Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Protective Effects of Liriodendrin on Myocardial Infarction-Induced Fibrosis in Rats via the PI3K/Akt Autophagy Pathway: A Network Pharmacology Study

Author(s): Ping Zhang, Xuanming Liu, Xin Yu, Yuzhen Zhuo, Dihua Li, Lei Yang* and Yanmin Lu*

Volume 27, Issue 11, 2024

Published on: 07 September, 2023

Page: [1566 - 1575] Pages: 10

DOI: 10.2174/1386207326666230717155641

Price: $65

Abstract

Background: Liriodendrin (LIR) has been reported to improve cardiac function in rats following myocardial infarction. However, its role and mechanism in reparative myocardial fibrosis remain unclear.

Methods: In this study, a rat model of myocardial fibrosis was established via left anterior descending artery ligation and randomly divided into three groups (n = 6 per group): sham-operated, myocardial infarction, and LIR intervention (100 mg/kg/day) groups. The pharmacological effects of LIR were assessed using echocardiography, hematoxylin, and eosin (H&E) staining, and Masson staining. Network pharmacology and bioinformatics were utilized to identify potential mechanisms of LIR, which were further validated via western blot analysis.

Results: Our findings demonstrated that LIR improved cardiac function, histology scores, and col lagen volume fraction. Moreover, LIR downregulated the expression of Beclin-1, LC3-II/LC3-I while upregulating the expression of p62, indicating LIR-inhibited autophagy in the heart after myocardial infarction. Further analysis revealed that the PI3K/Akt signaling pathway was significantly enriched and validated by western blot. This analysis suggested that the ratios of p- PI3K/PI3K, p-Akt/Akt, and p-mTOR/mTOR were significantly increased.

Conclusion: LIR may attenuate myocardial infarction-induced fibrosis in rats by inhibiting excessive myocardial autophagy, with the potential mechanism involving the activation of the PI3K/Akt/mTOR pathway.

Graphical Abstract

[1]
Musher, D.M.; Abers, M.S.; Corrales-Medina, V.F. Acute infection and myocardial infarction. N. Engl. J. Med., 2019, 380(2), 171-176.
[http://dx.doi.org/10.1056/NEJMra1808137] [PMID: 30625066]
[2]
Roger, V.L.; Go, A.S.; Lloyd-Jones, D.M.; Adams, R.J.; Berry, J.D.; Brown, T.M.; Carnethon, M.R.; Dai, S.; de Simone, G.; Ford, E.S.; Fox, C.S.; Fullerton, H.J.; Gillespie, C.; Greenlund, K.J.; Hailpern, S.M.; Heit, J.A.; Ho, P.M.; Howard, V.J.; Kissela, B.M.; Kittner, S.J.; Lackland, D.T.; Lichtman, J.H.; Lisabeth, L.D.; Makuc, D.M.; Marcus, G.M.; Marelli, A.; Matchar, D.B.; McDermott, M.M.; Meigs, J.B.; Moy, C.S.; Mozaffarian, D.; Mussolino, M.E.; Nichol, G.; Paynter, N.P.; Rosamond, W.D.; Sorlie, P.D.; Stafford, R.S.; Turan, T.N.; Turner, M.B.; Wong, N.D.; Wylie-Rosett, J. Heart disease and stroke statistics--2011 update: a report from the American Heart Association. Circulation, 2011, 123(4), e18-e209.
[http://dx.doi.org/10.1161/CIR.0b013e3182009701] [PMID: 21160056]
[3]
Abdallah, M.H.; Arnaout, S.; Karrowni, W.; Dakik, H.A. The management of acute myocardial infarction in developing countries. Int. J. Cardiol., 2006, 111(2), 189-194.
[http://dx.doi.org/10.1016/j.ijcard.2005.11.003] [PMID: 16364475]
[4]
Barnes, M.; Heywood, A.E.; Mahimbo, A.; Rahman, B.; Newall, A.T.; Macintyre, C.R. Acute myocardial infarction and influenza: a meta-analysis of case–control studies. Heart, 2015, 101(21), 1738-1747.
[http://dx.doi.org/10.1136/heartjnl-2015-307691] [PMID: 26310262]
[5]
Saleh, M.; Ambrose, J.A. Understanding myocardial infarction. F1000 Res., 2018, 7, 1378.
[http://dx.doi.org/10.12688/f1000research.15096.1] [PMID: 30228871]
[6]
Lv, S.; Yuan, P.; Dong, J.; Lu, C.; Li, M.; Qu, F.; Zhu, Y.; Yuan, Z.; Zhang, J. QiShenYiQi pill improves the reparative myocardial fibrosis by regulating autophagy. J. Cell. Mol. Med., 2020, 24(19), 11283-11293.
[http://dx.doi.org/10.1111/jcmm.15695] [PMID: 32881330]
[7]
Gatica, D.; Lahiri, V.; Klionsky, D.J. Cargo recognition and degradation by selective autophagy. Nat. Cell Biol., 2018, 20(3), 233-242.
[http://dx.doi.org/10.1038/s41556-018-0037-z] [PMID: 29476151]
[8]
Wang, X.; Dai, Y.; Ding, Z.; Khaidakov, M.; Mercanti, F.; Mehta, J.L. Regulation of autophagy and apoptosis in response to angiotensin II in HL-1 cardiomyocytes. Biochem. Biophys. Res. Commun., 2013, 440(4), 696-700.
[http://dx.doi.org/10.1016/j.bbrc.2013.09.131] [PMID: 24099770]
[9]
Cătană, C.S.; Atanasov, A.G.; Berindan-Neagoe, I. Natural products with anti-aging potential: Affected targets and molecular mechanisms. Biotechnol. Adv., 2018, 36(6), 1649-1656.
[http://dx.doi.org/10.1016/j.biotechadv.2018.03.012] [PMID: 29597027]
[10]
Wang, P.; Shao, B.Z.; Deng, Z.; Chen, S.; Yue, Z.; Miao, C.Y. Autophagy in ischemic stroke. Prog. Neurobiol., 2018, 163-164, 98-117.
[http://dx.doi.org/10.1016/j.pneurobio.2018.01.001] [PMID: 29331396]
[11]
Matsui, Y.; Takagi, H.; Qu, X.; Abdellatif, M.; Sakoda, H.; Asano, T.; Levine, B.; Sadoshima, J. Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ. Res., 2007, 100(6), 914-922.
[http://dx.doi.org/10.1161/01.RES.0000261924.76669.36] [PMID: 17332429]
[12]
Sciarretta, S.; Yee, D.; Nagarajan, N.; Bianchi, F.; Saito, T.; Valenti, V.; Tong, M.; Del Re, D.P.; Vecchione, C.; Schirone, L.; Forte, M.; Rubattu, S.; Shirakabe, A.; Boppana, V.S.; Volpe, M.; Frati, G.; Zhai, P.; Sadoshima, J. Trehalose-Induced Activation of Autophagy improves cardiac remodeling after myocardial infarction. J. Am. Coll. Cardiol., 2018, 71(18), 1999-2010.
[http://dx.doi.org/10.1016/j.jacc.2018.02.066] [PMID: 29724354]
[13]
Sciarretta, S.; Yee, D.; Shenoy, V.; Nagarajan, N.; Sadoshima, J. The importance of autophagy in cardioprotection. High Blood Press. Cardiovasc. Prev., 2014, 21(1), 21-28.
[http://dx.doi.org/10.1007/s40292-013-0029-9] [PMID: 24235024]
[14]
Li, Y.; Liu, M.; Song, X.; Zheng, X.; Yi, J.; Liu, D.; Wang, S.; Chu, C.; Yang, J. Exogenous hydrogen sulfide ameliorates diabetic myocardial fibrosis by inhibiting cell aging through SIRT6/AMPK autophagy. Front. Pharmacol., 2020, 11, 1150.
[http://dx.doi.org/10.3389/fphar.2020.01150] [PMID: 32903815]
[15]
Ba, L.; Gao, J.; Chen, Y.; Qi, H.; Dong, C.; Pan, H.; Zhang, Q.; Shi, P.; Song, C.; Guan, X.; Cao, Y.; Sun, H. Allicin attenuates pathological cardiac hypertrophy by inhibiting autophagy via activation of PI3K/Akt/mTOR and MAPK/ERK/mTOR signaling pathways. Phytomedicine, 2019, 58, 152765.
[http://dx.doi.org/10.1016/j.phymed.2018.11.025] [PMID: 31005720]
[16]
Heras-Sandoval, D.; Pérez-Rojas, J.M.; Hernández-Damián, J.; Pedraza-Chaverri, J. The role of PI3K/AKT/mTOR pathway in the modulation of autophagy and the clearance of protein aggregates in neurodegeneration. Cell. Signal., 2014, 26(12), 2694-2701.
[http://dx.doi.org/10.1016/j.cellsig.2014.08.019] [PMID: 25173700]
[17]
Feng, C.; Li, B.G.; Gao, X.P.; Qi, H.Y.; Zhang, G.L. A new triterpene and an antiarrhythmic liriodendrin from Pittosporum brevicalyx. Arch. Pharm. Res., 2010, 33(12), 1927-1932.
[http://dx.doi.org/10.1007/s12272-010-1206-1] [PMID: 21191756]
[18]
Jung, H.J.; Park, H.J.; Kim, R.G.; Shin, K.M.; Ha, J.; Choi, J.W.; Kim, H.J.; Lee, Y.S.; Lee, K.T. In vivo anti-inflammatory and antinociceptive effects of liriodendrin isolated from the stem bark of Acanthopanax senticosus. Planta Med., 2003, 69(7), 610-616.
[http://dx.doi.org/10.1055/s-2003-41127] [PMID: 12898415]
[19]
Zhang, Z.; Yang, L.; Wang, B.; Zhang, L.; Zhang, Q.; Li, D.; Zhang, S.; Gao, H.; Wang, X. Protective role of liriodendrin in mice with dextran sulphate sodium-induced ulcerative colitis. Int. Immunopharmacol., 2017, 52, 203-210.
[http://dx.doi.org/10.1016/j.intimp.2017.09.012] [PMID: 28941417]
[20]
Sohn, Y.A.; Hwang, S.A.; Lee, S.Y.; Hwang, I.Y.; Kim, S.W.; Kim, S.Y.; Moon, A.; Lee, Y.S.; Kim, Y.H.; Kang, K.J.; Jeong, C.S. Protective Effect of Liriodendrin Isolated from Kalopanax pictus against Gastric Injury. Biomol. Ther. (Seoul), 2015, 23(1), 53-59.
[http://dx.doi.org/10.4062/biomolther.2014.103] [PMID: 25593644]
[21]
Kim, D.H.; Lee, K.T.; Bae, E.A.; Han, M.J.; Park, H.J. Metabolism of liriodendrin and syringin by human intestinal bacteria and their relation toin vitro cytotoxicity. Arch. Pharm. Res., 1999, 22(1), 30-34.
[http://dx.doi.org/10.1007/BF02976432] [PMID: 10071956]
[22]
Li, G.; Yang, L.; Feng, L.; Yang, J.; Li, Y.; An, J.; Li, D.; Xu, Y.; Gao, Y.; Li, J.; Liu, J.; Yang, L.; Qi, Z. Syringaresinol Protects against Type 1 Diabetic Cardiomyopathy by Alleviating Inflammation Responses, Cardiac Fibrosis, and Oxidative Stress. Mol. Nutr. Food Res., 2020, 64(18), 2000231.
[http://dx.doi.org/10.1002/mnfr.202000231] [PMID: 32729956]
[23]
Li, D.H.; Wang, Y.; Lv, Y.S.; Liu, J.H.; Yang, L.; Zhang, S.K.; Zhuo, Y.Z. Preparative Purification of Liriodendrin from Sargentodoxa cuneata by Macroporous Resin. BioMed Res. Int., 2015, 2015, 861256.
[PMID: 26236742]
[24]
Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res., 2019, 47(W1), W357-W364.
[http://dx.doi.org/10.1093/nar/gkz382] [PMID: 31106366]
[25]
Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res., 2021, 49(D1), D605-D612.
[http://dx.doi.org/10.1093/nar/gkaa1074] [PMID: 33237311]
[26]
Yu, T.; Wang, Z.; You, X.; Zhou, H.; He, W.; Li, B.; Xia, J.; Zhu, H.; Zhao, Y.; Yu, G.; Xiong, Y.; Yang, Y. Resveratrol promotes osteogenesis and alleviates osteoporosis by inhibiting p53. Aging (Albany NY), 2020, 12(11), 10359-10369.
[http://dx.doi.org/10.18632/aging.103262] [PMID: 32459661]
[27]
Wu, T.; Hu, E.; Xu, S.; Chen, M.; Guo, P.; Dai, Z.; Feng, T.; Zhou, L.; Tang, W.; Zhan, L.; Fu, X.; Liu, S.; Bo, X.; Yu, G. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation, 2021, 2(3), 100141.
[http://dx.doi.org/10.1016/j.xinn.2021.100141] [PMID: 34557778]
[28]
Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant, 2020, 13(8), 1194-1202.
[http://dx.doi.org/10.1016/j.molp.2020.06.009] [PMID: 32585190]
[29]
Walter, W.; Sánchez-Cabo, F.; Ricote, M. GOplot: an R package for visually combining expression data with functional analysis. Bioinformatics, 2015, 31(17), 2912-2914.
[http://dx.doi.org/10.1093/bioinformatics/btv300] [PMID: 25964631]
[30]
Park, S.; Nguyen, N.B.; Pezhouman, A.; Ardehali, R. Cardiac fibrosis: potential therapeutic targets. Transl. Res., 2019, 209, 121-137.
[http://dx.doi.org/10.1016/j.trsl.2019.03.001] [PMID: 30930180]
[31]
Aujla, P.K.; Kassiri, Z. Diverse origins and activation of fibroblasts in cardiac fibrosis. Cell. Signal., 2021, 78, 109869.
[http://dx.doi.org/10.1016/j.cellsig.2020.109869] [PMID: 33278559]
[32]
Mavrogeni, S.; Markousis-Mavrogenis, G.; Koutsogeorgopoulou, L.; Kolovou, G. Cardiovascular magnetic resonance imaging: clinical implications in the evaluation of connective tissue diseases. J. Inflamm. Res., 2017, 10, 55-61.
[http://dx.doi.org/10.2147/JIR.S115508] [PMID: 28546762]
[33]
Samsamshariat, S.A.; Samsamshariat, Z.A.; Movahed, M.R. A novel method for safe and accurate left anterior descending coronary artery ligation for research in rats. Cardiovasc. Revasc. Med., 2005, 6(3), 121-123.
[http://dx.doi.org/10.1016/j.carrev.2005.07.001] [PMID: 16275608]
[34]
Schirone, L.; Forte, M.; Palmerio, S.; Yee, D.; Nocella, C.; Angelini, F.; Pagano, F.; Schiavon, S.; Bordin, A.; Carrizzo, A.; Vecchione, C.; Valenti, V.; Chimenti, I.; De Falco, E.; Sciarretta, S.; Frati, G. A Review of the Molecular Mechanisms Underlying the Development and Progression of Cardiac Remodeling. Oxid. Med. Cell. Longev., 2017, 2017, 1-16.
[http://dx.doi.org/10.1155/2017/3920195] [PMID: 28751931]
[35]
Jung, C.H.; Jun, C.B.; Ro, S.H.; Kim, Y.M.; Otto, N.M.; Cao, J.; Kundu, M.; Kim, D.H. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell, 2009, 20(7), 1992-2003.
[http://dx.doi.org/10.1091/mbc.e08-12-1249] [PMID: 19225151]
[36]
Lv, S.; Yuan, P.; Lu, C.; Dong, J.; Li, M.; Qu, F.; Zhu, Y.; Zhang, J. QiShenYiQi pill activates autophagy to attenuate reactive myocardial fibrosis via the PI3K/AKT/mTOR pathway. Aging, 2021, 13(4), 5525-5538.
[http://dx.doi.org/10.18632/aging.202482] [PMID: 33582656]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy