Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Research Article

Folate-mediated Transport of Nanoparticles across the Placenta

Author(s): Irina Kalashnikova, Svetlana Patrikeeva, Tatiana N. Nanovskaya, Yaroslav A. Andreev, Mahmoud S. Ahmed and Erik Rytting*

Volume 12, Issue 2, 2024

Published on: 15 August, 2023

Page: [171 - 183] Pages: 13

DOI: 10.2174/2211738511666230717122429

Price: $65

Abstract

Background: In this study, a prototype of a targeted nanocarrier for drug delivery for prenatal therapy of the developing fetus was developed and examined in vitro and ex vivo. The folate transport mechanism in the human placenta was utilized as a possible pathway for the transplacental delivery of targeted nanoparticles.

Methods: Several types of folic acid-decorated polymeric nanoparticles were synthesized and characterized. During transport studies of targeted and non-targeted fluorescent nanoparticles across the placental barrier, the apparent permeability values, uptake, transfer indices, and distribution in placental tissue were determined.

Results: The nanoparticles had no effect on BeWo b30 cell viability. In vitro, studies showed significantly higher apparent permeability of the targeted nanoparticles across the cell monolayers as compared to the nontargeted nanoparticles (Pe = 5.92 ± 1.44 ×10-6 cm/s for PLGA-PEG-FA vs. 1.26 ± 0.31 ×10-6 cm/s for PLGA-PEG, P < 0.05), and the transport of the targeted nanoparticles was significantly inhibited by excess folate. Ex vivo placental perfusion showed significantly greater accumulation of the targeted nanoparticles in the placental tissue (4.31 ± 0.91%/g for PLGA-PEG-FA vs. 2.07 ± 0.26%/g for PLGA-PEG).

Conclusion: The data obtained suggested different mechanisms for the uptake and transplacental transfer of targeted versus nontargeted nanoparticles. This targeted nanoformulation may be a promising strategy for fetal drug therapy.

« Previous
Graphical Abstract

[1]
Rytting E, Waltz J, Ahmed MS. Fetal Drug Therapy, Clinical Pharmacology During Pregnancy. (2nd ed.). London, UK: Elsevier 2022; pp. 61-78.
[http://dx.doi.org/10.1016/B978-0-12-818902-3.00007-5]
[2]
Al-Enazy S, Ali S, Albekairi N, El-Tawil M, Rytting E. Placental control of drug delivery. Adv Drug Deliv Rev 2017; 116: 63-72.
[http://dx.doi.org/10.1016/j.addr.2016.08.002] [PMID: 27527665]
[3]
Zhang B, Liang R, Zheng M, Cai L, Fan X. Surface-functionalized nanoparticles as efficient tools in targeted therapy of pregnancy complications. Int J Mol Sci 2019; 20(15): 3642.
[http://dx.doi.org/10.3390/ijms20153642] [PMID: 31349643]
[4]
King A, Ndifon C, Lui S, et al. Tumor-homing peptides as tools for targeted delivery of payloads to the placenta. Sci Adv 2016; 2(5): e1600349.
[http://dx.doi.org/10.1126/sciadv.1600349] [PMID: 27386551]
[5]
Refuerzo JS, Longo M, Godin B. Targeted nanoparticles in pregnancy: A new frontier in perinatal therapeutics. Am J Obstet Gynecol 2017; 216(3): 204-5.
[http://dx.doi.org/10.1016/j.ajog.2017.01.025] [PMID: 28161454]
[6]
Paul JW, Hua S, Ilicic M, et al. Drug delivery to the human and mouse uterus using immunoliposomes targeted to the oxytocin receptor. Am J Obstet Gynecol 2017; 216(3): 283.e1-283.e14.
[http://dx.doi.org/10.1016/j.ajog.2016.08.027] [PMID: 27567564]
[7]
Kulvietis V, Zalgeviciene V, Didziapetriene J, Rotomskis R. Transport of nanoparticles through the placental barrier. Tohoku J Exp Med 2011; 225(4): 225-34.
[http://dx.doi.org/10.1620/tjem.225.225] [PMID: 22052087]
[8]
Harush-Frenkel O, Debotton N, Benita S, Altschuler Y. Targeting of nanoparticles to the clathrin-mediated endocytic pathway. Biochem Biophys Res Commun 2007; 353(1): 26-32.
[http://dx.doi.org/10.1016/j.bbrc.2006.11.135] [PMID: 17184736]
[9]
Yang H, Sun C, Fan Z, et al. Effects of gestational age and surface modification on materno-fetal transfer of nanoparticles in murine pregnancy. Sci Rep 2012; 2(1): 847.
[http://dx.doi.org/10.1038/srep00847] [PMID: 23150793]
[10]
Yamashita K, Yoshioka Y, Higashisaka K, et al. Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. Nat Nanotechnol 2011; 6(5): 321-8.
[http://dx.doi.org/10.1038/nnano.2011.41] [PMID: 21460826]
[11]
Refuerzo JS, Godin B, Bishop K, et al. Size of the nanovectors determines the transplacental passage in pregnancy: Study in rats. Am J Obstet Gynecol 2011; 204(6): 546.e5-9.
[http://dx.doi.org/10.1016/j.ajog.2011.02.033] [PMID: 21481834]
[12]
Wick P, Malek A, Manser P, et al. Barrier capacity of human placenta for nanosized materials. Environ Health Perspect 2010; 118(3): 432-6.
[http://dx.doi.org/10.1289/ehp.0901200] [PMID: 20064770]
[13]
Menjoge AR, Rinderknecht AL, Navath RS, et al. Transfer of PAMAM dendrimers across human placenta: Prospects of its use as drug carrier during pregnancy. J Control Release 2011; 150(3): 326-38.
[http://dx.doi.org/10.1016/j.jconrel.2010.11.023] [PMID: 21129423]
[14]
Ali H, Kalashnikova I, White MA, Sherman M, Rytting E. Preparation, characterization, and transport of dexamethasone-loaded polymeric nanoparticles across a human placental in vitro model. Int J Pharm 2013; 454(1): 149-57.
[http://dx.doi.org/10.1016/j.ijpharm.2013.07.010] [PMID: 23850397]
[15]
Campagnolo L, Massimiani M, Palmieri G, et al. Biodistribution and toxicity of pegylated single wall carbon nanotubes in pregnant mice. Part Fibre Toxicol 2013; 10(1): 21.
[http://dx.doi.org/10.1186/1743-8977-10-21] [PMID: 23742083]
[16]
Zhang B, Tan L, Yu Y, et al. Placenta-specific drug delivery by trophoblast-targeted nanoparticles in mice. Theranostics 2018; 8(10): 2765-81.
[http://dx.doi.org/10.7150/thno.22904] [PMID: 29774074]
[17]
Abd Ellah N, Taylor L, Troja W, et al. Development of non-viral, trophoblast-specific gene delivery for placental therapy. PLoS One 2015; 10(10): e0140879.
[http://dx.doi.org/10.1371/journal.pone.0140879] [PMID: 26473479]
[18]
Buerki-Thurnherr T. von M, Wick P. Knocking at the door of the unborn child: Engineered nanoparticles at the human placental barrier. Swiss Med Wkly 2012; 142: w13559.
[http://dx.doi.org/10.4414/smw.2012.13559] [PMID: 22481566]
[19]
Poulsen MS, Mose T, Maroun LL, Mathiesen L, Knudsen LE, Rytting E. Kinetics of silica nanoparticles in the human placenta. Nanotoxicology 2015; 9 (Suppl. 1): 79-86.
[http://dx.doi.org/10.3109/17435390.2013.812259] [PMID: 23742169]
[20]
Zhao F, Zhao Y, Liu Y, Chang X, Chen C, Zhao Y. Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small 2011; 7(10): 1322-37.
[http://dx.doi.org/10.1002/smll.201100001] [PMID: 21520409]
[21]
Park MR, Gurunathan S, Choi YJ, et al. Chitosan nanoparticles cause pre- and postimplantation embryo complications in mice. Biol Reprod 2013; 88(4): 88.
[http://dx.doi.org/10.1095/biolreprod.112.107532] [PMID: 23467739]
[22]
Albekairi NA, Al-Enazy S, Ali S, Rytting E. Transport of digoxin-loaded polymeric nanoparticles across BeWo cells, an in vitro model of human placental trophoblast. Ther Deliv 2015; 6(12): 1325-34.
[http://dx.doi.org/10.4155/tde.15.79] [PMID: 26652279]
[23]
Semete B, Booysen L, Lemmer Y, et al. In vivo evaluation of the biodistribution and safety of PLGA nanoparticles as drug delivery systems. Nanomedicine 2010; 6(5): 662-71.
[http://dx.doi.org/10.1016/j.nano.2010.02.002] [PMID: 20230912]
[24]
Wibowo AS, Singh M, Reeder KM, et al. Structures of human folate receptors reveal biological trafficking states and diversity in folate and antifolate recognition. Proc Natl Acad Sci USA 2013; 110(38): 15180-8.
[http://dx.doi.org/10.1073/pnas.1308827110] [PMID: 23934049]
[25]
Yasuda S, Hasui S, Kobayashi M, Itagaki S, Hirano T, Iseki K. The mechanism of carrier-mediated transport of folates in BeWo cells: The involvement of heme carrier protein 1 in placental folate transport. Biosci Biotechnol Biochem 2008; 72(2): 329-34.
[http://dx.doi.org/10.1271/bbb.70347] [PMID: 18256483]
[26]
Xu S, Olenyuk BZ, Okamoto CT, Hamm-Alvarez SF. Targeting receptor-mediated endocytotic pathways with nanoparticles: Rationale and advances. Adv Drug Deliv Rev 2013; 65(1): 121-38.
[http://dx.doi.org/10.1016/j.addr.2012.09.041] [PMID: 23026636]
[27]
Rijnboutt S, Jansen G, Posthuma G, Hynes JB, Schornagel JH, Strous GJ. Endocytosis of GPI-linked membrane folate receptor-alpha. J Cell Biol 1996; 132(1): 35-47.
[http://dx.doi.org/10.1083/jcb.132.1.35] [PMID: 8567728]
[28]
Hutson JR, Garcia-Bournissen F, Davis A, Koren G. The human placental perfusion model: A systematic review and development of a model to predict in vivo transfer of therapeutic drugs. Clin Pharmacol Ther 2011; 90(1): 67-76.
[http://dx.doi.org/10.1038/clpt.2011.66] [PMID: 21562489]
[29]
Rytting E, Audus KL. Novel organic cation transporter 2-mediated carnitine uptake in placental choriocarcinoma (BeWo) cells. J Pharmacol Exp Ther 2005; 312(1): 192-8.
[http://dx.doi.org/10.1124/jpet.104.072363] [PMID: 15316089]
[30]
Nanovskaya T, Deshmukh S, Brooks M, Ahmed MS. Transplacental transfer and metabolism of buprenorphine. J Pharmacol Exp Ther 2002; 300(1): 26-33.
[http://dx.doi.org/10.1124/jpet.300.1.26] [PMID: 11752093]
[31]
Johnson RF, Herman N, Arney TL, Johnson HV, Paschall RL, Downing JW. The placental transfer of sufentanil: Effects of fetal pH, protein binding, and sufentanil concentration. Anesth Analg 1997; 84(6): 1262-8.
[http://dx.doi.org/10.1213/00000539-199706000-00017] [PMID: 9174304]
[32]
Kalashnikova I, Albekairi N, Al-Enazy S, Rytting E. Characterization of Drug-Loaded NanoparticlesNano Based Drug Delivery. Zagreb, Croatia: IAPC Publishing 2015; pp. 147-64.
[http://dx.doi.org/10.5599/obp.8.4]
[33]
Ali H, Kilic G, Vincent K, Motamedi M, Rytting E. Nanomedicine for uterine leiomyoma therapy. Ther Deliv 2013; 4(2): 161-75.
[http://dx.doi.org/10.4155/tde.12.144] [PMID: 23343157]
[34]
Beck-Broichsitter M, Rytting E, Lebhardt T, Wang X, Kissel T. Preparation of nanoparticles by solvent displacement for drug delivery: A shift in the “ouzo region” upon drug loading. Eur J Pharm Sci 2010; 41(2): 244-53.
[http://dx.doi.org/10.1016/j.ejps.2010.06.007] [PMID: 20600881]
[35]
Roger E, Kalscheuer S, Kirtane A, et al. Folic acid functionalized nanoparticles for enhanced oral drug delivery. Mol Pharm 2012; 9(7): 2103-10.
[http://dx.doi.org/10.1021/mp2005388] [PMID: 22670575]
[36]
Solanky N, Requena Jimenez A, D’Souza SW, Sibley CP, Glazier JD. Expression of folate transporters in human placenta and implications for homocysteine metabolism. Placenta 2010; 31(2): 134-43.
[http://dx.doi.org/10.1016/j.placenta.2009.11.017] [PMID: 20036773]
[37]
Antony AC. Folate receptors. Annu Rev Nutr 1996; 16(1): 501-21.
[http://dx.doi.org/10.1146/annurev.nu.16.070196.002441] [PMID: 8839936]
[38]
Henderson GI, Perez T, Schenker S, Mackins J, Antony AC. Maternal-to-fetal transfer of 5-methyltetrahydrofolate by the perfused human placental cotyledon: Evidence for a concentrative role by placental folate receptors in fetal folate delivery. J Lab Clin Med 1995; 126(2): 184-203.
[PMID: 7636392]
[39]
Chatterjee S, Smith ER, Hanada K, Stevens VL, Mayor S. GPI anchoring leads to sphingolipid-dependent retention of endocytosed proteins in the recycling endosomal compartment. EMBO J 2001; 20(7): 1583-92.
[http://dx.doi.org/10.1093/emboj/20.7.1583] [PMID: 11285223]
[40]
Hutson JR, Stade B, Lehotay DC, Collier CP, Kapur BM. Folic acid transport to the human fetus is decreased in pregnancies with chronic alcohol exposure. PLoS One 2012; 7(5): e38057.
[http://dx.doi.org/10.1371/journal.pone.0038057] [PMID: 22666445]
[41]
Greenberg JA, Bell SJ, Guan Y, Yu YH. Folic Acid supplementation and pregnancy: More than just neural tube defect prevention. Rev Obstet Gynecol 2011; 4(2): 52-9.
[PMID: 22102928]
[42]
Obeid R, Koletzko B, Pietrzik K. Critical evaluation of lowering the recommended dietary intake of folate. Clin Nutr 2014; 33(2): 252-9.
[http://dx.doi.org/10.1016/j.clnu.2013.12.013] [PMID: 24503418]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy