Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Mini-Review Article

A Profound Insight into the Structural Modification of Natural Bioactive Compounds Containing Piperazine Moiety: A Comprehensive Review

Author(s): Bhawna Chopra*, Neha Saini and Ashwani K. Dhingra

Volume 20, Issue 2, 2024

Published on: 18 August, 2023

Article ID: e180723218835 Pages: 17

DOI: 10.2174/1573407219666230718105347

Price: $65

Abstract

Piperazine is the heterocyclic nucleus and exhibits significant biological potential such as antipsychotic, antidepressant, antihistamine, anticancer, anti-anginal, cardioprotective, antiviral, and anti-inflammatory activity. As a result, it had been considered a crucial structural component in the majority of the therapeutic medications that were already on the market. Other issues that limit its use include solubility, limited bioavailability, cost-effectiveness, and a mismatch between the drug's pharmacokinetic and pharmacodynamic profiles. Literature describes structural modification in the piperazine moiety to create novel derivatives or analogues to solve the issues with currently marketed medications. Nature provides various bioactive components having piperazine nuclei in their core structure. The present review describes the potential of the piperazine nucleus present in natural bioactive components. So the study concludes that it is vital to concentrate on the structural characteristics of this scaffold, which opens the way for future research and may benefit pharmaceutical companies as well as medicinal chemists.

Graphical Abstract

[1]
Ostrowska, K. Coumarin-piperazine derivatives as biologically active compounds. Saudi Pharm. J., 2020, 28(2), 220-232.
[http://dx.doi.org/10.1016/j.jsps.2019.11.025] [PMID: 32042262]
[2]
James, T.; MacLellan, P.; Burslem, G.M.; Simpson, I.; Grant, J.A.; Warriner, S.; Sridharan, V.; Nelson, A. A modular lead-oriented synthesis of diverse piperazine, 1,4-diazepane and 1,5-diazocane scaffolds. Org. Biomol. Chem., 2014, 12(16), 2584-2591.
[http://dx.doi.org/10.1039/C3OB42512F] [PMID: 24614952]
[3]
Arunkumar, R.; Anburaj, D.B. Growth, nucleation kinetics and structural studies on L-valine piperazinium single crystals. Asian J. Chem., 2019, 31(9), 1966-1970.
[http://dx.doi.org/10.14233/ajchem.2019.22042]
[4]
Singh, K.; Siddiqui, H.H.; Shakya, P.; Bagga, P.; Kumar, A.; Khalid, M.; Arif, M.; Alok, S. Piperazine – a biologically active scaffold. Int. J. Pharm. Sci. Res., 2015, 6(10), 4145-4158.
[5]
Henry, D.W. A facile synthesis of piperazines from primary amines. J. Heterocycl. Chem., 1966, 3(4), 503-511.
[http://dx.doi.org/10.1002/jhet.5570030423]
[6]
Reilly, S.W.; Mach, R.H. Pd-Catalyzed synthesis of piperazine scaffolds under aerobic and solvent-free conditions. Org. Lett., 2016, 18(20), 5272-5275.
[http://dx.doi.org/10.1021/acs.orglett.6b02591] [PMID: 27736075]
[7]
Jida, M.; Ballet, S. Efficient one-pot synthesis of enantiomerically pure N -protected-α-substituted piperazines from readily available α-amino acids. New J. Chem., 2018, 42(3), 1595-1599.
[http://dx.doi.org/10.1039/C7NJ04039C]
[8]
Halimehjani, A.Z.; Badali, E. DABCO bond cleavage for the synthesis of piperazine derivatives. RSC Advances, 2019, 9(62), 36386-36409.
[http://dx.doi.org/10.1039/C9RA07870C] [PMID: 35540608]
[9]
Liu, K.G.; Robichaud, A.J. A general and convenient synthesis of N-aryl piperazines. Tetrahedron Lett., 2005, 46(46), 7921-7922.
[http://dx.doi.org/10.1016/j.tetlet.2005.09.092]
[10]
Asif, M. Piperazine and Pyrazine containing molecules and their diverse pharmacological activities. Int. J. Adv. Sci. Res., 2015, 1(1), 05.
[http://dx.doi.org/10.7439/ijasr.v1i1.1766]
[11]
Rajashree, A.; Baseer, M.A. Exploring pharmacological significance of piperazine scaffold. World J. Pharm. Res., 2016, 5(7), 1409-1420.
[12]
Shaquiquzzaman, M.; Verma, G.; Marella, A.; Akhter, M.; Akhtar, W.; Khan, M.F.; Tasneem, S.; Alam, M.M. Piperazine scaffold: A remarkable tool in generation of diverse pharmacological agents. Eur. J. Med. Chem., 2015, 102, 487-529.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.026] [PMID: 26310894]
[13]
Clark, R.B.; Lamppu, D.; Libertine, L.; McDonough, A.; Kumar, A.; LaRosa, G.; Rush, R.; Elbaum, D. Discovery of novel 2-((pyridin-3-yloxy)methyl)piperazines as α7 nicotinic acetylcholine receptor modulators for the treatment of inflammatory disorders. J. Med. Chem., 2014, 57(10), 3966-3983.
[http://dx.doi.org/10.1021/jm5004599] [PMID: 24814197]
[14]
Mallesha, L.; Mohana, K.N. Synthesis, antimicrobial and antioxidant activities of 1-(1,4-benzodioxane-2-carbonyl)piperazine derivatives. Eur. J. Chem., 2011, 2(2), 193-199.
[http://dx.doi.org/10.5155/eurjchem.2.2.193-199.282]
[15]
Patel, R.; Park, S. An evolving role of piperazine moieties in drug design and discovery. Mini Rev. Med. Chem., 2013, 13(11), 1579-1601.
[http://dx.doi.org/10.2174/13895575113139990073] [PMID: 23895191]
[16]
Rathi, A.K.; Syed, R.; Shin, H.S.; Patel, R.V. Piperazine derivatives for therapeutic use: A patent review (2010-present). Expert Opin. Ther. Pat., 2016, 26(7), 777-797.
[http://dx.doi.org/10.1080/13543776.2016.1189902] [PMID: 27177234]
[17]
Verma, S.; Kumar, S. Review exploring biological potentials of piperazines. Med. Chem., 2017, 7(1), 1-8.
[18]
Tomar, A.; Mall, M.; Verma, M. Piperazine: The molecule of diverse pharmacological importance. Int. J. Res. Ayurveda Pharm., 2011, 2(5), 1547-1548.
[19]
Swartzwelder, C.; Miller, J.H.; Sappenfield, R.W. The effective use of piperazine for the treatment of human helminthiases. Gastroenterology, 1957, 33(1), 87-96.
[http://dx.doi.org/10.1016/S0016-5085(19)35792-0] [PMID: 13448284]
[20]
Orjales, A.; Gil-Sánchez, J.C.; Alonso-Cires, L.; Labeaga, L.; Mosquera, R.; Berisa, A.; Ucelay, M.; Innerárity, A.; Corcóstegui, R. Synthesis and histamine H1-receptor antagonist activity of 4-(diphenylmethyl)-1-piperazine derivatives with a terminal heteroaryl or cycloalkyl amide fragment. Eur. J. Med. Chem., 1996, 31(10), 813-818.
[http://dx.doi.org/10.1016/0223-5234(96)83975-4] [PMID: 22026937]
[21]
Mendoza, A.; Pérez-Silanes, S.; Quiliano, M.; Pabón, A.; Galiano, S.; González, G.; Garavito, G.; Zimic, M.; Vaisberg, A.; Aldana, I.; Monge, A.; Deharo, E. Aryl piperazine and pyrrolidine as antimalarial agents. Synthesis and investigation of structure–activity relation-ships. Exp. Parasitol., 2011, 128(2), 97-103.
[http://dx.doi.org/10.1016/j.exppara.2011.02.025] [PMID: 21354139]
[22]
Ibezim, E.; Duchowicz, P.R.; Ortiz, E.V.; Castro, E.A. QSAR on aryl-piperazine derivatives with activity on malaria. Chemom. Intell. Lab. Syst., 2012, 110(1), 81-88.
[http://dx.doi.org/10.1016/j.chemolab.2011.10.002]
[23]
Silva, G.N.S.; Schuck, D.C.; Cruz, L.N.; Moraes, M.S.; Nakabashi, M.; Gosmann, G.; Garcia, C.R.S.; Gnoatto, S.C.B. Investigation of an-timalarial activity, cytotoxicity and action mechanism of piperazine derivatives of betulinic acid. Trop. Med. Int. Health, 2015, 20(1), 29-39.
[http://dx.doi.org/10.1111/tmi.12395] [PMID: 25308185]
[24]
Chaudhary, P.; Nimesh, S.; Yadav, V.; Verma, A.K.; Kumar, R. Synthesis, characterization and in vitro biological studies of novel cyano derivatives of N-alkyl and N-aryl piperazine. Eur. J. Med. Chem., 2007, 42(4), 471-476.
[http://dx.doi.org/10.1016/j.ejmech.2006.10.009] [PMID: 17140705]
[25]
Somashekhar, M.; Mahesh, A.R. Synthesis and antimicrobial activity of piperazine derivatives. AJAmerican J PharmTech Res, 2013, 3(4), 640-645.
[26]
Patil, M.; Noonikara Poyil, A.; Joshi, S.D.; Patil, S.A.; Patil, S.A.; Bugarin, A. Design, synthesis, and molecular docking study of new pi-perazine derivative as potential antimicrobial agents. Bioorg. Chem., 2019, 92103217.
[http://dx.doi.org/10.1016/j.bioorg.2019.103217] [PMID: 31479986]
[27]
Xu, Q.; Liu, T.; Tian, R.; Li, Q.; Ma, D. Synthesis and antiemetic activity of 1,2,3,9-tetrahydro-9-methyl-3-(4-substituted-piperazin-1-ylmethyl)-4H-carbazol-4-one derivatives. Front. Chem. China, 2009, 4(1), 63-68.
[http://dx.doi.org/10.1007/s11458-009-0017-8]
[28]
Bali, A.; Bhalla, A.; Bala, S.; Kumar, R. Synthesis and computational studies on aryloxypropylpiperazine derivatives as potential atypical antipsychotic agents. Lett. Drug Des. Discov., 2012, 9(2), 218-224.
[http://dx.doi.org/10.2174/157018012799079725]
[29]
Walayat, K.; Mohsin, N.A.; Aslam, S.; Ahmad, M. An insight into the therapeutic potential of piperazine-based anticancer agents. Turk. J. Chem., 2019, 43(1), 1-23.
[http://dx.doi.org/10.3906/kim-1806-7]
[30]
Gurdal, E.; Buclulgan, E.; Durmaz, I.; Cetin-Atalay, R.; Yarim, M. Synthesis and anticancer activity evaluation of some benzothiazole-piperazine derivatives. Anticancer. Agents Med. Chem., 2015, 15(3), 382-389.
[http://dx.doi.org/10.2174/1871520615666141216151101] [PMID: 25511511]
[31]
McNair, T.J.; Wibin, F.A.; Hoppe, E.T.; Schmidt, J.L.; dePeyster, F.A. Antitumor action of several new piperazine derivatives compared to certain standard anticancer agents. J. Surg. Res., 1963, 3(3), 130-136.
[http://dx.doi.org/10.1016/S0022-4804(63)80014-1] [PMID: 13932216]
[32]
Varadaraju, K.R.; Kumar, J.R.; Mallesha, L.; Muruli, A.; Mohana, K.N.S.; Mukunda, C.K.; Sharanaiah, U. Virtual screening and biological evaluation of piperazine derivatives as human acetylcholinesterase inhibitors. Int. J. Alzheimers Dis., 2013, 2013, 1-13.
[http://dx.doi.org/10.1155/2013/653962] [PMID: 24288651]
[33]
Kaya, B.; Özkay, Y.; Temel, H.E.; Kaplancıklı, Z.A. Synthesis and biological evaluation of novel piperazine containing hydrazone deriva-tives. J. Chem., 2016, 2016, 1-7.
[http://dx.doi.org/10.1155/2016/5878410]
[34]
Panchal, N.B.; Captain, A.D. Synthesis and screening of some new piperazine derivatives as potential anthelmintic agents. IJPRS, 2015, 4(1), 26-37.
[35]
Sánchez-Alonso, R.M.; Raviña, E.; Santana, L.; García-Mera, G.; Sanmartín, M.; Baltar, P. Piperazine derivatives of benzimidazole as po-tential anthelmintics. Part 1: Synthesis and activity of methyl-5-(4-substituted piperazin-1-yl)benzimidazole-2-carbamates. Pharmazie, 1989, 44(9), 606-607.
[PMID: 2608706]
[36]
Brito, A.F.; Moreira, L.K.S.; Menegatti, R.; Costa, E.A. Piperazine derivatives with central pharmacological activity used as therapeutic tools. Fundam. Clin. Pharmacol., 2019, 33(1), 13-24.
[http://dx.doi.org/10.1111/fcp.12408] [PMID: 30151922]
[37]
Jain, A.; Chaudhary, J.; Khaira, H.; Chopra, B.; Dhingra, A. Piperazine: A promising scaffold with analgesic and anti-inflammatory poten-tial. Drug Res., 2021, 71(2), 62-72.
[http://dx.doi.org/10.1055/a-1323-2813] [PMID: 33336346]
[38]
Tietze, L.F.; Bell, H.P.; Chandrasekhar, S. Natural product hybrids as new leads for drug discovery. Angew. Chem. Int. Ed., 2003, 42(34), 3996-4028.
[http://dx.doi.org/10.1002/anie.200200553] [PMID: 12973759]
[39]
Chopra, B.; Dhingra, A.K. Natural products: A lead for drug discovery and development. Phytother. Res., 2021, 35(9), 4660-4702.
[http://dx.doi.org/10.1002/ptr.7099] [PMID: 33847440]
[40]
Nishimura, N.; Norman, M.H.; Liu, L.; Yang, K.C.; Ashton, K.S.; Bartberger, M.D.; Chmait, S.; Chen, J.; Cupples, R.; Fotsch, C.; Helmering, J.; Jordan, S.R.; Kunz, R.K.; Pennington, L.D.; Poon, S.F.; Siegmund, A.; Sivits, G.; Lloyd, D.J.; Hale, C.; St Jean, D.J., Jr Small molecule disruptors of the glucokinase-glucokinase regulatory protein interaction: 3. Structure-activity relationships within the aryl car-binol region of the N-arylsulfonamido-N'-arylpiperazine series. J. Med. Chem., 2014, 57(7), 3094-3116.
[http://dx.doi.org/10.1021/jm5000497] [PMID: 24611879]
[41]
Mahmoudi, Y.; Badali, H.; Hashemi, S.M.; Ansari, M.; Fakhim, H.; Fallah, M.; Shokrzadeh, M.; Emami, S. New potent antifungal triazole alcohols containing N-benzylpiperazine carbodithioate moiety: Synthesis, in vitro evaluation and in silico study. Bioorg. Chem., 2019, 90103060.
[http://dx.doi.org/10.1016/j.bioorg.2019.103060] [PMID: 31229796]
[42]
Amujuri, D.; Siva, B.; Poornima, B.; Sirisha, K.; Sarma, A.V.S.; Lakshma, N.V.; Tiwari, A.K.; Purushotham, U.; Suresh, B.K. Synthesis and biological evaluation of Schizandrin derivatives as potential anti-cancer agents. Eur. J. Med. Chem., 2018, 149, 182-192.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.066] [PMID: 29501940]
[43]
Hua, S.X.; Huang, R.Z.; Ye, M.Y.; Pan, Y.M.; Yao, G.Y.; Zhang, Y.; Wang, H.S. Design, synthesis and in vitro evaluation of novel ursolic acid derivatives as potential anticancer agents. Eur. J. Med. Chem., 2015, 95, 435-452.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.051] [PMID: 25841199]
[44]
Yin, Y.; Zhao, X.C.; Wang, S.J.; Gao, P.Y.; Li, L.Z.; Ikejima, T.; Song, S.J. Synthesis and biological evaluation of novel sarsasapogenin derivatives as potential anti-tumor agents. Steroids, 2015, 93, 25-31.
[http://dx.doi.org/10.1016/j.steroids.2014.09.007] [PMID: 25456170]
[45]
Mistry, B.; Keum, Y.S.; Noorzai, R.; Gansukh, E.; Kim, D.H. Synthesis of piperazine based N-Mannich bases of berberine and their anti-oxidant and anticancer evaluations. J. Indian Chem. Soc., 2016, 13(3), 531-539.
[http://dx.doi.org/10.1007/s13738-015-0762-1]
[46]
Mistry, B.; Patel, R.V.; Keum, Y.S.; Kim, D.H. Synthesis of N-Mannich bases of berberine linking piperazine moieties revealing anticancer and antioxidant effects. Saudi J. Biol. Sci., 2017, 24(1), 36-44.
[http://dx.doi.org/10.1016/j.sjbs.2015.09.005] [PMID: 28053569]
[47]
Mistry, B.; Keum, Y.S.; Kim, D.H. Synthesis and biological evaluation of berberine derivatives bearing 4-aryl-1-piperazine moieties. J. Chem. Res., 2015, 39(8), 470-474.
[http://dx.doi.org/10.3184/174751915X14381686689721]
[48]
Yang, C.J.; Song, Z.L.; Goto, M.; Liu, Y.Q.; Hsieh, K.Y.; Morris-Natschke, S.L.; Zhao, Y.L.; Zhang, J.X.; Lee, K.H. Design, synthesis, and cytotoxic activity of novel 7-substituted camptothecin derivatives incorporating piperazinyl-sulfonylamidine moieties. Bioorg. Med. Chem. Lett., 2017, 27(17), 3959-3962.
[http://dx.doi.org/10.1016/j.bmcl.2017.07.078] [PMID: 28789891]
[49]
Zhu, G.X.; Cheng, P.L.; Goto, M.; Zhang, N.; Morris-Natschke, S.L.; Hsieh, K.Y.; Yang, G.Z.; Yang, Q.R.; Liu, Y.Q.; Chen, H.L.; Zhang, X.S.; Lee, K.H. Design, synthesis and potent cytotoxic activity of novel 7-(N -[(substituted-sulfonyl)piperazinyl]-methyl)-camptothecin derivatives. Bioorg. Med. Chem. Lett., 2017, 27(8), 1750-1753.
[http://dx.doi.org/10.1016/j.bmcl.2017.02.066] [PMID: 28285912]
[50]
Liu, R.; Zhang, H.; Yuan, M.; Zhou, J.; Tu, Q.; Liu, J.J.; Wang, J. Synthesis and biological evaluation of apigenin derivatives as antibacteri-al and antiproliferative agents. Molecules, 2013, 18(9), 11496-11511.
[http://dx.doi.org/10.3390/molecules180911496] [PMID: 24048283]
[51]
Abu-Aisheh, M.N.; Mustafa, M.S.; El-Abadelah, M.M.; Naffa, R.G.; Ismail, S.I.; Zihlif, M.A.; Taha, M.O.; Mubarak, M.S. Synthesis and biological activity assays of some new N1-(flavon-7-yl)amidrazone derivatives and related congeners. Eur. J. Med. Chem., 2012, 54, 65-74.
[http://dx.doi.org/10.1016/j.ejmech.2012.04.028] [PMID: 22677031]
[52]
Xue, W.; Song, B.A.; Zhao, H.J.; Qi, X.B.; Huang, Y.J.; Liu, X.H. Novel myricetin derivatives: Design, synthesis and anticancer activity. Eur. J. Med. Chem., 2015, 97, 155-163.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.063] [PMID: 25965778]
[53]
Ruan, X.; Zhao, H.; Zhang, C. Syntheses and bioactivities of myricetin derivatives containing piperazine acidamidemoiety. Chem J Chin Univ-Chin, 2018, 39, 1197-1204.
[54]
Patel, R.V.; Mistry, B.M.; Syed, R.; Parekh, N.M.; Shin, H.S. Sulfonylpiperazines based on a flavone as antioxidant and cytotoxic agents. Arch. Pharm., 2019, 352(9), 1900051.
[http://dx.doi.org/10.1002/ardp.201900051] [PMID: 31339585]
[55]
Mao, Z.; Zheng, X.; Qi, Y.; Zhang, M.; Huang, Y.; Wan, C.; Rao, G. Synthesis and biological evaluation of novel hybrid compounds between chalcone and piperazine as potential antitumor agents. RSC Advances, 2016, 6(10), 7723-7727.
[http://dx.doi.org/10.1039/C5RA20197G]
[56]
Gao, H.; Zheng, X.; Qi, Y.; Wang, S.; Wan, C.; Rao, G.; Mao, Z. Synthesis and cytotoxic activity of novel resveratrol-chalcone amide derivatives. Youji Huaxue, 2018, 38(3), 648-655.
[http://dx.doi.org/10.6023/cjoc201708031]
[57]
Li, X.; Zhang, X.; Sun, H.; Zhang, L.; Gao, Y.; Wang, J.; Guo, Q.; You, Q. Synthesis and anti-tumor evaluation of novel C-37 modified derivatives of gambogic acid. Chin. J. Chem., 2012, 30(5), 1083-1091.
[http://dx.doi.org/10.1002/cjoc.201100693]
[58]
Bian, J.; Li, T.; Weng, T.; Wang, J.; Chen, Y.; Li, Z. Synthesis, evaluation and quantitative structure–activity relationship (QSAR) analysis of Wogonin derivatives as cytotoxic agents. Bioorg. Med. Chem. Lett., 2017, 27(4), 1012-1016.
[http://dx.doi.org/10.1016/j.bmcl.2016.12.076] [PMID: 28117202]
[59]
Jadala, C.; Sathish, M.; Anchi, P.; Tokala, R.; Lakshmi, U.J.; Reddy, V.G.; Shankaraiah, N.; Godugu, C.; Kamal, A. Synthesis of com-bretastatin‐a4 carboxamidest that mimic sulfonyl piperazines by a molecular hybridization approach: in vitro cytotoxicity evaluation and inhibition of tubulin polymerization. ChemMedChem, 2019, 14(24), 2052-2060.
[http://dx.doi.org/10.1002/cmdc.201900541] [PMID: 31674147]
[60]
Rajaram, P.; Jiang, Z.; Chen, G.; Rivera, A.; Phasakda, A.; Zhang, Q.; Zheng, S.; Wang, G.; Chen, Q.H. Nitrogen-containing derivatives of O-tetramethylquercetin: Synthesis and biological profiles in prostate cancer cell models. Bioorg. Chem., 2019, 87, 227-239.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.047] [PMID: 30904813]
[61]
Liu, M.C.; Yang, S.J.; Jin, L.H.; Hu, D.Y.; Xue, W.; Song, B.A.; Yang, S. Synthesis and cytotoxicity of novel ursolic acid derivatives con-taining an acyl piperazine moiety. Eur. J. Med. Chem., 2012, 58, 128-135.
[http://dx.doi.org/10.1016/j.ejmech.2012.08.048] [PMID: 23124210]
[62]
Yang, X.; Qin, X.; Wang, Q.; Huang, Y. Synthesis and antitumor activities of piperazine- and cyclen-conjugated dehydroabietylamine derivatives. Heterocycl. Commun., 2015, 21(4), 233-237.
[http://dx.doi.org/10.1515/hc-2015-0025]
[63]
Chen, H.; Qiao, C.; Miao, T.T.; Li, A.L.; Wang, W.Y.; Gu, W. Synthesis and biological evaluation of novel N -(piperazin-1-yl)alkyl-1 H -dibenzo[ a, c]carbazole derivatives of dehydroabietic acid as potential MEK inhibitors. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1544-1561.
[http://dx.doi.org/10.1080/14756366.2019.1655407] [PMID: 31448648]
[64]
Xu, J.; Wei, M.; Li, G. Synthesis and anti-tumor activities of novel artemisone- piperazine-sulfonamide derivatives. Chem J Chin Univ-Chin, 2015, 36, 919-926.
[65]
Narender, T.; Sukanya, P.; Sharma, K.; Bathula, S.R. Preparation of novel antiproliferative emodin derivatives and studies on their cell cycle arrest, caspase dependent apoptosis and DNA binding interaction. Phytomedicine, 2013, 20(10), 890-896.
[http://dx.doi.org/10.1016/j.phymed.2013.03.015] [PMID: 23669265]
[66]
Singh, B.; Kumar, A.; Joshi, P.; Guru, S.K.; Kumar, S.; Wani, Z.A.; Mahajan, G.; Hussain, A.; Qazi, A.K.; Kumar, A.; Bharate, S.S.; Gupta, B.D.; Sharma, P.R.; Hamid, A.; Saxena, A.K.; Mondhe, D.M.; Bhushan, S.; Bharate, S.B.; Vishwakarma, R.A. Colchicine derivatives with potent anticancer activity and reduced P-glycoprotein induction liability. Org. Biomol. Chem., 2015, 13(20), 5674-5689.
[http://dx.doi.org/10.1039/C5OB00406C] [PMID: 25895604]
[67]
Chue, K-T.; Chang, M-S.; Ten, L.N. Synthesis and antibacterial activity of betulonic acid amides with piperazine derivatives. Chem. Nat. Compd., 2011, 47(5), 759-763.
[http://dx.doi.org/10.1007/s10600-011-0051-x]
[68]
Wang, S.F.; Yin, Y.; Wu, X.; Qiao, F.; Sha, S.; Lv, P.C.; Zhao, J.; Zhu, H.L. Synthesis, molecular docking and biological evaluation of coumarin derivatives containing piperazine skeleton as potential antibacterial agents. Bioorg. Med. Chem., 2014, 22(21), 5727-5737.
[http://dx.doi.org/10.1016/j.bmc.2014.09.048] [PMID: 25306465]
[69]
Hatnapure, G.D.; Keche, A.P.; Rodge, A.H.; Birajdar, S.S.; Tale, R.H.; Kamble, V.M. Synthesis and biological evaluation of novel pipera-zine derivatives of flavone as potent anti-inflammatory and antimicrobial agent. Bioorg. Med. Chem. Lett., 2012, 22(20), 6385-6390.
[http://dx.doi.org/10.1016/j.bmcl.2012.08.071] [PMID: 22981334]
[70]
Li, H.X.; Wang, Z.C.; Qian, Y.M.; Yan, X.Q.; Lu, Y.D.; Zhu, H.L. Design, synthesis, and biological evaluation of chrysin derivatives as potential FabH inhibitors. Chem. Biol. Drug Des., 2017, 89(1), 136-140.
[http://dx.doi.org/10.1111/cbdd.12839] [PMID: 27860280]
[71]
Xu, G.; Yang, X.; Jiang, B.; Lei, P.; Liu, X.; Wang, Q.; Zhang, X.; Ling, Y. Synthesis and bioactivities of novel piperazine-containing 1,5-Diphenyl-2-penten-1-one analogues from natural product lead. Bioorg. Med. Chem. Lett., 2016, 26(7), 1849-1853.
[http://dx.doi.org/10.1016/j.bmcl.2016.01.088] [PMID: 26906636]
[72]
Xiang, M.; Song, Y.L.; Ji, J.; Zhou, X.; Liu, L.W.; Wang, P.Y.; Wu, Z.B.; Li, Z.; Yang, S. Synthesis of novel 18 β ‐ glycyrrhetinic pipera-zine amides displaying significant in vitro and in vivo antibacterial activities against intractable plant bacterial diseases. Pest Manag. Sci., 2020, 76(9), 2959-2971.
[http://dx.doi.org/10.1002/ps.5841] [PMID: 32246577]
[73]
Wang, P.Y.; Xiang, M.; Luo, M.; Liu, H.W.; Zhou, X.; Wu, Z.B.; Liu, L.W.; Li, Z.; Yang, S. Novel PIPERAZINE‐TAILORED ursolic acid hybrids as significant antibacterial agents targeting phytopathogens Xanthomonas oryzae pv. oryzae and X. axonopodis pv. citri probably directed by activation of apoptosis. Pest Manag. Sci., 2020, 76(8), 2746-2754.
[http://dx.doi.org/10.1002/ps.5822] [PMID: 32187443]
[74]
Kushwaha, K.; Kaushik, N. Lata; Jain, S.C. Design and synthesis of novel 2H-chromen-2-one derivatives bearing 1,2,3-triazole moiety as lead antimicrobials. Bioorg. Med. Chem. Lett., 2014, 24(7), 1795-1801.
[http://dx.doi.org/10.1016/j.bmcl.2014.02.027] [PMID: 24594353]
[75]
Li, J.; Li, D.; Xu, Y.; Guo, Z.; Liu, X.; Yang, H.; Wu, L.; Wang, L. Design, synthesis, biological evaluation, and molecular docking of chal-cone derivatives as anti-inflammatory agents. Bioorg. Med. Chem. Lett., 2017, 27(3), 602-606.
[http://dx.doi.org/10.1016/j.bmcl.2016.12.008] [PMID: 28011213]
[76]
Li, B.; Cai, S.; Yang, Y.A.; Chen, S.C.; Chen, R.; Shi, J.B.; Liu, X.H.; Tang, W.J. Novel unsaturated glycyrrhetic acids derivatives: Design, synthesis and anti-inflammatory activity. Eur. J. Med. Chem., 2017, 139, 337-348.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.002] [PMID: 28803048]
[77]
Zhang, C.; Wu, Y.; Li, J.; Yang, G.X.; Su, L.; Huang, Y.; Wang, R.; Ma, L. Synthesis and biological evaluation of 3-carbamate smilagenin derivatives as potential neuroprotective agents. Bioorg. Med. Chem. Lett., 2019, 29(19), 126622.
[http://dx.doi.org/10.1016/j.bmcl.2019.08.026] [PMID: 31444084]
[78]
Kładna, A.; Berczyński, P.; Dündar, O.B.; Ünlüsoy, M.C.; Sarı, E.; Bakinowska, B.; Kruk, I.; Aboul-Enein, H.Y. Synthesis and in vitro antioxidant activity of new pyrimidin/benzothiazol-substituted piperazinyl flavones. Future Med. Chem., 2018, 10(19), 2293-2308.
[http://dx.doi.org/10.4155/fmc-2018-0206] [PMID: 30273015]
[79]
Berczyński, P.; Kładna, A.; Bozdağ Dündar, O.; Murat, H.N.; Sarı, E.; Kruk, I.; Aboul-Enein, H.Y. Preparation and in vitro antioxidant activity of some novel flavone analogues bearing piperazine moiety. Bioorg. Chem., 2020, 95103513.
[http://dx.doi.org/10.1016/j.bioorg.2019.103513] [PMID: 31884144]
[80]
Chen, S.Y.; Chen, Y.; Li, Y.P.; Chen, S.H.; Tan, J.H.; Ou, T.M.; Gu, L.Q.; Huang, Z.S. Design, synthesis, and biological evaluation of curcumin analogues as multifunctional agents for the treatment of Alzheimer’s disease. Bioorg. Med. Chem., 2011, 19(18), 5596-5604.
[http://dx.doi.org/10.1016/j.bmc.2011.07.033] [PMID: 21840724]
[81]
Li, S.Y.; Wang, X.B.; Xie, S.S.; Jiang, N.; Wang, K.D.G.; Yao, H.Q.; Sun, H.B.; Kong, L.Y. Multifunctional tacrine–flavonoid hybrids with cholinergic, β-amyloid-reducing, and metal chelating properties for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2013, 69, 632-646.
[http://dx.doi.org/10.1016/j.ejmech.2013.09.024] [PMID: 24095756]
[82]
Huang, W.; Wang, Y.; Li, J.; Zhang, Y.; Ma, X.; Zhu, P.; Zhang, Y. Design, synthesis, and evaluation of genipin derivatives for the treat-ment of Alzheimer’s Disease. Chem. Biol. Drug Des., 2019, 93(2), 110-122.
[http://dx.doi.org/10.1111/cbdd.13194] [PMID: 29543387]
[83]
Sun, M.; Hu, J.; Song, X.; Wu, D.; Kong, L.; Sun, Y.; Wang, D.; Wang, Y.; Chen, N.; Liu, G. Coumarin derivatives protect against ischemic brain injury in rats. Eur. J. Med. Chem., 2013, 67, 39-53.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.015] [PMID: 23835481]
[84]
Ostrowska, K.; Grzeszczuk, D.; Głuch-Lutwin, M.; Gryboś, A.; Siwek, A.; Leśniak, A.; Sacharczuk, M.; Trzaskowski, B. 5-HT1A and 5-HT2A receptors affinity, docking studies and pharmacological evaluation of a series of 8-acetyl-7-hydroxy-4-methylcoumarin derivatives. Bioorg. Med. Chem., 2018, 26(2), 527-535.
[http://dx.doi.org/10.1016/j.bmc.2017.12.016] [PMID: 29269256]
[85]
Chen, Y.; Lan, Y.; Wang, S.; Zhang, H.; Xu, X.; Liu, X.; Yu, M.; Liu, B.F.; Zhang, G. Synthesis and evaluation of new coumarin deriva-tives as potential atypical antipsychotics. Eur. J. Med. Chem., 2014, 74, 427-439.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.012] [PMID: 24487191]
[86]
Koufaki, M.; Theodorou, E.; Alexi, X.; Nikoloudaki, F.; Alexis, M.N. Synthesis of tropolone derivatives and evaluation of their in vitro neuroprotective activity. Eur. J. Med. Chem., 2010, 45(3), 1107-1112.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.006] [PMID: 20045220]
[87]
Wen, G.; Liu, Q.; Hu, H.; Wang, D.; Wu, S. Design, synthesis, biological evaluation, and molecular docking of novel flavones as H 3 R inhibitors. Chem. Biol. Drug Des., 2017, 90(4), 580-589.
[http://dx.doi.org/10.1111/cbdd.12981] [PMID: 28328173]
[88]
Szkaradek, N.; Rapacz, A.; Pytka, K.; Filipek, B.; Siwek, A.; Cegła, M.; Marona, H. Synthesis and preliminary evaluation of pharmacologi-cal properties of some piperazine derivatives of xanthone. Bioorg. Med. Chem., 2013, 21(2), 514-522.
[http://dx.doi.org/10.1016/j.bmc.2012.11.014] [PMID: 23245804]
[89]
Pacorel, B.; Leung, S.C.; Stachulski, A.V.; Davies, J.; Vivas, L.; Lander, H.; Ward, S.A.; Kaiser, M.; Brun, R.; O’Neill, P.M. Modular synthesis and in vitro and in vivo antimalarial assessment of C-10 pyrrole mannich base derivatives of artemisinin. J. Med. Chem., 2010, 53(2), 633-640.
[http://dx.doi.org/10.1021/jm901216v] [PMID: 19957999]
[90]
Meng, L.; Wang, Q.; Tang, T.; Xiao, S.; Zhang, L.; Zhou, D.; Yu, F. Design, synthesis and biological evaluation of pentacyclic triterpene dimers as HCV entry inhibitors. Chin. J. Chem., 2017, 35(8), 1322-1328.
[http://dx.doi.org/10.1002/cjoc.201700272]
[91]
Li, R.; Wu, J.; He, Y.; Hai, L.; Wu, Y. Synthesis and in vitro evaluation of 12-(substituted aminomethyl) berberrubine derivatives as anti-diabetics. Bioorg. Med. Chem. Lett., 2014, 24(7), 1762-1765.
[http://dx.doi.org/10.1016/j.bmcl.2014.02.032] [PMID: 24613165]
[92]
Hao, Y.; Zhou, G.; Wu, W.; Zhang, Y.; Tao, L.; Yao, J.; Xu, W. Synthesis and antiviral evaluation of novel N-6 substituted adenosine analogues. Tetrahedron Lett., 2017, 58(3), 190-193.
[http://dx.doi.org/10.1016/j.tetlet.2016.11.059]
[93]
Zeng, C.; Avula, S.R.; Meng, J.; Zhou, C. Synthesis and biological evaluation of piperazine hybridized coumarin indolylcyanoenones with antibacterial potential. Molecules, 2023, 28(6), 2511.
[http://dx.doi.org/10.3390/molecules28062511] [PMID: 36985486]
[94]
Liu, Z.; Xia, C.; Wang, N.; Cao, J.; Huang, G.; Ma, L. Synthesis and evaluation of piperazine-tethered derivatives of alepterolic acid as anticancer agents. Chem. Biodivers., 2023, 20(5), e202300208. Epub ahead of print
[http://dx.doi.org/10.1002/cbdv.202300208] [PMID: 36960853]
[95]
Chen, Z.H.; Xu, R.M.; Zheng, G.H.; Jin, Y.Z.; Li, Y.; Chen, X.Y.; Tian, Y.S. Development of combretastatin a-4 analogues as potential anticancer agents with improved aqueous solubility. Molecules, 2023, 28(4), 1717.
[http://dx.doi.org/10.3390/molecules28041717] [PMID: 36838705]
[96]
Venkateswara, R.B.; Pavan Kumar, P.; Ramalingam, V.; Karthik, G.; Andugulapati, S.B.; Suresh, B.K. Piperazine tethered bergenin hetero-cyclic hybrids: design, synthesis, anticancer activity, and molecular docking studies. RSC Med. Chem., 2022, 13(8), 978-985.
[http://dx.doi.org/10.1039/D2MD00116K] [PMID: 36092140]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy