10.1021/acs.joc.0c01699] [PMID: 33099999]
[50]
Javed, H.; Nagoor, M.M.F.; Azimullah, S.; Adem, A.; Sadek, B.; Ojha, S.K. Plant extracts and phytochemicals target α-synuclein aggregation in Parkinson’s disease models. Front. Pharmacol., 2019, 9, 1555.
[http://dx.doi.org/10.3389/fphar.2018.01555] [PMID: 30941047]
[51]
Yu, L.; Cui, J.; Padakanti, P.K. Synthesis and in vitro evaluation of α-synuclein ligands. Bioorg. Med. Chem., 2012, 20(15), 4625-4634.
[http://dx.doi.org/10.1016/j.bmc.2012.06.023] [PMID: 22789706]
[52]
Chu, W.; Zhou, D.; Gaba, V. Design, synthesis, and characterization of 3-(benzylidene)indolin-2-one derivatives as ligands for α-synuclein fibrils. J. Med. Chem., 2015, 58(15), 6002-6017.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00571] [PMID: 26177091]
[53]
Liu, H.; Chen, L.; Zhou, F. Anti-oligomerization sheet molecules: Design, synthesis and evaluation of inhibitory activities against α-synuclein aggregation. Bioorg. Med. Chem., 2019, 27(14), 3089-3096.
[http://dx.doi.org/10.1016/j.bmc.2019.05.032] [PMID: 31196755]
[54]
Kobayashi, H.; Murata, M.; Kawanishi, S.; Oikawa, S. Polyphenols with anti-amyloid β aggregation show potential risk of toxicity via pro-oxidant properties. Int. J. Mol. Sci., 2020, 21(10), 3561.
[http://dx.doi.org/10.3390/ijms21103561] [PMID: 32443552]
[55]
Chen, L.; Huang, G.L.; Lü, M.H.; Zhang, Y.X.; Xu, J.; Bai, S.P. Amide derivatives of Gallic acid: Design, synthesis and evaluation of inhibitory activities against in vitro α-synuclein aggregation. Bioorg. Med. Chem., 2020, 28(15), 115596.
[http://dx.doi.org/10.1016/j.bmc.2020.115596] [PMID: 32631566]
[56]
Yang, X.; Cai, S.; Liu, X.; Chen, P.; Zhou, J.; Zhang, H. Design, synthesis and biological evaluation of 2,5-dimethylfuran-3-carboxylic acid derivatives as potential IDO1 inhibitors. Bioorg. Med. Chem., 2019, 27(8), 1605-1618.
[http://dx.doi.org/10.1016/j.bmc.2019.03.005] [PMID: 30858027]
[57]
Decressac, M.; Mattsson, B.; Weikop, P.; Lundblad, M.; Jakobsson, J.; Björklund, A. TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity. Proc. Natl. Acad. Sci., 2013, 110(19), E1817-E1826.
[http://dx.doi.org/10.1073/pnas.1305623110] [PMID: 23610405]
[58]
Xilouri, M.; Brekk, O.R.; Landeck, N. Boosting chaperone-mediated autophagy in vivo mitigates α-synuclein-induced neurodegeneration. Brain, 2013, 136(7), 2130-2146.
[http://dx.doi.org/10.1093/brain/awt131] [PMID: 23757764]
[59]
Kantor, B.; Tagliafierro, L.; Gu, J. Down regulation of SNCA expression by targeted editing of DNA methylation: A potential strategy for precision therapy in PD. Mol. Ther., 2018, 26(11), 2638-2649.
[http://dx.doi.org/10.1016/j.ymthe.2018.08.019] [PMID: 30266652]
[60]
Zharikov, A.; Bai, Q.; De Miranda, B.R.; Van Laar, A.; Greenamyre, J.T.; Burton, E.A. Long-term RNAi knockdown of α-synuclein in the adult rat substantia nigra without neurodegeneration. Neurobiol. Dis., 2019, 125, 146-153.
[http://dx.doi.org/10.1016/j.nbd.2019.01.004] [PMID: 30658149]
[61]
Shaltiel-Karyo, R.; Frenkel-Pinter, M.; Rockenstein, E. A blood-brain barrier (BBB) disrupter is also a potent α-synuclein (α-syn) aggregation inhibitor: A novel dual mechanism of mannitol for the treatment of Parkinson disease (PD). J. Biol. Chem., 2013, 288(24), 17579-17588.
[http://dx.doi.org/10.1074/jbc.M112.434787] [PMID: 23637226]
[62]
Scherzer-Attali, R.; Pellarin, R.; Convertino, M. Complete phenotypic recovery of an Alzheimer’s disease model by a quinone-tryptophan hybrid aggregation inhibitor. PLoS One, 2010, 5(6), e11101.
[http://dx.doi.org/10.1371/journal.pone.0011101] [PMID: 20559435]
[63]
Scherzer-Attali, R.; Shaltiel-Karyo, R.; Adalist, Y.; Segal, D.; Gazit, E. Generic inhibition of amyloidogenic proteins by two naphthoquinone-tryptophan hybrid molecules. Proteins, 2012, 80(8), 1962-1973.
[http://dx.doi.org/10.1002/prot.24080] [PMID: 22488522]
[64]
Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. A stepwise huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed., 2002, 41(14), 2596-2599.
[http://dx.doi.org/10.1002/1521-3773(20020715)41:14<2596:AID-ANIE2596>3.0.CO;2-4] [PMID: 12203546]
[65]
Tornøe, C.W.; Christensen, C.; Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem., 2002, 67(9), 3057-3064.
[http://dx.doi.org/10.1021/jo011148j] [PMID: 11975567]
[66]
Paul, A.; Zhang, B.D.; Mohapatra, S. Novel mannitol-based small molecules for inhibiting aggregation of α-synuclein amyloids in parkinson’s disease. Front. Mol. Biosci., 2019, 6(16), 16.
[http://dx.doi.org/10.3389/fmolb.2019.00016] [PMID: 30968030]
[67]
Peña-Díaz, S.; Pujols, J.; Conde-Giménez, M. ZPD-2, a small compound that inhibits alpha-synuclein amyloid aggregation and its seeded polymerization. Front. Mol. Neurosci., 2019, 12(306), 306.
[http://dx.doi.org/10.3389/fnmol.2019.00306] [PMID: 31920537]
[68]
Peña-Díaz, S.; Pujols, J.; Pinheiro, F. Inhibition of α-synuclein aggregation and mature fibril disassembling with a minimalistic compound, ZPDm. Front. Bioeng. Biotechnol., 2020, 8(588947), 588947.
[http://dx.doi.org/10.3389/fbioe.2020.588947] [PMID: 33178678]
[69]
Herva, M.E.; Zibaee, S.; Fraser, G.; Barker, R.A.; Goedert, M.; Spillantini, M.G. Anti-amyloid compounds inhibit α-synuclein aggregation induced by protein misfolding cyclic amplification PMCA. J. Biol. Chem., 2014, 289(17), 11897-11905.
[http://dx.doi.org/10.1074/jbc.M113.542340] [PMID: 24584936]
[70]
Bousset, L.; Pieri, L.; Ruiz-Arlandis, G. Structural and functional characterization of two alpha-synuclein strains. Nat. Commun., 2013, 4(1), 2575.
[http://dx.doi.org/10.1038/ncomms3575] [PMID: 24108358]
[71]
Peelaerts, W; Bousset, L; Van der Perren, A α-Synuclein strains cause distinct synucleinopathies after local and systemic administration. Nature, 2015, 522(7556), 340-344.
[http://dx.doi.org/10.1038/nature14547] [PMID: 26061766]
[72]
Kurnik, M.; Sahin, C.; Andersen, C.B. Potent α-synuclein aggregation inhibitors, identified by high-throughput screening, mainly target the monomeric state. Cell Chem. Biol., 2018, 25(11), 1389-1402.e9.
[http://dx.doi.org/10.1016/j.chembiol.2018.08.005] [PMID: 30197194]
[73]
Van der Veken, P.; Fülöp, V.; Rea, D. P2-substituted N-acylprolylpyrrolidine inhibitors of prolyl oligopeptidase: Biochemical evaluation, binding mode determination, and assessment in a cellular model of synucleinopathy. J. Med. Chem., 2012, 55(22), 9856-9867.
[http://dx.doi.org/10.1021/jm301060g] [PMID: 23121075]
[74]
Fischer, C; Methot, J; Zhou, H Triazole derivatives for treatment of alzheimer's disease. Patent U.S,8575150, 2013.
[75]
Maqbool, M.; Gadhavi, J.; Singh, A.; Hivare, P.; Gupta, S.; Hoda, N. Unravelling the potency of triazole analogues for inhibiting α-synuclein fibrillogenesis and in vitro disaggregation. Org. Biomol. Chem., 2021, 19(7), 1589-1603.
[http://dx.doi.org/10.1039/D0OB02226H] [PMID: 33527970]
[76]
AlNajjar, Y.T.; Gabr, M.; ElHady, A.K. Discovery of novel 6-hydroxybenzothiazole urea derivatives as dual Dyrk1A/α-synuclein aggregation inhibitors with neuroprotective effects. Eur. J. Med. Chem., 2022, 227, 113911.
[http://dx.doi.org/10.1016/j.ejmech.2021.113911] [PMID: 34710745]
[77]
Zhou, J.; Chan, L.; Zhou, S. Trigonelline: A plant alkaloid with therapeutic potential for diabetes and central nervous system disease. Curr. Med. Chem., 2012, 19(21), 3523-3531.
[http://dx.doi.org/10.2174/092986712801323171] [PMID: 22680628]
[78]
Tohda, C.; Kuboyama, T.; Komatsu, K. Search for natural products related to regeneration of the neuronal network. Neurosignals, 2005, 14(1-2), 34-45.
[http://dx.doi.org/10.1159/000085384] [PMID: 15956813]
[79]
Ferger, B.; Spratt, C.; Teismann, P.; Seitz, G.; Kuschinsky, K. Effects of cytisine on hydroxyl radicals in vitro and MPTP-induced dopamine depletion in vivo. Eur. J. Pharmacol., 1998, 360(2-3), 155-163.
[http://dx.doi.org/10.1016/S0014-2999(98)00696-7] [PMID: 9851582]
[80]
Zhang, Y.; Sha, R.; Wang, K.; Li, H.; Yan, B.; Zhou, N. Protective effects of tetrahydropalmatine against ketamine-induced learning and memory injury via antioxidative, anti-inflammatory and anti-apoptotic mechanisms in mice. Mol. Med. Rep., 2018, 17(5), 6873-6880.
[http://dx.doi.org/10.3892/mmr.2018.8700] [PMID: 29512789]
[81]
Cai, C.Z.; Zhou, H.F.; Yuan, N.N. Natural alkaloid harmine promotes degradation of alpha-synuclein via PKA-mediated ubiquitin-proteasome system activation. Phytomedicine, 2019, 61, 152842.
[http://dx.doi.org/10.1016/j.phymed.2019.152842] [PMID: 31048127]
[82]
Hussain, G.; Rasul, A.; Anwar, H. Role of plant derived alkaloids and their mechanism in neurodegenerative disorders. Int. J. Biol. Sci., 2018, 14(3), 341-357.
[http://dx.doi.org/10.7150/ijbs.23247] [PMID: 29559851]
[83]
Ng, Y.P.; Or, T.C.T.; Ip, N.Y. Plant alkaloids as drug leads for Alzheimer’s disease. Neurochem. Int., 2015, 89, 260-270.
[http://dx.doi.org/10.1016/j.neuint.2015.07.018] [PMID: 26220901]
[84]
Sahoo, A.K.; Dandapat, J.; Dash, U.C.; Kanhar, S. Features and outcomes of drugs for combination therapy as multi-targets strategy to combat Alzheimer’s disease. J. Ethnopharmacol., 2018, 215, 42-73.
[http://dx.doi.org/10.1016/j.jep.2017.12.015] [PMID: 29248451]
[85]
Ghanem, S.S.; Fayed, H.S.; Zhu, Q. Natural alkaloid compounds as inhibitors for alpha-synuclein seeded fibril formation and toxicity. Molecules, 2021, 26(12), 3736.
[http://dx.doi.org/10.3390/molecules26123736] [PMID: 34205249]
[86]
Amro, M.S.; Teoh, S.L.; Norzana, A.G.; Srijit, D. The potential role of herbal products in the treatment of Parkinson’s disease. Clin. Ter., 2018, 169(1), e23-e33.
[PMID: 29446788]
[87]
Omoboyowa, D.A.; Balogun, T.A.; Omomule, O.M.; Saibu, O.A. Identification of terpenoids from Abrus precatorius against parkinson’s disease proteins using in silico approach. Bioinform. Biol. Insights, 2021, 15.
[http://dx.doi.org/10.1177/11779322211050757] [PMID: 34707350]
[88]
Arora, R.; Gill, N.S.; Kaur, S.; Jain, A.D. Phytopharmacological evaluation of ethanolic extract of the seeds of Abrus precatorius Linn. J Pharmacol Toxicol, 2011, 6(6), 580-588.
[http://dx.doi.org/10.3923/jpt.2011.580.588]
[89]
Raskin, I.; Ribnicky, D.M.; Komarnytsky, S. Plants and human health in the twenty-first century. Trends Biotechnol., 2002, 20(12), 522-531.
[http://dx.doi.org/10.1016/S0167-7799(02)02080-2] [PMID: 12443874]
[90]
Jorgensen, W.L. The many roles of computation in drug discovery. Science, 2004, 303(5665), 1813-1818.
[http://dx.doi.org/10.1126/science.1096361] [PMID: 15031495]
[91]
Good, A.C.; Cheney, D.L. Analysis and optimization of structure-based virtual screening protocols (1): Exploration of ligand conformational sampling techniques. J. Mol. Graph. Model., 2003, 22(1), 23-30.
[http://dx.doi.org/10.1016/S1093-3263(03)00123-2] [PMID: 12798388]
[92]
Gupta, E.; Gupta, S.R.R.; Kumar, A.; Kulshreshtha, A.; Niraj, R.R.K. Molecular docking study to identify potent inhibitors of alpha-synuclein aggregation of parkinson’s disease. Int J Contemp Med Res, 2019, 6(11)
[http://dx.doi.org/10.21276/ijcmr.2019.6.11.25]
[93]
Rane, A.R.; Paithankar, H.; Hosur, R.V.; Choudhary, S. Modulation of α-synuclein fibrillation by plant metabolites, daidzein, fisetin and scopoletin under physiological conditions. Int. J. Biol. Macromol., 2021, 182, 1278-1291.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.05.071] [PMID: 33991558]
[94]
Zhang, Y.J.; Cao, N.; Zeng, C.M. Fisetin Prevented Amyloid Formation of Insulin and Attenuated Fibril-induced Cytotoxicity. Int. J. Biochem. Res. Rev., 2015, 7(2), 112-120.
[http://dx.doi.org/10.9734/IJBCRR/2015/16890]
[95]
Malisauskas, R.; Botyriute, A.; Cannon, J.G.; Smirnovas, V. Flavone derivatives as inhibitors of insulin amyloid-like fibril formation. PLoS One, 2015, 10(3), e0121231.
[http://dx.doi.org/10.1371/journal.pone.0121231] [PMID: 25799281]
[96]
Tyagi, N.; Shukla, R. Antioxidant drug used in the treatment of reserpin induced Parkinson disease in rats. Int. J. Pharm. Sci. Res., 2020, 11, 3517-3528.
[97]
Menon, V.P.; Sudheer, A.R. Antioxidant and anti-inflammatory properties of curcumin. Adv. Exp. Med. Biol., 2007, 595, 105-125.
[http://dx.doi.org/10.1007/978-0-387-46401-5_3] [PMID: 17569207]
[98]
Kasi, PD; Tamilselvam, R Skalicka-Woźniak K, et al. Molecular targets of curcumin for cancer therapy: An updated review. Tumour Biol., 2016, 37(10), 13017-13028.
[http://dx.doi.org/10.1007/s13277-016-5183-y] [PMID: 27468716]
[99]
Cole, G.M.; Teter, B.; Frautschy, S.A. Neuroprotective effects of curcumin. Adv. Exp. Med. Biol., 2007, 595, 197-212.
[http://dx.doi.org/10.1007/978-0-387-46401-5_8] [PMID: 17569212]
[100]
Krishnamoorthy, A.; Tavoosi, N.; Chan, G.K.L. Effect of curcumin on amyloid-like aggregates generated from methionine-oxidized apolipoprotein A-I. FEBS Open Bio, 2018, 8(2), 302-310.
[http://dx.doi.org/10.1002/2211-5463.12372] [PMID: 29435420]
[101]
Medvedeva, M.; Barinova, K.; Melnikova, A. Naturally occurring cinnamic acid derivatives prevent amyloid transformation of alpha-synuclein. Biochimie, 2020, 170, 128-139.
[http://dx.doi.org/10.1016/j.biochi.2020.01.004] [PMID: 31945397]
[102]
Zanyatkin, I.; Stroylova, Y.; Tishina, S. Inhibition of prion propagation by 3,4-dimethoxycinnamic acid. Phytother. Res., 2017, 31(7), 1046-1055.
[http://dx.doi.org/10.1002/ptr.5824] [PMID: 28509424]
[103]
Li, B.; Ge, P.; Murray, K.A. Cryo-EM of full-length α-synuclein reveals fibril polymorphs with a common structural kernel. Nat. Commun., 2018, 9(1), 3609.
[http://dx.doi.org/10.1038/s41467-018-05971-2] [PMID: 30190461]
[104]
Tuttle, M.D.; Comellas, G.; Nieuwkoop, A.J. Solid-state NMR structure of a pathogenic fibril of full-length human α-synuclein. Nat. Struct. Mol. Biol., 2016, 23(5), 409-415.
[http://dx.doi.org/10.1038/nsmb.3194] [PMID: 27018801]
[105]
Han, F.; Jiang, B.; Lü, M.H. Hybrids of polyphenolic acids and xanthone, the potential preventive and therapeutic effects on pd: Design, synthesis, in vitro anti-aggregation of α-synuclein, and disaggregation against the existed α-synuclein oligomer and fibril. Bioorg. Med. Chem., 2022, 66, 116818.
[http://dx.doi.org/10.1016/j.bmc.2022.116818] [PMID: 35584603]
[106]
Lü, M.H.; Wang, Z.P.; Xing, L.Z. Hybrids of polyphenolic/quinone acids, the potential preventive and therapeutic drugs for PD: Disaggregate α-Syn fibrils, inhibit inclusions, and repair damaged neurons in mice. Eur. J. Med. Chem., 2023, 249, 115122.
[http://dx.doi.org/10.1016/j.ejmech.2023.115122] [PMID: 36680987]
[107]
Sharma, R.; Srivastava, T.; Pandey, A.R. Identification of natural products as potential pharmacological chaperones for protein misfolding diseases. ChemMedChem, 2021, 16(13), 2146-2156.
[http://dx.doi.org/10.1002/cmdc.202100147] [PMID: 33760394]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy