Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Medicinal Plants for the Treatment of Neuropathic Pain: A Review of Randomized Controlled Trials

Author(s): Amir Mahmoud Ahmadzadeh, Ghazaleh Pourali, Seyed Behzad Mirheidari, Matin Shirazinia, Mahdieh Hamedi, Ali Mehri, Hesam Amirbeik, Sajjad Saghebdoust, Zahra Tayarani-Najaran, Thozhukat Sathyapalan, Fatemeh Forouzanfar* and Amirhossein Sahebkar*

Volume 25, Issue 5, 2024

Published on: 24 July, 2023

Page: [534 - 562] Pages: 29

DOI: 10.2174/1389201024666230714143538

Price: $65

Abstract

Neuropathic pain is a disabling condition caused by various diseases and can profoundly impact the quality of life. Unfortunately, current treatments often do not produce complete amelioration and can be associated with potential side effects. Recently, herbal drugs have garnered more attention as an alternative or a complementary treatment. In this article, we summarized the results of randomized clinical trials to evaluate the effects of various phytomedicines on neuropathic pain. In addition, we discussed their main bioactive components and potential mechanisms of action to provide a better view of the application of herbal drugs for treating neuropathic pain.

Graphical Abstract

[1]
Raja, S.N.; Carr, D.B.; Cohen, M.; Finnerup, N.B.; Flor, H.; Gibson, S. The revised IASP definition of pain: Concepts, challenges, and compromises. Pain, 2020, 161(9), 1976.
[http://dx.doi.org/10.1097/j.pain.0000000000001939] [PMID: 32694387]
[2]
Luo, Y.; Wang, C.Z.; Sawadogo, R.; Tan, T.; Yuan, C.S. Effects of herbal medicines on pain management. Am. J. Chin. Med., 2020, 48(1), 1-16.
[http://dx.doi.org/10.1142/S0192415X20500019] [PMID: 32054304]
[3]
Woolf, C.J. What is this thing called pain? J. Clin. Invest., 2010, 120(11), 3742-3744.
[http://dx.doi.org/10.1172/JCI45178] [PMID: 21041955]
[4]
Asgharzade, S.; Talaei, A.; Farkhondeh, T.; Forouzanfar, F. A review on stem cell therapy for neuropathic pain. Curr. Stem Cell Res. Ther., 2020, 15(4), 349-361.
[http://dx.doi.org/10.2174/1574888X15666200214112908] [PMID: 32056531]
[5]
Smith, B.H.; Hébert, H.L.; Veluchamy, A. Neuropathic pain in the community: Prevalence, impact, and risk factors. Pain, 2020, 161(S1), S127-S137.
[http://dx.doi.org/10.1097/j.pain.0000000000001824] [PMID: 33090746]
[6]
Bozorgi, H.; Ghahremanfard, F.; Motaghi, E.; Zamaemifard, M.; Zamani, M.; Izadi, A. Effectiveness of crocin of saffron (Crocus sativus L.) against chemotherapy-induced peripheral neuropathy: A randomized, double-blind, placebo-controlled clinical trial. J. Ethnopharmacol., 2021, 281, 114511.
[http://dx.doi.org/10.1016/j.jep.2021.114511] [PMID: 34390797]
[7]
Negah, S.S.; Ghazavi, H.; Vafaee, F.; Rashidi, R.; Aminian, A.R.; Forouzanfar, F. The potential role of green tea and its main constituent (epigallocatechin-3-gallate) in pain relief: A mechanistic review. Curr. Drug Discov. Technol., 2021, 18(6), 5-11.
[http://dx.doi.org/10.2174/1570163817666201229121033] [PMID: 33372878]
[8]
Lowy, D.B.; Makker, P.G.S.; Moalem-Taylor, G. Cutaneous neuroimmune interactions in peripheral neuropathic pain states. Front. Immunol., 2021, 12, 660203.
[http://dx.doi.org/10.3389/fimmu.2021.660203] [PMID: 33912189]
[9]
Dosenovic, S.; Jelicic Kadic, A.; Miljanovic, M.; Biocic, M.; Boric, K.; Cavar, M.; Markovina, N.; Vucic, K.; Puljak, L. Interventions for neuropathic pain: An overview of systematic reviews. Anesth. Analg., 2017, 125(2), 643-652.
[http://dx.doi.org/10.1213/ANE.0000000000001998] [PMID: 28731977]
[10]
Moon, J-Y.; Lee, P-B.; Kim, Y.C.; Lee, S-C.; Nahm, F.S.; Choi, E. Efficacy and safety of 0.625% and 1.25% capsaicin patch in peripheral neuropathic pain: Multi-center, randomized, and semi-double blind controlled study. Pain Physician, 2017, 20(2), 27-35.
[PMID: 28158151]
[11]
Alam, U.; Sloan, G.; Tesfaye, S. Treating pain in diabetic neuropathy: Current and developmental drugs. Drugs, 2020, 80(4), 363-384.
[http://dx.doi.org/10.1007/s40265-020-01259-2] [PMID: 32040849]
[12]
Xu, D.H.; Cullen, B.D.; Tang, M.; Fang, Y. The effectiveness of topical cannabidiol oil in symptomatic relief of peripheral neuropathy of the lower extremities. Curr. Pharm. Biotechnol., 2020, 21(5), 390-402.
[http://dx.doi.org/10.2174/1389201020666191202111534] [PMID: 31793418]
[13]
Abrams, R.M.C.; Pedowitz, E.J.; Simpson, D.M. A critical review of the capsaicin 8% patch for the treatment of neuropathic pain associated with diabetic peripheral neuropathy of the feet in adults. Expert Rev. Neurother., 2021, 21(3), 259-266.
[http://dx.doi.org/10.1080/14737175.2021.1874920] [PMID: 33428495]
[14]
Rivaz, M.; Rahpeima, M.; Khademian, Z.; Dabbaghmanesh, M.H. The effects of aromatherapy massage with lavender essential oil on neuropathic pain and quality of life in diabetic patients: A randomized clinical trial. Complement. Ther. Clin. Pract., 2021, 44, 101430.
[http://dx.doi.org/10.1016/j.ctcp.2021.101430] [PMID: 34217127]
[15]
Hosein Farzaei, M.; Bahramsoltani, R.; Rahimi, R. Phytochemicals as adjunctive with conventional anticancer therapies. Curr. Pharm. Des., 2016, 22(27), 4201-4218.
[http://dx.doi.org/10.2174/1381612822666160601100823] [PMID: 27262332]
[16]
Farzaei, M.H.; Shahpiri, Z.; Bahramsoltani, R. nia, M.M.; Najafi, F.; Rahimi, R. Efficacy and tolerability of phytomedicines in multiple sclerosis patients: A review. CNS Drugs, 2017, 31(10), 867-889.
[http://dx.doi.org/10.1007/s40263-017-0466-4] [PMID: 28948486]
[17]
Rakhshandeh, H.; Asgharzade, S.; Khorrami, MB.; Forouzanfar, F. Protective effect of capparis spinosa extract against focal cerebral ischemia-reperfusion injury in rats. Cent. Nerv. Syst. Agents Med. Chem., 2021, 21(2), 148-153.
[http://dx.doi.org/10.2174/1871524921666210625112356] [PMID: 34176463]
[18]
Jahromi, B.; Pirvulescu, I.; Candido, K.D.; Knezevic, N.N. Herbal medicine for pain management: Efficacy and drug interactions. Pharmaceutics, 2021, 13(2), 251.
[http://dx.doi.org/10.3390/pharmaceutics13020251] [PMID: 33670393]
[19]
Rakhshandeh, H.; Ghorbanzadeh, A.; Negah, S.S.; Akaberi, M.; Rashidi, R.; Forouzanfar, F. Pain-relieving effects of Lawsonia inermis on neuropathic pain induced by chronic constriction injury. Metab. Brain Dis., 2021, 36(7), 1709-1716.
[http://dx.doi.org/10.1007/s11011-021-00773-w] [PMID: 34169409]
[20]
Rakhshandeh, H.; Pourbagher-Shahri, A.M.; Hasanpour, M.; Iranshahi, M.; Forouzanfar, F. Effects of Capparis Spinosa extract on the neuropathic pain induced by chronic constriction injury in rats. Metab. Brain Dis., 2022, 37(8), 2839-2852.
[http://dx.doi.org/10.1007/s11011-022-01094-2] [PMID: 36222985]
[21]
Essmat, A.; Hussein, M.S. Green tea extract for mild-to-moderate diabetic peripheral neuropathy A randomized controlled trial. Complement. Ther. Clin. Pract., 2021, 43, 101317.
[http://dx.doi.org/10.1016/j.ctcp.2021.101317] [PMID: 33517103]
[22]
Naef, M.; Curatolo, M.; Petersen-Felix, S.; Arendt-Nielsen, L.; Zbinden, A.; Brenneisen, R. The analgesic effect of oral delta-9-tetrahydrocannabinol (THC), morphine, and a THC-morphine combination in healthy subjects under experimental pain conditions. Pain, 2003, 105(1), 79-88.
[http://dx.doi.org/10.1016/S0304-3959(03)00163-5] [PMID: 14499423]
[23]
Paice, J.A.; Ferrans, C.E.; Lashley, F.R.; Shott, S.; Vizgirda, V.; Pitrak, D. Topical capsaicin in the management of HIV-associated peripheral neuropathy. J. Pain Symptom Manage., 2000, 19(1), 45-52.
[http://dx.doi.org/10.1016/S0885-3924(99)00139-6] [PMID: 10687326]
[24]
Heydari, M.; Homayouni, K.; Hashempur, M.H.; Shams, M. Topical Citrullus colocynthis (bitter apple) extract oil in painful diabetic neuropathy: A double-blind randomized placebo-controlled clinical trial. J. Diabetes, 2016, 8(2), 246-252.
[http://dx.doi.org/10.1111/1753-0407.12287] [PMID: 25800045]
[25]
Heydarirad, G.; Cramer, H.; Choopani, R.; Gharehgozlou, R.; Mosavat, S.H.; Ameri, A.; Pasalar, M. Topical Costus sp. preparation as palliative care for chemotherapy-induced peripheral neuropathy of patients: A randomized placebo-controlled pilot trial. J. Altern. Complement. Med., 2020, 26(9), 809-814.
[http://dx.doi.org/10.1089/acm.2020.0012] [PMID: 32924550]
[26]
Sawynok, J. Topical and peripherally acting analgesics. Pharmacol. Rev., 2003, 55(1), 1-20.
[http://dx.doi.org/10.1124/pr.55.1.1] [PMID: 12615951]
[27]
Li, C.; Kim, H.J.; Back, S.K.; Na, H.S. Common and discrete mechanisms underlying chronic pain and itch: Peripheral and central sensitization. Pflugers Arch., 2021, 473(10), 1603-1615.
[http://dx.doi.org/10.1007/s00424-021-02599-y] [PMID: 34245379]
[28]
Ullah, R.; Badshah, W.; Ali, G.; Ullah, A.; Khan, S.U.; Ahmad, N.; Shahid, M.; Naveed, M.; Ullah, S.; Bangash, S.A.; Althobaiti, Y.S. Cassia artemisiodes attenuates nociceptive and diabetes-induced neuropathic pain modalities apropos antioxidant and anti-inflammatory mechanisms. Biomed. Pharmacother., 2022, 149, 112834.
[http://dx.doi.org/10.1016/j.biopha.2022.112834] [PMID: 35339108]
[29]
Aminian, A.R.; Forouzanfar, F. Interplay between heat shock proteins, inflammation and pain: A promising therapeutic approach. Curr. Mol. Pharmacol., 2022, 15(1), 170-178.
[PMID: 34781874]
[30]
Vranken, JH. Mechanisms and treatment of neuropathic pain. Cent Nerv Syst Agents Med Chem., 2009, 9(1), 71-78.
[http://dx.doi.org/10.2174/187152409787601932] [PMID: 20021340]
[31]
Dickenson, A.H. The neurobiology of chronic pain states. Anaesth. Intensive Care Med., 2019, 20(8), 426-429.
[http://dx.doi.org/10.1016/j.mpaic.2019.05.005]
[32]
Finnerup, N.B.; Kuner, R.; Jensen, T.S. Neuropathic pain: From mechanisms to treatment. Physiol. Rev., 2021, 101(1), 259-301.
[http://dx.doi.org/10.1152/physrev.00045.2019] [PMID: 32584191]
[33]
Ashmawi, H.A.; Freire, G.M.G. Peripheral and central sensitization. Rev. Dor, 2016, 17, 31-34.
[http://dx.doi.org/10.5935/1806-0013.20160044]
[34]
Malek, N.; Pajak, A.; Kolosowska, N.; Kucharczyk, M.; Starowicz, K. The importance of TRPV1-sensitisation factors for the development of neuropathic pain. Mol. Cell. Neurosci., 2015, 65, 1-10.
[http://dx.doi.org/10.1016/j.mcn.2015.02.001] [PMID: 25662734]
[35]
Dombi, Á.; Sánta, C.; Bátai, I.Z.; Kormos, V.; Kecskés, A.; Tékus, V.; Pohóczky, K.; Bölcskei, K.; Pintér, E.; Pozsgai, G. Dimethyl trisulfide diminishes traumatic neuropathic pain acting on TRPA1 receptors in mice. Int. J. Mol. Sci., 2021, 22(7), 3363.
[http://dx.doi.org/10.3390/ijms22073363] [PMID: 33806000]
[36]
Schug, SA; Daly, HC; Stannard, KJ Pathophysiology of pain. In: Mechanisms of Vascular Disease: A Reference Book for Vascular Specialists; Fitridge, R; Thompson, M Eds.; University of Adelaide Press.: Adelaide (AU) 2018
[37]
Ridouh, I.; Hackshaw, K.V. Essential oils and neuropathic pain. Plants, 2022, 11(14), 1797.
[http://dx.doi.org/10.3390/plants11141797] [PMID: 35890431]
[38]
Sloan, G.; Shillo, P.; Selvarajah, D.; Wu, J.; Wilkinson, I.D.; Tracey, I.; Anand, P.; Tesfaye, S. A new look at painful diabetic neuropathy. Diabetes Res. Clin. Pract., 2018, 144, 177-191.
[http://dx.doi.org/10.1016/j.diabres.2018.08.020] [PMID: 30201394]
[39]
Kulkantrakorn, K.; Chomjit, A.; Sithinamsuwan, P.; Tharavanij, T.; Suwankanoknark, J.; Napunnaphat, P. 0.075% capsaicin lotion for the treatment of painful diabetic neuropathy: A randomized, double-blind, crossover, placebo-controlled trial. J. Clin. Neurosci., 2019, 62, 174-179.
[http://dx.doi.org/10.1016/j.jocn.2018.11.036] [PMID: 30472337]
[40]
Simpson, D.M.; Robinson-Papp, J.; Van, J.; Stoker, M.; Jacobs, H.; Snijder, R.J.; Schregardus, D.S.; Long, S.K.; Lambourg, B.; Katz, N. Capsaicin 8% patch in painful diabetic peripheral neuropathy: A randomized, double-blind, placebo-controlled study. J. Pain, 2017, 18(1), 42-53.
[http://dx.doi.org/10.1016/j.jpain.2016.09.008] [PMID: 27746370]
[41]
Tesfaye, S.; Vileikyte, L.; Rayman, G.; Sindrup, S.H.; Perkins, B.A.; Baconja, M.; Vinik, A.I.; Boulton, A.J.M. Painful diabetic peripheral neuropathy: Consensus recommendations on diagnosis, assessment and management. Diabetes Metab. Res. Rev., 2011, 27(7), 629-638.
[http://dx.doi.org/10.1002/dmrr.1225] [PMID: 21695762]
[42]
Hutapea, A.M.; Simbolon, B.M. Efficacy of herbal medicine for patients with diabetic neuropathies: An updated literature review. Biomedicine, 2022, 42(2), 209-213.
[http://dx.doi.org/10.51248/.v42i2.1346]
[43]
Kuriakose, A.; Roy, K.; Rosh, P.; Kuriakose, S.; Jacob, A.; Beegum, N. A glance to diabetic peripheral neuropathy. Int. J. Dev. Res., 2016, 6(3), 7113-7118.
[44]
Spruce, M.C.; Potter, J.; Coppini, D.V. The pathogenesis and management of painful diabetic neuropathy: A review. Diabet. Med., 2003, 20(2), 88-98.
[http://dx.doi.org/10.1046/j.1464-5491.2003.00852.x] [PMID: 12581259]
[45]
Veves, A.; Backonja, M.; Malik, R.A. Painful diabetic neuropathy: Epidemiology, natural history, early diagnosis, and treatment options. Pain Med., 2008, 9(6), 660-674.
[http://dx.doi.org/10.1111/j.1526-4637.2007.00347.x] [PMID: 18828198]
[46]
Mann, R.; Sadosky, A.; Schaefer, C.; Baik, R.; Parsons, B.; Nieshoff, E.; Stacey, B.R.; Tuchman, M.; Nalamachu, S. Burden of HIV-related neuropathic pain in the United States. J. Int. Assoc. Provid. AIDS Care, 2016, 15(2), 114-125.
[http://dx.doi.org/10.1177/2325957415592474] [PMID: 26173942]
[47]
Yakasai, A.M.; Maharaj, S.S.; Kaka, B.; Danazumi, M.S. Does exercise program of endurance and strength improve health-related quality of life in persons living with HIV-related distal symmetrical polyneuropathy? A randomized controlled trial. Qual. Life Res., 2020, 29(9), 2383-2393.
[http://dx.doi.org/10.1007/s11136-020-02500-x] [PMID: 32306301]
[48]
Aziz-Donnelly, A.; Harrison, T.B. Update of HIV-associated sensory neuropathies. Curr. Treat. Options Neurol., 2017, 19(10), 36.
[http://dx.doi.org/10.1007/s11940-017-0472-3] [PMID: 28861848]
[49]
Lu, H.J.; Fu, Y.Y.; Wei, Q.Q.; Zhang, Z.J. Neuroinflammation in HIV-related neuropathic pain. Front. Pharmacol., 2021, 12, 653852.
[http://dx.doi.org/10.3389/fphar.2021.653852] [PMID: 33959022]
[50]
Ellis, R.J.; Toperoff, W.; Vaida, F.; van den Brande, G.; Gonzales, J.; Gouaux, B.; Bentley, H.; Atkinson, J.H. Smoked medicinal cannabis for neuropathic pain in HIV: A randomized, crossover clinical trial. Neuropsychopharmacology, 2009, 34(3), 672-680.
[http://dx.doi.org/10.1038/npp.2008.120] [PMID: 18688212]
[51]
Egan, K.E.; Caldwell, G.M.; Eckmann, M.S. HIV Neuropathy-a review of mechanisms, diagnosis, and treatment of pain. Curr. Pain Headache Rep., 2021, 25(8), 55.
[http://dx.doi.org/10.1007/s11916-021-00971-2] [PMID: 34236528]
[52]
Abrams, D.I.; Jay, C.A.; Shade, S.B.; Vizoso, H.; Reda, H.; Press, S.; Kelly, M.E.; Rowbotham, M.C.; Petersen, K.L. Cannabis in painful HIV-associated sensory neuropathy: A randomized placebo-controlled trial. Neurology, 2007, 68(7), 515-521.
[http://dx.doi.org/10.1212/01.wnl.0000253187.66183.9c] [PMID: 17296917]
[53]
Hugen, P.W.H.; Burger, D.M.; Brinkman, K.; ter Hofstede, H.J.M.; Schuurman, R.; Koopmans, P.P.; Hekster, Y.A. Carbamazepine--indinavir interaction causes antiretroviral therapy failure. Ann. Pharmacother., 2000, 34(4), 465-470.
[http://dx.doi.org/10.1345/aph.19211] [PMID: 10772431]
[54]
Dinat, N.; Marinda, E.; Moch, S.; Rice, A.S.C.; Kamerman, P.R. Randomized, double-blind, crossover trial of amitriptyline for analgesia in painful HIV-associated sensory neuropathy. PLoS One, 2015, 10(5), e0126297.
[http://dx.doi.org/10.1371/journal.pone.0126297] [PMID: 25974287]
[55]
Kieburtz, K.; Simpson, D.; Yiannoutsos, C.; Max, M.B.; Hall, C.D.; Ellis, R.J.; Marra, C.M.; McKendall, R.; Singer, E.; Dal Pan, G.J.; Clifford, D.B.; Tucker, T.; Cohen, B. A randomized trial of amitriptyline and mexiletine for painful neuropathy in HIV infection. Neurology, 1998, 51(6), 1682-1688.
[http://dx.doi.org/10.1212/WNL.51.6.1682] [PMID: 9855523]
[56]
Roda, R.H.; Hoke, A. Mitochondrial dysfunction in HIV-induced peripheral neuropathy. Int. Rev. Neurobiol., 2019, 145, 67-82.
[http://dx.doi.org/10.1016/bs.irn.2019.04.001] [PMID: 31208527]
[57]
Datta, G.; Miller, N.M.; Afghah, Z.; Geiger, J.D.; Chen, X. HIV-1 gp120 promotes lysosomal exocytosis in human Schwann cells. Front. Cell. Neurosci., 2019, 13, 329.
[http://dx.doi.org/10.3389/fncel.2019.00329] [PMID: 31379513]
[58]
Forouzanfar, F.; Hosseinzadeh, H. Medicinal herbs in the treatment of neuropathic pain: A review. Iran. J. Basic Med. Sci., 2018, 21(4), 347-358.
[PMID: 29796216]
[59]
Zajączkowska, R.; Kocot-Kępska, M.; Leppert, W.; Wrzosek, A.; Mika, J.; Wordliczek, J. Mechanisms of chemotherapy-induced peripheral neuropathy. Int. J. Mol. Sci., 2019, 20(6), 1451.
[http://dx.doi.org/10.3390/ijms20061451] [PMID: 30909387]
[60]
Park, S.B.; Goldstein, D.; Krishnan, A.V.; Lin, C.S.Y.; Friedlander, M.L.; Cassidy, J.; Koltzenburg, M.; Kiernan, M.C. Chemotherapy-induced peripheral neurotoxicity: A critical analysis. CA Cancer J. Clin., 2013, 63(6), 419-437.
[http://dx.doi.org/10.3322/caac.21204] [PMID: 24590861]
[61]
Brewer, J.R.; Morrison, G.; Dolan, M.E.; Fleming, G.F. Chemotherapy-induced peripheral neuropathy: Current status and progress. Gynecol. Oncol., 2016, 140(1), 176-183.
[http://dx.doi.org/10.1016/j.ygyno.2015.11.011] [PMID: 26556766]
[62]
Rostami, N.; Mosavat, S.H.; Heydarirad, G.; Arbab Tafti, R.; Heydari, M. Efficacy of topical Citrullus colocynthis (bitter apple) extract oil in chemotherapy-induced peripheral neuropathy: A pilot double-blind randomized placebo-controlled clinical trial. Phytother. Res., 2019, 33(10), 2685-2691.
[http://dx.doi.org/10.1002/ptr.6442] [PMID: 31373112]
[63]
Schloss, J.; Colosimo, M.; Vitetta, L. Herbal medicines and chemotherapy induced peripheral neuropathy (CIPN): A critical literature review. Crit. Rev. Food Sci. Nutr., 2017, 57(6), 1107-1118.
[http://dx.doi.org/10.1080/10408398.2014.889081] [PMID: 25849070]
[64]
Flatters, S.J.L.; Dougherty, P.M.; Colvin, L.A. Clinical and preclinical perspectives on Chemotherapy-Induced Peripheral Neuropathy (CIPN): A narrative review. Br. J. Anaesth., 2017, 119(4), 737-749.
[http://dx.doi.org/10.1093/bja/aex229] [PMID: 29121279]
[65]
Boyette-Davis, J.A.; Walters, E.T.; Dougherty, P.M. Mechanisms involved in the development of chemotherapy-induced neuropathy. Pain Manag., 2015, 5(4), 285-296.
[http://dx.doi.org/10.2217/pmt.15.19] [PMID: 26087973]
[66]
Luo, X.; Huh, Y.; Bang, S.; He, Q.; Zhang, L.; Matsuda, M.; Ji, R.R. Macrophage toll-like receptor 9 contributes to chemotherapy-induced neuropathic pain in male mice. J. Neurosci., 2019, 39(35), 6848-6864.
[http://dx.doi.org/10.1523/JNEUROSCI.3257-18.2019] [PMID: 31270160]
[67]
Gu, H.; Wang, C.; Li, J.; Yang, Y.; Sun, W.; Jiang, C.; Li, Y.; Ni, M.; Liu, W.T.; Cheng, Z.; Hu, L. High mobility group box-1-toll-like receptor 4-phosphatidylinositol 3-kinase/protein kinase B-mediated generation of matrix metalloproteinase-9 in the dorsal root ganglion promotes chemotherapy-induced peripheral neuropathy. Int. J. Cancer, 2020, 146(10), 2810-2821.
[http://dx.doi.org/10.1002/ijc.32652] [PMID: 31465111]
[68]
Vahed, L.K.; Arianpur, A.; Gharedaghi, M.; Rezaei, H. Ultrasound as a diagnostic tool in the investigation of patients with carpal tunnel syndrome. Eur. J. Transl. Myol., 2018, 28(2), 7380.
[PMID: 29991986]
[69]
Hashempur, M.H.; Homayouni, K.; Ashraf, A.; Salehi, A.; Taghizadeh, M.; Heydari, M. Effect of Linum usitatissimum L. (linseed) oil on mild and moderate carpal tunnel syndrome: A randomized, double-blind, placebo-controlled clinical trial. Daru, 2014, 22(1), 43.
[http://dx.doi.org/10.1186/2008-2231-22-43] [PMID: 24887185]
[70]
Setayesh, M.; Sadeghifar, A.R.; Nakhaee, N.; Kamalinejad, M.; Rezaeizadeh, H. A topical gel from flax seed oil compared with hand splint in carpal tunnel syndrome: A randomized clinical trial. J. Evid. Based Complementary Altern. Med., 2017, 22(3), 462-467.
[http://dx.doi.org/10.1177/2156587216677822] [PMID: 27909031]
[71]
Hashempur, M.H.; Lari, Z.N.; Ghoreishi, P.S.; Daneshfard, B.; Ghasemi, M.S.; Homayouni, K.; Zargaran, A. A pilot randomized double-blind placebo-controlled trial on topical chamomile (Matricaria chamomilla L.) oil for severe carpal tunnel syndrome. Complement. Ther. Clin. Pract., 2015, 21(4), 223-228.
[http://dx.doi.org/10.1016/j.ctcp.2015.08.001] [PMID: 26573447]
[72]
Duncan, S.F.; Bhate, O.; Mustaly, H. Pathophysiology of carpal tunnel syndrome. In: Carpal tunnel syndrome and related median neuropathies; Springer: Cham, 2017; pp. 13-29.
[http://dx.doi.org/10.1007/978-3-319-57010-5_3]
[73]
Zamborsky, R.; Kokavec, M.; Simko, L.; Bohac, M. Carpal tunnel syndrome: Symptoms, causes and treatment options. Literature reviev. Ortop. Traumatol. Rehabil., 2017, 19(1), 1-8.
[http://dx.doi.org/10.5604/15093492.1232629] [PMID: 28436376]
[74]
Paisley, P; Serpell, M Diagnosis and management of postherpetic neuralgia. Practitioner, 2015, 259(1778), 21-4-2-3.
[PMID: 25726617]
[75]
Feller, L.; Khammissa, R.; Fourie, J.; Bouckaert, M.; Lemmer, J. Postherpetic neuralgia and trigeminal neuralgia. Pain Res. Treat., 2017, 2017, 1681765.
[http://dx.doi.org/10.1155/2017/1681765] [PMID: 29359044]
[76]
Webster, L.R.; Malan, T.P.; Tuchman, M.M.; Mollen, M.D.; Tobias, J.K.; Vanhove, G.F. A multicenter, randomized, double-blind, controlled dose finding study of NGX-4010, a high-concentration capsaicin patch, for the treatment of postherpetic neuralgia. J. Pain, 2010, 11(10), 972-982.
[http://dx.doi.org/10.1016/j.jpain.2010.01.270] [PMID: 20655809]
[77]
Wang, K.; Coyle, M.E.; Mansu, S.; Zhang, A.L.; Xue, C.C. Gentiana scabra Bunge. Formula for herpes zoster: Biological actions of key herbs and systematic review of efficacy and safety. Phytother. Res., 2017, 31(3), 375-386.
[http://dx.doi.org/10.1002/ptr.5769] [PMID: 28078812]
[78]
Wu, Q.; Hu, H.; Han, D.; Gao, H. Efficacy and safety of moxibustion for postherpetic neuralgia: A A systematic review and meta-analysis. Front. Neurol., 2021, 12, 676525.
[http://dx.doi.org/10.3389/fneur.2021.676525] [PMID: 34512502]
[79]
Kim, M.J.; Cha, H.J.; Lee, Y.R.; Kim, B.S.; Sung, K.J.; Choi, H.K.; Lee, Y.J.; Jeon, J.H.; Kim, Y.I. A review of korean medicine treatment for postherpetic neuralgia. J. Acupuncture Res., 2021, 38(4), 245-256.
[http://dx.doi.org/10.13045/jar.2021.00171]
[80]
Gharibo, C.; Kim, C. Neuropathic pain of postherpetic neuralgia. Pain Med., 2011, 85, 84-92.
[81]
Devor, M. Rethinking the causes of pain in herpes zoster and postherpetic neuralgia: The ectopic pacemaker hypothesis. Pain Rep., 2018, 3(6), e702.
[http://dx.doi.org/10.1097/PR9.0000000000000702] [PMID: 30706041]
[82]
Johnson, R.W.; Wasner, G.; Saddier, P.; Baron, R. Postherpetic neuralgia: Epidemiology, pathophysiology and management. Expert Rev. Neurother., 2007, 7(11), 1581-1595.
[http://dx.doi.org/10.1586/14737175.7.11.1581] [PMID: 17997705]
[83]
Samarghandian, S.; Farkhondeh, T.; Pourbagher-Shahri, A.M.; Ashrafizadeh, M.; Folgado, S.L.; Rajabpour-Sanati, A.; Khazdair, M.R. Green tea catechins inhibit microglial activation which prevents the development of neurological disorders. Neural Regen. Res., 2020, 15(10), 1792-1798.
[http://dx.doi.org/10.4103/1673-5374.280300] [PMID: 32246619]
[84]
Saeed, M.; Naveed, M.; Arif, M.; Kakar, M.U.; Manzoor, R.; Abd El-Hack, M.E.; Alagawany, M.; Tiwari, R.; Khandia, R.; Munjal, A.; Karthik, K.; Dhama, K.; Iqbal, H.M.N.; Dadar, M.; Sun, C. Green tea (Camellia sinensis) and l-theanine: Medicinal values and beneficial applications in humans-A comprehensive review. Biomed. Pharmacother., 2017, 95, 1260-1275.
[http://dx.doi.org/10.1016/j.biopha.2017.09.024] [PMID: 28938517]
[85]
Xing, L.; Zhang, H.; Qi, R.; Tsao, R.; Mine, Y. Recent advances in the understanding of the health benefits and molecular mechanisms associated with green tea polyphenols. J. Agric. Food Chem., 2019, 67(4), 1029-1043.
[http://dx.doi.org/10.1021/acs.jafc.8b06146] [PMID: 30653316]
[86]
Crew, K.D.; Ho, K.A.; Brown, P.; Greenlee, H.; Bevers, T.B.; Arun, B.; Sneige, N.; Hudis, C.; McArthur, H.L.; Chang, J.; Rimawi, M.; Cornelison, T.L.; Cardelli, J.; Santella, R.M.; Wang, A.; Lippman, S.M.; Hershman, D.L. Effects of a green tea extract, Polyphenon E, on systemic biomarkers of growth factor signalling in women with hormone receptor-negative breast cancer. J. Hum. Nutr. Diet., 2015, 28(3), 272-282.
[http://dx.doi.org/10.1111/jhn.12229] [PMID: 24646362]
[87]
Xu, R.; Yang, K.; Li, S.; Dai, M.; Chen, G. Effect of green tea consumption on blood lipids: A systematic review and meta-analysis of randomized controlled trials. Nutr. J., 2020, 19(1), 48.
[http://dx.doi.org/10.1186/s12937-020-00557-5] [PMID: 32434539]
[88]
Cunha, CA.; Lira, FS; Rosa Neto, JC; Pimentel, GD; Souza, GI; da Silva, CMG Green tea extract supplementation induces the lipolytic pathway, attenuates obesity, and reduces low-grade inflammation in mice fed a high-fat diet. Mediators Inflamm., 2013, 2013, 635470.
[http://dx.doi.org/10.1155/2013/635470] [PMID: 23431242]
[89]
Varilek, G.W.; Yang, F.; Lee, E.Y.; deVilliers, W.J.S.; Zhong, J.; Oz, H.S.; Westberry, K.F.; McClain, C.J. Green tea polyphenol extract attenuates inflammation in interleukin-2-deficient mice, a model of autoimmunity. J. Nutr., 2001, 131(7), 2034-2039.
[http://dx.doi.org/10.1093/jn/131.7.2034] [PMID: 11435526]
[90]
Tan, K.; Savoy, M.; McGrew, L.; Wisnieski, L.; Gruszynski, K.; Babos, M.B. Efficacy of green tea consumption on reducing body mass index and insulin resistance: A meta analysis. FASEB J, 2021, 35(S1), fasebj.2021.35.S1.00193.
[http://dx.doi.org/10.1096/fasebj.2021.35.S1.00193]
[91]
Chen, X.; Le, Y.; Tang, S-Q.; He, W-y.; He, J. Wang, Y-h Painful diabetic neuropathy is associated with compromised microglial IGF-1 signaling which can be rescued by green tea polyphenol EGCG in mice. Oxid. Med. Cell. Longev., 2022, 2022, 6773662.
[http://dx.doi.org/10.1155/2022/6773662] [PMID: 35401920]
[92]
Andre, C.M.; Hausman, J.F.; Guerriero, G. Cannabis sativa: The plant of the thousand and one molecules. Front. Plant Sci., 2016, 7, 19.
[http://dx.doi.org/10.3389/fpls.2016.00019] [PMID: 26870049]
[93]
Ebrahimi, F.; Farzaei, M.H.; Bahramsoltani, R.; Heydari, M.; Naderinia, K.; Rahimi, R. Plant-derived medicines for neuropathies: A comprehensive review of clinical evidence. Rev. Neurosci., 2019, 30(6), 671-684.
[http://dx.doi.org/10.1515/revneuro-2018-0097] [PMID: 30768427]
[94]
Karanian, D.; Bahr, B. Cannabinoid drugs and enhancement of endocannabinoid responses: Strategies for a wide array of disease states. Curr. Mol. Med., 2006, 6(6), 677-684.
[http://dx.doi.org/10.2174/156652406778194991] [PMID: 17022737]
[95]
Comelli, F.; Bettoni, I.; Colleoni, M.; Giagnoni, G.; Costa, B. Beneficial effects of a Cannabis sativa extract treatment on diabetes-induced neuropathy and oxidative stress. Phytother. Res., 2009, 23(12), 1678-1684.
[http://dx.doi.org/10.1002/ptr.2806] [PMID: 19441010]
[96]
Comelli, F.; Giagnoni, G.; Bettoni, I.; Colleoni, M.; Costa, B. Antihyperalgesic effect of a Cannabis sativa extract in a rat model of neuropathic pain: Mechanisms involved. Phytother. Res., 2008, 22(8), 1017-1024.
[http://dx.doi.org/10.1002/ptr.2401] [PMID: 18618522]
[97]
Maayah, Z.H.; Takahara, S.; Ferdaoussi, M.; Dyck, J.R.B. The molecular mechanisms that underpin the biological benefits of full-spectrum cannabis extract in the treatment of neuropathic pain and inflammation. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(7), 165771.
[http://dx.doi.org/10.1016/j.bbadis.2020.165771] [PMID: 32201189]
[98]
Karst, M.; Salim, K.; Burstein, S.; Conrad, I.; Hoy, L.; Schneider, U. Analgesic effect of the synthetic cannabinoid CT-3 on chronic neuropathic pain: A randomized controlled trial. JAMA, 2003, 290(13), 1757-1762.
[http://dx.doi.org/10.1001/jama.290.13.1757] [PMID: 14519710]
[99]
Nurmikko, T.J.; Serpell, M.G.; Hoggart, B.; Toomey, P.J.; Morlion, B.J.; Haines, D. Sativex successfully treats neuropathic pain characterised by allodynia: A randomised, double-blind, placebo-controlled clinical trial. Pain, 2007, 133(1), 210-220.
[http://dx.doi.org/10.1016/j.pain.2007.08.028] [PMID: 17997224]
[100]
Frank, B.; Serpell, M.G.; Hughes, J.; Matthews, J.N.S.; Kapur, D. Comparison of analgesic effects and patient tolerability of nabilone and dihydrocodeine for chronic neuropathic pain: Randomised, crossover, double blind study. BMJ, 2008, 336(7637), 199-201.
[http://dx.doi.org/10.1136/bmj.39429.619653.80] [PMID: 18182416]
[101]
Wilsey, B.; Marcotte, T.; Deutsch, R.; Gouaux, B.; Sakai, S.; Donaghe, H. Low-dose vaporized cannabis significantly improves neuropathic pain. J. Pain, 2013, 14(2), 136-148.
[http://dx.doi.org/10.1016/j.jpain.2012.10.009] [PMID: 23237736]
[102]
Serpell, M.; Ratcliffe, S.; Hovorka, J.; Schofield, M.; Taylor, L.; Lauder, H.; Ehler, E. A double-blind, randomized, placebo-controlled, parallel group study of THC/CBD spray in peripheral neuropathic pain treatment. Eur. J. Pain, 2014, 18(7), 999-1012.
[http://dx.doi.org/10.1002/j.1532-2149.2013.00445.x] [PMID: 24420962]
[103]
Selvarajah, D.; Gandhi, R.; Emery, C.J.; Tesfaye, S. Randomized placebo-controlled double-blind clinical trial of cannabis-based medicinal product (Sativex) in painful diabetic neuropathy: Depression is a major confounding factor. Diabetes Care, 2010, 33(1), 128-130.
[http://dx.doi.org/10.2337/dc09-1029] [PMID: 19808912]
[104]
Toth, C.; Mawani, S.; Brady, S.; Chan, C.; Liu, C.; Mehina, E.; Garven, A.; Bestard, J.; Korngut, L. An enriched-enrolment, randomized withdrawal, flexible-dose, double-blind, placebo-controlled, parallel assignment efficacy study of nabilone as adjuvant in the treatment of diabetic peripheral neuropathic pain. Pain, 2012, 153(10), 2073-2082.
[http://dx.doi.org/10.1016/j.pain.2012.06.024] [PMID: 22921260]
[105]
Wallace, M.S.; Marcotte, T.D.; Umlauf, A.; Gouaux, B.; Atkinson, J.H. Efficacy of inhaled cannabis on painful diabetic neuropathy. J. Pain, 2015, 16(7), 616-627.
[http://dx.doi.org/10.1016/j.jpain.2015.03.008] [PMID: 25843054]
[106]
Johnson, J.R.; Burnell-Nugent, M.; Lossignol, D.; Ganae-Motan, E.D.; Potts, R.; Fallon, M.T. Multicenter, double-blind, randomized, placebo-controlled, parallel-group study of the efficacy, safety, and tolerability of THC:CBD extract and THC extract in patients with intractable cancer-related pain. J. Pain Symptom Manage., 2010, 39(2), 167-179.
[http://dx.doi.org/10.1016/j.jpainsymman.2009.06.008] [PMID: 19896326]
[107]
Johnson, J.R.; Lossignol, D.; Burnell-Nugent, M.; Fallon, M.T. An open-label extension study to investigate the long-term safety and tolerability of THC/CBD oromucosal spray and oromucosal THC spray in patients with terminal cancer-related pain refractory to strong opioid analgesics. J. Pain Symptom Manage., 2013, 46(2), 207-218.
[http://dx.doi.org/10.1016/j.jpainsymman.2012.07.014] [PMID: 23141881]
[108]
Lynch, M.E.; Cesar-Rittenberg, P.; Hohmann, A.G. A double-blind, placebo-controlled, crossover pilot trial with extension using an oral mucosal cannabinoid extract for treatment of chemotherapy-induced neuropathic pain. J. Pain Symptom Manage., 2014, 47(1), 166-173.
[http://dx.doi.org/10.1016/j.jpainsymman.2013.02.018] [PMID: 23742737]
[109]
Kobata, K.; Sugawara, M.; Mimura, M.; Yazawa, S.; Watanabe, T. Potent production of capsaicinoids and capsinoids by Capsicum peppers. J. Agric. Food Chem., 2013, 61(46), 11127-11132.
[http://dx.doi.org/10.1021/jf403553w] [PMID: 24147886]
[110]
Chapa-Oliver, A. Mejía-Teniente, L. Capsaicin: From plants to a cancer-suppressing agent. Molecules, 2016, 21(8), 931.
[http://dx.doi.org/10.3390/molecules21080931] [PMID: 27472308]
[111]
Arora, V.; Campbell, J.N.; Chung, M.K. Fight fire with fire: Neurobiology of capsaicin-induced analgesia for chronic pain. Pharmacol. Ther., 2021, 220, 107743.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107743] [PMID: 33181192]
[112]
Hall, O.M.; Broussard, A.; Range, T.; Carroll Turpin, M.A.; Ellis, S.; Lim, V.M.; Cornett, E.M.; Kaye, A.D. Novel agents in neuropathic pain, the role of capsaicin: Pharmacology, efficacy, side effects, different preparations. Curr. Pain Headache Rep., 2020, 24(9), 53.
[http://dx.doi.org/10.1007/s11916-020-00886-4] [PMID: 32761268]
[113]
Simpson, D.M.; Brown, S.; Tobias, J. Controlled trial of high-concentration capsaicin patch for treatment of painful HIV neuropathy. Neurology, 2008, 70(24), 2305-2313.
[http://dx.doi.org/10.1212/01.wnl.0000314647.35825.9c] [PMID: 18541884]
[114]
Webster, L.R.; Tark, M.; Rauck, R.; Tobias, J.K.; Vanhove, G.F. Effect of duration of postherpetic neuralgia on efficacy analyses in a multicenter, randomized, controlled study of NGX-4010, an 8% capsaicin patch evaluated for the treatment of postherpetic neuralgia. BMC Neurol., 2010, 10(1), 92.
[http://dx.doi.org/10.1186/1471-2377-10-92] [PMID: 20937130]
[115]
Irving, G.A.; Backonja, M.M.; Dunteman, E.; Blonsky, E.R.; Vanhove, G.F.; Lu, S.P.; Tobias, J. A multicenter, randomized, double-blind, controlled study of NGX-4010, a high-concentration capsaicin patch, for the treatment of postherpetic neuralgia. Pain Med., 2011, 12(1), 99-109.
[http://dx.doi.org/10.1111/j.1526-4637.2010.01004.x] [PMID: 21087403]
[116]
Hussain, N.; Said, A.S.A.; Javaid, F.A.; Al Haddad, A.H.I.; Anwar, M.; Khan, Z.; Abu-Mellal, A. The efficacy and safety profile of capsaicin 8% patch versus 5% Lidocaine patch in patients with diabetic peripheral neuropathic pain: A randomized, placebo-controlled study of south Asian male patients. J. Diabetes Metab. Disord., 2021, 20(1), 271-278.
[http://dx.doi.org/10.1007/s40200-021-00741-2] [PMID: 34178837]
[117]
Mou, J.; Paillard, F.; Turnbull, B.; Trudeau, J.; Stoker, M.; Katz, N.P. Qutenza (capsaicin) 8% patch onset and duration of response and effects of multiple treatments in neuropathic pain patients. Clin. J. Pain, 2014, 30(4), 286-294.
[http://dx.doi.org/10.1097/AJP.0b013e31829a4ced] [PMID: 23765045]
[118]
Cruccu, G.; Nurmikko, T.J.; Ernault, E.; Riaz, F.K.; McBride, W.T. Haanpää, M. Superiority of capsaicin 8% patch versus oral pregabalin on dynamic mechanical allodynia in patients with peripheral neuropathic pain. Eur. J. Pain, 2018, 22(4), 700-706.
[http://dx.doi.org/10.1002/ejp.1155] [PMID: 29194851]
[119]
Ellison, N.; Loprinzi, C.L.; Kugler, J.; Hatfield, A.K.; Miser, A.; Sloan, J.A.; Wender, D.B.; Rowland, K.M.; Molina, R.; Cascino, T.L.; Vukov, A.M.; Dhaliwal, H.S.; Ghosh, C. Phase III placebo-controlled trial of capsaicin cream in the management of surgical neuropathic pain in cancer patients. J. Clin. Oncol., 1997, 15(8), 2974-2980.
[http://dx.doi.org/10.1200/JCO.1997.15.8.2974] [PMID: 9256142]
[120]
Silva, J.; Hussain, A. Citrullus colocynthis (L.) Schrad. (colocynth): Biotechnological perspectives. Emir. J. Food Agric., 2017, 29(2), 83-90.
[http://dx.doi.org/10.9755/ejfa.2016-11-1764]
[121]
Heydari, M.; Shams, M.; Hashempur, M.H.; Zargaran, A.; Dalfardi, B.; Borhani-Haghighi, A. The origin of the concept of neuropathic pain in early medieval Persia (9th-12th century CE). Acta Med. Hist. Adriat., 2015, 13(S2), 9-22.
[PMID: 26966748]
[122]
Pashmforosh, M.; Rajabi Vardanjani, H.; Rajabi Vardanjani, H.; Pashmforosh, M.; Khodayar, M.J. Topical anti-inflammatory and analgesic activities of Citrullus colocynthis extract cream in rats. Medicina, 2018, 54(4), 51.
[http://dx.doi.org/10.3390/medicina54040051] [PMID: 30344282]
[123]
Ostovar, M.; Akbari, A.; Anbardar, M.H.; Iraji, A.; Salmanpour, M.; Hafez Ghoran, S.; Heydari, M.; Shams, M. Effects of Citrullus colocynthis L. in a rat model of diabetic neuropathy. J. Integr. Med., 2020, 18(1), 59-67.
[http://dx.doi.org/10.1016/j.joim.2019.12.002] [PMID: 31874814]
[124]
Maji, P.; Ghosh Dhar, D.; Misra, P.; Dhar, P. Costus speciosus (Koen ex. Retz.) Sm.: Current status and future industrial prospects. Ind. Crops Prod., 2020, 152, 112571.
[http://dx.doi.org/10.1016/j.indcrop.2020.112571]
[125]
Waisundara, V.Y.; Watawana, M.I.; Jayawardena, N. Costus speciosus and Coccinia grandis: Traditional medicinal remedies for diabetes. S. Afr. J. Bot., 2015, 98, 1-5.
[http://dx.doi.org/10.1016/j.sajb.2015.01.012]
[126]
Pawar, V.; Pawar, P. Costus speciosus: An important medicinal plant. Int. J. Sci. Res., 2014, 3(7), 28-33.
[127]
Picanço, L.C.S.; Bittencourt, J.A.H.M.; Henriques, S.V.C.; da Silva, J.S.; Oliveira, J.M.S.; Ribeiro, J.R.; Sanjay, A.B.; Carvalho, J.C.T.; Stien, D.; Silva, J.O. Pharmacological activity of Costus spicatus in experimental Bothrops atrox envenomation. Pharm. Biol., 2016, 54(10), 2103-2110.
[http://dx.doi.org/10.3109/13880209.2016.1145703] [PMID: 27306958]
[128]
Singh, P.; Srivastava, S.; Jha, K.K.; Mishra, G.; Khosa, R.L.; Srivastava, S. Antiinflammatory, analgesic and antipyretic activities of aerial parts of Costus speciosus Koen. Indian J. Pharm. Sci., 2013, 75(1), 83-88.
[http://dx.doi.org/10.4103/0250-474X.113532] [PMID: 23901165]
[129]
Narayana, K.R.; Reddy, M.S.; Chaluvadi, M.; Krishna, D. Bioflavonoids classification, pharmacological, biochemical effects and therapeutic potential. Indian J. Pharmacol., 2001, 33(1), 2-16.
[130]
Naznin, N.E.; Mazumder, T.; Reza, M.S.; Jafrin, S.; Alshahrani, S.M.; Alqahtani, A.M. Molecular docking supported investigation of antioxidant, analgesic and diuretic effects of Costus speciosus rhizome. Bull. Chem. Soc. Ethiop., 2022, 36(3), 627-640.
[http://dx.doi.org/10.4314/bcse.v36i3.12]
[131]
Bhattacharya, S.; Nagaich, U. Assessment of anti-nociceptive efficacy of costus speciosus rhizome in swiss albino mice. J. Adv. Pharm. Technol. Res., 2010, 1(1), 34-40.
[PMID: 22247830]
[132]
Abdullaev, F.I. Biological effects of saffron. Biofactors, 1993, 4(2), 83-86.
[PMID: 8347278]
[133]
Bhargava, V. Medicinal uses and pharmacological properties of Crocus sativus Linn (Saffron). Int. J. Pharm. Pharm. Sci., 2011, 3(S3), 22-26.
[134]
Fernández, J-A Biology, biotechnology and biomedicine of saffron. In: Recent research developments in plant science; Research Signpost: Trivandrum, 2004; 2, pp. 127-159.
[135]
Hosseinzadeh, H; Khosravan, V Anticonvulsant effects of aqueous ana ethanolic extracts of Crocus sativus L stigmas in mice., 2002.
[136]
Nemati, H.; Boskabady, M.H.; Ahmadzadef Vostakolaei, H. Stimulatory effect of Crocus sativus (saffron) on β2-adrenoceptors of guinea pig tracheal chains. Phytomedicine, 2008, 15(12), 1038-1045.
[http://dx.doi.org/10.1016/j.phymed.2008.07.008] [PMID: 18771905]
[137]
Amin, B.; Hosseinzadeh, H. Evaluation of aqueous and ethanolic extracts of saffron, Crocus sativus L., and its constituents, safranal and crocin in allodynia and hyperalgesia induced by chronic constriction injury model of neuropathic pain in rats. Fitoterapia, 2012, 83(5), 888-895.
[http://dx.doi.org/10.1016/j.fitote.2012.03.022] [PMID: 22484092]
[138]
Hosseinzadeh, H.; Shariaty, V.M. Anti-nociceptive effect of safranal, a constituent of Crocus sativus (saffron), in mice. Pharmacologyonline, 2007, 2, 498-503.
[139]
Li, Puma S.; Landini, L.; Macedo, S.J., Jr; Seravalli, V.; Marone, I.M.; Coppi, E.; Patacchini, R.; Geppetti, P.; Materazzi, S.; Nassini, R.; De Logu, F. TRPA1 mediates the antinociceptive properties of the constituent of Crocus sativus L., safranal. J. Cell. Mol. Med., 2019, 23(3), 1976-1986.
[http://dx.doi.org/10.1111/jcmm.14099] [PMID: 30636360]
[140]
Safakhah, HA.; Vafaei, AA.; Tavasoli, A.; Jafari, S.; Ghanbari, A. Role of muscarinic receptors in hypoalgesia induced by crocin in neuropathic pain rats. Sci. World J., 2020, 22020, 4046256.
[http://dx.doi.org/10.1155/2020/4046256] [PMID: 33299384]
[141]
Vafaei, A.A.; Safakhah, H.A.; Jafari, S.; Tavasoli, A.; Rashidy-Pour, A.; Ghanbari, A.; Seyedinia, S.A.; Tarahomi, P. Role of cannabinoid receptors in crocin-induced hypoalgesia in neuropathic pain in rats. J. Exp. Pharmacol., 2020, 12, 97-106.
[http://dx.doi.org/10.2147/JEP.S250738] [PMID: 32431552]
[142]
Hewlings, S.; Kalman, D. Curcumin: A review of its effects on human health. Foods, 2017, 6(10), 92.
[http://dx.doi.org/10.3390/foods6100092] [PMID: 29065496]
[143]
Momtazi-Borojeni, A.A.; Haftcheshmeh, S.M.; Esmaeili, S.A.; Johnston, T.P.; Abdollahi, E.; Sahebkar, A. Curcumin: A natural modulator of immune cells in systemic lupus erythematosus. Autoimmun. Rev., 2018, 17(2), 125-135.
[http://dx.doi.org/10.1016/j.autrev.2017.11.016] [PMID: 29180127]
[144]
Keihanian, F; Saeidinia, A; Bagheri, RK; Johnston, TP; Sahebkar, A Curcumin, hemostasis, thrombosis, and coagulation J. Cell Physiol, 2018, 233(6), 4497-4511. doi: 10.1002/jcp.26249. Epub 2017 Dec 26.
[PMID: 29052850]
[145]
Afshari, A.R.; Jalili-Nik, M.; Abbasinezhad-Moud, F.; Javid, H.; Karimi, M.; Mollazadeh, H.; Jamialahmadi, T.; Sathyapalan, T.; Sahebkar, A. Anti-tumor effects of curcuminoids in glioblastoma multiforme: An updated literature review. Curr. Med. Chem., 2021, 28(39), 8116-8138.
[http://dx.doi.org/10.2174/1875533XMTExtNDA8x] [PMID: 33176632]
[146]
Heidari, Z.; Daei, M.; Boozari, M.; Jamialahmadi, T.; Sahebkar, A. Curcumin supplementation in pediatric patients: A systematic review of current clinical evidence. Phytother. Res., 2022, 36(4), 1442-1458.
[http://dx.doi.org/10.1002/ptr.7350] [PMID: 34904764]
[147]
Khayatan, D.; Razavi, S.M.; Arab, Z.N.; Niknejad, A.H.; Nouri, K.; Momtaz, S.; Gumpricht, E.; Jamialahmadi, T.; Abdolghaffari, A.H.; Barreto, G.E.; Sahebkar, A. Protective effects of curcumin against traumatic brain injury. Biomed. Pharmacother., 2022, 154, 113621.
[http://dx.doi.org/10.1016/j.biopha.2022.113621] [PMID: 36055110]
[148]
Mohajeri, M.; Bianconi, V. Ávila-Rodriguez, M.F.; Barreto, G.E.; Jamialahmadi, T.; Pirro, M.; Sahebkar, A. Curcumin: A phytochemical modulator of estrogens and androgens in tumors of the reproductive system. Pharmacol. Res., 2020, 156, 104765.
[http://dx.doi.org/10.1016/j.phrs.2020.104765] [PMID: 32217147]
[149]
Shakeri, F.; Bibak, B.; Safdari, M.R.; Keshavarzi, Z.; Jamialahmadi, T.; Sathyapalan, T.; Sahebkar, A. Cellular and molecular mechanisms of curcumin in thyroid gland disorders. Curr. Med. Chem., 2022, 29(16), 2878-2890.
[http://dx.doi.org/10.2174/0929867329666220210145033] [PMID: 35142266]
[150]
Soltani, S.; Boozari, M.; Cicero, A.F.G.; Jamialahmadi, T.; Sahebkar, A. Effects of phytochemicals on macrophage cholesterol efflux capacity: Impact on atherosclerosis. Phytother. Res., 2021, 35(6), 2854-2878.
[http://dx.doi.org/10.1002/ptr.6991] [PMID: 33464676]
[151]
Vahedian-Azimi, A.; Abbasifard, M.; Rahimi-Bashar, F.; Guest, P.C.; Majeed, M.; Mohammadi, A.; Banach, M.; Jamialahmadi, T.; Sahebkar, A. Effectiveness of curcumin on outcomes of hospitalized COVID-19 patients: A systematic review of clinical trials. Nutrients, 2022, 14(2), 256.
[http://dx.doi.org/10.3390/nu14020256] [PMID: 35057437]
[152]
Hasanzadeh, S.; Read, M.I.; Bland, A.R.; Majeed, M.; Jamialahmadi, T.; Sahebkar, A. Curcumin: An inflammasome silencer. Pharmacol. Res., 2020, 159, 104921.
[http://dx.doi.org/10.1016/j.phrs.2020.104921] [PMID: 32464325]
[153]
Mohajeri, M.; Sahebkar, A. Protective effects of curcumin against doxorubicin-induced toxicity and resistance: A review. Crit. Rev. Oncol. Hematol., 2018, 122, 30-51.
[http://dx.doi.org/10.1016/j.critrevonc.2017.12.005] [PMID: 29458788]
[154]
Mokhtari-Zaer, A.; Marefati, N.; Atkin, S.L.; Butler, A.E.; Sahebkar, A. The protective role of curcumin in myocardial ischemia–reperfusion injury. J. Cell. Physiol., 2019, 234(1), 214-222.
[http://dx.doi.org/10.1002/jcp.26848] [PMID: 29968913]
[155]
Abbas Momtazi, A.; Sahebkar, A. Difluorinated curcumin: A promising curcumin analogue with improved anti-tumor activity and pharmacokinetic profile. Curr. Pharm. Des., 2016, 22(28), 4386-4397.
[http://dx.doi.org/10.2174/1381612822666160527113501] [PMID: 27229723]
[156]
Kocaadam, B.; Şanlier, N. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit. Rev. Food Sci. Nutr., 2017, 57(13), 2889-2895.
[http://dx.doi.org/10.1080/10408398.2015.1077195] [PMID: 26528921]
[157]
Gupta, S.C.; Kismali, G.; Aggarwal, B.B. Curcumin, a component of turmeric: From farm to pharmacy. Biofactors, 2013, 39(1), 2-13.
[http://dx.doi.org/10.1002/biof.1079] [PMID: 23339055]
[158]
Barclay, L.R.C.; Vinqvist, M.R.; Mukai, K.; Goto, H.; Hashimoto, Y.; Tokunaga, A.; Uno, H. On the antioxidant mechanism of curcumin: Classical methods are needed to determine antioxidant mechanism and activity. Org. Lett., 2000, 2(18), 2841-2843.
[http://dx.doi.org/10.1021/ol000173t] [PMID: 10964379]
[159]
Banafshe, H.R.; Hamidi, G.A.; Noureddini, M.; Mirhashemi, S.M.; Mokhtari, R.; Shoferpour, M. Effect of curcumin on diabetic peripheral neuropathic pain: Possible involvement of opioid system. Eur. J. Pharmacol., 2014, 723, 202-206.
[http://dx.doi.org/10.1016/j.ejphar.2013.11.033] [PMID: 24315931]
[160]
Zhou, H.; Beevers, C.S.; Huang, S. The targets of curcumin. Curr. Drug Targets, 2011, 12(3), 332-347.
[http://dx.doi.org/10.2174/138945011794815356] [PMID: 20955148]
[161]
Sharma, S.; Chopra, K.; Kulkarni, S.K. Effect of insulin and its combination with resveratrol or curcumin in attenuation of diabetic neuropathic pain: Participation of nitric oxide and TNF-alpha. Phytother. Res., 2007, 21(3), 278-283.
[http://dx.doi.org/10.1002/ptr.2070] [PMID: 17199240]
[162]
Zhao, X.; Xu, Y.; Zhao, Q.; Chen, C.R.; Liu, A.M.; Huang, Z.L. Curcumin exerts antinociceptive effects in a mouse model of neuropathic pain: Descending monoamine system and opioid receptors are differentially involved. Neuropharmacology, 2012, 62(2), 843-854.
[http://dx.doi.org/10.1016/j.neuropharm.2011.08.050] [PMID: 21945716]
[163]
Seo, E.J.; Efferth, T.; Panossian, A. Curcumin downregulates expression of opioid-related nociceptin receptor gene (OPRL1) in isolated neuroglia cells. Phytomedicine, 2018, 50, 285-299.
[http://dx.doi.org/10.1016/j.phymed.2018.09.202] [PMID: 30466988]
[164]
Zhao, G.; Shi, Y.; Gong, C.; Liu, T.; Nan, W.; Ma, L.; Wu, Z.; Da, C.; Zhou, K.; Zhang, H. Curcumin exerts antinociceptive effects in cancer-induced bone pain via an endogenous opioid mechanism. Front. Neurosci., 2021, 15, 696861.
[http://dx.doi.org/10.3389/fnins.2021.696861] [PMID: 34539332]
[165]
Asadi, S.; Gholami, M.S.; Siassi, F.; Qorbani, M.; Khamoshian, K.; Sotoudeh, G. Nano curcumin supplementation reduced the severity of diabetic sensorimotor polyneuropathy in patients with type 2 diabetes mellitus: A randomized double-blind placebo- controlled clinical trial. Complement. Ther. Med., 2019, 43, 253-260.
[http://dx.doi.org/10.1016/j.ctim.2019.02.014] [PMID: 30935539]
[166]
Eftekharsadat, B.; Kazem Shakouri, S.; Shimia, M.; Rahbar, M.; Ghojazadeh, M.; Reza Rashidi, M.; Hadi Faraji, M. Effect of E. laciniata (L) ointment on mild and moderate carpal tunnel syndrome: A double-blind, randomized clinical trial. Phytother. Res., 2011, 25(2), 290-295.
[http://dx.doi.org/10.1002/ptr.3248] [PMID: 20665472]
[167]
Delazar, A.; Sarker, S.D.; Nahar, L.; Jalali, S.B.; Modaresi, M.; Hamedeyazdan, S.; Babaei, H.; Javadzadeh, Y.; Asnaashari, S.; Bamdad Moghadam, S. Rhizomes of Eremostachys laciniata: Isolation and structure elucidation of chemical constituents and a clinical trial on inflammatory diseases. Adv. Pharm. Bull., 2013, 3(2), 385-393.
[PMID: 24312865]
[168]
Delazar, A.; Shoeb, M.; Kumarasamy, Y.; Byres, M.; Nahar, L.; Modarresi, M. Two bioactive ferulic acid derivatives from Eremostachys glabra. Daru, 2004, 12(2), 49-53.
[169]
Erdemoglu, N.; Turan, N.N. Cakõcõ, I.; Sener, B.; Aydõn, A. Antioxidant activities of some Lamiaceae plant extracts. Phytother. Res., 2006, 20(1), 9-13.
[http://dx.doi.org/10.1002/ptr.1816] [PMID: 16397914]
[170]
Delazar, A.; Asl, B.H.; Mohammadi, O.; Afshar, F.H.; Nahar, L.; Modarresi, M. Evaluation of analgesic activity of Eremostachys laciniata in mice. J. Nat. Rem., 2009, 9(1), 1-7.
[171]
Lee, K.H.; Kim, J.K.; Yu, J.S.; Jeong, S.Y.; Choi, J.H.; Kim, J.C.; Ko, Y.J.; Kim, S.H.; Kim, K.H. Ginkwanghols A and B, osteogenic coumaric acid-aliphatic alcohol hybrids from the leaves of Ginkgo biloba. Arch. Pharm. Res., 2021, 44(5), 514-524.
[http://dx.doi.org/10.1007/s12272-021-01329-3] [PMID: 33929687]
[172]
Brondino, N; De Silvestri, A; Re, S; Lanati, N; Thiemann, P; Verna, A systematic review and meta-analysis of Ginkgo biloba in neuropsychiatric disorders: From ancient tradition to modern-day medicine. Evid Based Complement Alternat Med., 2013, 2013, 915691.
[http://dx.doi.org/10.1155/2013/915691] [PMID: 23781271]
[173]
Dongen, M.; van Rossum, E.; Kessels, A.; Sielhorst, H.; Knipschild, P. Ginkgo for elderly people with dementia and age-associated memory impairment: A randomized clinical trial. J. Clin. Epidemiol., 2003, 56(4), 367-376.
[http://dx.doi.org/10.1016/S0895-4356(03)00003-9] [PMID: 12767414]
[174]
Hirata, B.K.S.; Pedroso, A.P.; Machado, M.M.F.; Neto, N.I.P.; Perestrelo, B.O. de Sá R.D.C.C.; Alonso-Vale, M.I.C.; Nogueira, F.N.; Oyama, L.M.; Ribeiro, E.B.; Tashima, A.K.; Telles, M.M. Ginkgo biloba extract modulates the retroperitoneal fat depot proteome and reduces oxidative stress in diet-induced obese rats. Front. Pharmacol., 2019, 10, 686.
[http://dx.doi.org/10.3389/fphar.2019.00686] [PMID: 31258482]
[175]
Abdel-Latif, H.M.R.; Hendam, B.M.; Nofal, M.I.; El-Son, M.A.M. Ginkgo biloba leaf extract improves growth, intestinal histomorphometry, immunity, antioxidant status and modulates transcription of cytokine genes in hapa-reared Oreochromis niloticus. Fish Shellfish Immunol., 2021, 117, 339-349.
[http://dx.doi.org/10.1016/j.fsi.2021.06.003] [PMID: 34153429]
[176]
Li, Q.; Ye, T.; Long, T.; Peng, X. Ginkgetin exerts anti-inflammatory effects on cerebral ischemia/reperfusion-induced injury in a rat model via the TLR4/NF-κB signaling pathway. Biosci. Biotechnol. Biochem., 2019, 83(4), 675-683.
[http://dx.doi.org/10.1080/09168451.2018.1553608] [PMID: 30570395]
[177]
Samandar, F.; Tehranizadeh, Z.A.; Saberi, M.R.; Chamani, J. CB1 as a novel target for Ginkgo biloba’s terpene trilactone for controlling chemotherapy-induced peripheral neuropathy (CIPN). J. Mol. Model., 2022, 28(9), 283.
[http://dx.doi.org/10.1007/s00894-022-05284-8] [PMID: 36044079]
[178]
Numan, A.; Masud, F.; Khawaja, K.I.; Khan, F.F.; Qureshi, A.B.; Burney, S.; Ashraf, K.; Ahmad, N.; Yousaf, M.S.; Rabbani, I.; Zaneb, H.; Rehman, H. Clinical and electrophysiological efficacy of leaf extract of <i>Gingko biloba</i> L (Ginkgoaceae) in subjects with diabetic sensorimotor polyneuropathy. Trop. J. Pharm. Res., 2016, 15(10), 2137-2145.
[http://dx.doi.org/10.4314/tjpr.v15i10.12]
[179]
Kono, T.; Hata, T.; Morita, S.; Munemoto, Y.; Matsui, T.; Kojima, H.; Takemoto, H.; Fukunaga, M.; Nagata, N.; Shimada, M.; Sakamoto, J.; Mishima, H. Goshajinkigan oxaliplatin neurotoxicity evaluation (GONE): A phase 2, multicenter, randomized, double-blind, placebo-controlled trial of goshajinkigan to prevent oxaliplatin-induced neuropathy. Cancer Chemother. Pharmacol., 2013, 72(6), 1283-1290.
[http://dx.doi.org/10.1007/s00280-013-2306-7] [PMID: 24121454]
[180]
Kono, T.; Suzuki, Y.; Mizuno, K.; Miyagi, C.; Omiya, Y.; Sekine, H.; Mizuhara, Y.; Miyano, K.; Kase, Y.; Uezono, Y. Preventive effect of oral goshajinkigan on chronic oxaliplatin-induced hypoesthesia in rats. Sci. Rep., 2015, 5(1), 16078.
[http://dx.doi.org/10.1038/srep16078] [PMID: 26542342]
[181]
Ushio, S.; Egashira, N.; Sada, H.; Kawashiri, T.; Shirahama, M.; Masuguchi, K.; Oishi, R. Goshajinkigan reduces oxaliplatin-induced peripheral neuropathy without affecting anti-tumour efficacy in rodents. Eur. J. Cancer, 2012, 48(9), 1407-1413.
[http://dx.doi.org/10.1016/j.ejca.2011.08.009] [PMID: 21907570]
[182]
Kato, Y.; Tateai, Y.; Ohkubo, M.; Saito, Y.; Amagai, S.; Kimura, Y.; Iimura, N.; Okada, M.; Matsumoto, A.; Mano, Y.; Hirosawa, I.; Ohuchi, K.; Tajima, M.; Asahi, M.; Kotaki, H.; Yamada, H. Goshajinki-gan reduced oxaliplatin-induced hypersensitivity to cold sensation and its effect would be related to suppression of the expression of TRPM8 and TRPA1 in rats. Anticancer Drugs, 2014, 25(1), 39-43.
[http://dx.doi.org/10.1097/CAD.0000000000000022] [PMID: 24052105]
[183]
Kamei, J.; Hayashi, S-s.; Miyata, S. Effect of Gosha-jinki-gan on vincristine-induced painful neuropathy in mice. Jpn J Pharm Palliat Care Sci., 2008, 1(1), 19-24.
[184]
Higuchi, H.; Yamamoto, S.; Ushio, S.; Kawashiri, T.; Egashira, N. Goshajinkigan reduces bortezomib-induced mechanical allodynia in rats: Possible involvement of kappa opioid receptor. J. Pharmacol. Sci., 2015, 129(3), 196-199.
[http://dx.doi.org/10.1016/j.jphs.2015.09.004] [PMID: 26598003]
[185]
Kitamura, R.; Andoh, T.; Fushimi, H.; Komatsu, K.; Shibahara, N.; Kuraishi, Y. Involvement of descending monoaminergic systems in antiallodynic effect of goshajinkigan in oxaliplatin-treated mice. J. Traditional. Med., 2013, 30(4), 183-189.
[186]
Mizuno, K.; Kono, T.; Suzuki, Y.; Miyagi, C.; Omiya, Y.; Miyano, K. Goshajinkigan, a traditional Japanese medicine, prevents oxaliplatin-induced acute peripheral neuropathy by suppressing functional alteration of TRP channels in rat. J. Pharmacol. Sci., 2014, 1251, 91-98.
[http://dx.doi.org/10.1254/jphs.13244FP] [PMID: 24784702]
[187]
Kaku, H.; Kumagai, S.; Onoue, H.; Takada, A.; Shoji, T.; Miura, F.; Yoshizaki, A.; Sato, S.; Kigawa, J.; Arai, T.; Tsunoda, S.; Tominaga, E.; Aoki, D.; Sugiyama, T. Objective evaluation of the alleviating effects of Goshajinkigan on peripheral neuropathy induced by paclitaxel/carboplatin therapy: A multicenter collaborative study. Exp. Ther. Med., 2012, 3(1), 60-65.
[http://dx.doi.org/10.3892/etm.2011.375] [PMID: 22969845]
[188]
Oki, E.; Emi, Y.; Kojima, H.; Higashijima, J.; Kato, T.; Miyake, Y.; Kon, M.; Ogata, Y.; Takahashi, K.; Ishida, H.; Saeki, H.; Sakaguchi, Y.; Yamanaka, T.; Kono, T.; Tomita, N.; Baba, H.; Shirabe, K.; Kakeji, Y.; Maehara, Y. Preventive effect of Goshajinkigan on peripheral neurotoxicity of FOLFOX therapy (GENIUS trial): A placebo-controlled, double-blind, randomized phase III study. Int. J. Clin. Oncol., 2015, 20(4), 767-775.
[http://dx.doi.org/10.1007/s10147-015-0784-9] [PMID: 25627820]
[189]
Klemow, K.M.; Bilbow, E.; Grasso, D.; Jones, K.; McDermott, J.; Pape, E. Medical attributes of St. John’s wort (Hypericum perforatum). OXIDATIVE STRESS AND DISEASE., 2004, 14, 757-780.
[190]
Badi, H.N.; Amin, G. MAKI, ZM.; Ziaei, S. St. John’s wort (Hypericum perforatum L.): A Review. J. Med. Plants, 2005, 4(16), 1-14.
[191]
Alahmad, A.; Alghoraibi, I.; Zein, R.; Kraft, S. Dräger, G.; Walter, J.G.; Scheper, T. Identification of Major Constituents of Hypericum perforatum L. Extracts in Syria by development of a rapid, simple, and Reproducible HPLC-ESI-Q-TOF MS Analysis and their antioxidant activities. ACS Omega, 2022, 7(16), 13475-13493.
[http://dx.doi.org/10.1021/acsomega.1c06335] [PMID: 35559140]
[192]
Linde, K.St. John’s wort - an overview. Forsch. Komplement. Med., 2009, 16(3), 1.
[http://dx.doi.org/10.1159/000209290] [PMID: 19657198]
[193]
Nathan, P.J. The experimental and clinical pharmacology of St John’s Wort (Hypericum perforatum L.). Mol. Psychiatry, 1999, 4(4), 333-338.
[http://dx.doi.org/10.1038/sj.mp.4000557] [PMID: 10483049]
[194]
Galeotti, N.; Vivoli, E.; Bilia, A.R.; Vincieri, F.F.; Ghelardini, C.St. John’s Wort reduces neuropathic pain through a hypericin-mediated inhibition of the protein kinase C γ and ɛ activity. Biochem. Pharmacol., 2010, 79(9), 1327-1336.
[http://dx.doi.org/10.1016/j.bcp.2009.12.016] [PMID: 20045676]
[195]
Stojanović NM; Radulović NS; Randjelović PJ; Laketić D Antinociceptive properties of St. John’s Wort (Hypericum perforatum) and other Hypericum species. Nat. Prod. Commun., 2016, 11(11), 1741-1747.
[PMID: 30475520]
[196]
Galeotti, N. Hypericum perforatum (St John’s wort) beyond depression: A therapeutic perspective for pain conditions. J. Ethnopharmacol., 2017, 200, 136-146.
[http://dx.doi.org/10.1016/j.jep.2017.02.016] [PMID: 28216196]
[197]
Bukhari, I.A.; Dar, A.; Khan, R.A. Antinociceptive activity of methanolic extracts of St. John’s Wort (Hypericum perforatum) preparation. Pak. J. Pharm. Sci., 2004, 17(2), 13-19.
[PMID: 16414593]
[198]
Galeotti, N.; Farzad, M.; Bianchi, E.; Ghelardini, C. PKC-mediated potentiation of morphine analgesia by St. John’s Wort in rodents and humans. J. Pharmacol. Sci., 2014, 124(4), 409-417.
[http://dx.doi.org/10.1254/jphs.13226FP] [PMID: 24739262]
[199]
Sanna, M.D.; Ghelardini, C.; Galeotti, N. John’s wort potentiates anti-nociceptive effects of morphine in mice models of neuropathic pain. Pain Med., 2017, 18(7), 1334-1343.
[PMID: 27688309]
[200]
Sindrup, S.H.; Madsen, C.; Bach, F.W.; Gram, L.F.; Jensen, T.S.St. John’s wort has no effect on pain in polyneuropathy. Pain, 2001, 91(3), 361-365.
[http://dx.doi.org/10.1016/S0304-3959(00)00457-7] [PMID: 11275394]
[201]
Hugar, S.M.; Gokhale, N.; Uppin, C.; Kajjari, S.; Meharwade, P.; Joshi, R.S. The effects of lavender essential oil and its clinical implications in dentistry: A review. Int. J. Clin. Pediatr. Dent., 2022, 15(3), 385-388.
[http://dx.doi.org/10.5005/jp-journals-10005-2378] [PMID: 35991803]
[202]
Koulivand, PH.; Khaleghi Ghadiri, M.; Gorji, A. Lavender and the nervous system. Evid. Based Complement. Alternat. Med., 2013, 2013, 681304.
[http://dx.doi.org/10.1155/2013/681304] [PMID: 23573142]
[203]
Bellampalli, S.S.; Ji, Y.; Moutal, A.; Cai, S.; Wijeratne, E.M.K.; Gandini, M.A.; Yu, J.; Chefdeville, A.; Dorame, A.; Chew, L.A.; Madura, C.L.; Luo, S.; Molnar, G.; Khanna, M.; Streicher, J.M.; Zamponi, G.W.; Gunatilaka, A.A.L.; Khanna, R. Betulinic acid, derived from the desert lavender Hyptis emoryi, attenuates paclitaxel-, HIV-, and nerve injury–associated peripheral sensory neuropathy via block of N- and T-type calcium channels. Pain, 2019, 160(1), 117-135.
[http://dx.doi.org/10.1097/j.pain.0000000000001385] [PMID: 30169422]
[204]
Lv, X.; Liu, Z.; Zhang, H.; Tzeng, C. Aromatherapy and the central nerve system (CNS): Therapeutic mechanism and its associated genes. Curr. Drug Targets, 2013, 14(8), 872-879.
[http://dx.doi.org/10.2174/1389450111314080007] [PMID: 23531112]
[205]
Eftekharsadat, B.; Roomizadeh, P.; Torabi, S.; Heshmati-Afshar, F.; Jahanjoo, F.; Babaei-Ghazani, A. Effectiveness of Lavendula stoechas essential oil in treatment of mild to moderate carpal tunnel syndrome: A randomized controlled trial. J. Hand Ther., 2018, 31(4), 437-442.
[http://dx.doi.org/10.1016/j.jht.2017.07.004] [PMID: 28803691]
[206]
Gok, M.Z.; Arikan, D.A.; Izgu, N.; Ozdemir, L.; Arslan, I.E. Aromatherapy massage for neuropathic pain and quality of life in diabetic patients. J. Nurs. Scholarsh., 2017, 49(4), 379-388.
[http://dx.doi.org/10.1111/jnu.12300] [PMID: 28605119]
[207]
He, L.; Xiao, J.; Rashid, K.Y.; Yao, Z.; Li, P.; Jia, G.; Wang, X.; Cloutier, S.; You, F.M. Genome-wide association studies for pasmo resistance in flax (Linum usitatissimum L.). Front. Plant Sci., 2019, 9, 1982.
[http://dx.doi.org/10.3389/fpls.2018.01982] [PMID: 30693010]
[208]
Ebrahimi, B.; Nazmara, Z.; Hassanzadeh, N.; Yarahmadi, A.; Ghaffari, N.; Hassani, F.; Liaghat, A.; Noori, L.; Hassanzadeh, G. Biomedical features of flaxseed against different pathologic situations: A narrative review. Iran. J. Basic Med. Sci., 2021, 24(5), 551-560.
[PMID: 34249256]
[209]
Kaithwas, G.; Mukherjee, A.; Chaurasia, A.; Majumdar, D.K. Anti-inflammatory, analgesic and antipyretic activities of Linum usitatissimum L. (flaxseed/linseed) fixed oil. Indian J. Exp. Biol., 2011, 49(12), 932-938.
[PMID: 22403867]
[210]
Udenigwe, C.C.; Lu, Y.L.; Han, C.H.; Hou, W.C.; Aluko, R.E. Flaxseed protein-derived peptide fractions: Antioxidant properties and inhibition of lipopolysaccharide-induced nitric oxide production in murine macrophages. Food Chem., 2009, 116(1), 277-284.
[http://dx.doi.org/10.1016/j.foodchem.2009.02.046]
[211]
Unda, S.R.; Villegas, E.A.; Toledo, M.E.; Asis Onell, G.; Laino, C.H. Beneficial effects of fish oil enriched in omega-3 fatty acids on the development and maintenance of neuropathic pain. J. Pharm. Pharmacol., 2020, 72(3), 437-447.
[http://dx.doi.org/10.1111/jphp.13213] [PMID: 31876957]
[212]
Rafieian-kopaei, M.; Shakiba, A.; Sedighi, M.; Bahmani, M. The analgesic and anti-inflammatory activity of Linum usitatissimum in Balb/c mice. J. Evid. Based Complementary Altern. Med., 2017, 22(4), 892-896.
[http://dx.doi.org/10.1177/2156587217717416] [PMID: 28750553]
[213]
Hu, P.; Mei, Q.Y.; Ma, L.; Cui, W.G.; Zhou, W.H.; Zhou, D.S.; Zhao, Q.; Xu, D.Y.; Zhao, X.; Lu, Q.; Hu, Z.Y. Secoisolariciresinol diglycoside, a flaxseed lignan, exerts analgesic effects in a mouse model of type 1 diabetes: Engagement of antioxidant mechanism. Eur. J. Pharmacol., 2015, 767, 183-192.
[http://dx.doi.org/10.1016/j.ejphar.2015.10.024] [PMID: 26494631]
[214]
McKay, D.L.; Blumberg, J.B. A Review of the bioactivity and potential health benefits of chamomile tea (Matricaria recutita L.). Phytother. Res., 2006, 20(7), 519-530.
[http://dx.doi.org/10.1002/ptr.1900] [PMID: 16628544]
[215]
Singh, O.; Khanam, Z.; Misra, N.; Srivastava, M. Chamomile (Matricaria chamomilla L.): An overview. Pharmacogn. Rev., 2011, 5(9), 82-95.
[http://dx.doi.org/10.4103/0973-7847.79103] [PMID: 22096322]
[216]
Zargaran, A.; Borhani-Haghighi, A.; Faridi, P.; Daneshamouz, S.; Kordafshari, G.; Mohagheghzadeh, A. Potential effect and mechanism of action of topical chamomile (Matricaria chammomila L.) oil on migraine headache: A medical hypothesis. Med. Hypotheses, 2014, 83(5), 566-569.
[http://dx.doi.org/10.1016/j.mehy.2014.08.023] [PMID: 25238714]
[217]
Mericli, A.H. The lipophilic compounds of a Turkish Matricaria chamomilla variety with no chamazulene in the volatile oil. Int. J. Crude Drug Res., 1990, 28(2), 145-147.
[http://dx.doi.org/10.3109/13880209009082799]
[218]
Wu, B.Y.; Liu, C.T.; Su, Y.L.; Chen, S.Y.; Chen, Y.H.; Tsai, M.Y. A review of complementary therapies with medicinal plants for chemotherapy-induced peripheral neuropathy. Complement. Ther. Med., 2019, 42, 226-232.
[http://dx.doi.org/10.1016/j.ctim.2018.11.022] [PMID: 30670246]
[219]
Srivastava, J.K.; Pandey, M.; Gupta, S. Chamomile, a novel and selective COX-2 inhibitor with anti-inflammatory activity. Life Sci., 2009, 85(19-20), 663-669.
[http://dx.doi.org/10.1016/j.lfs.2009.09.007] [PMID: 19788894]
[220]
Oveissi, V.; Ram, M.; Bahramsoltani, R.; Ebrahimi, F.; Rahimi, R.; Naseri, R.; Belwal, T.; Devkota, H.P.; Abbasabadi, Z.; Farzaei, M.H. Medicinal plants and their isolated phytochemicals for the management of chemotherapy-induced neuropathy: Therapeutic targets and clinical perspective. Daru, 2019, 27(1), 389-406.
[http://dx.doi.org/10.1007/s40199-019-00255-6] [PMID: 30852764]
[221]
Wu, J.Y.; Li, Y.; Li, B.L.; Wang, Y.G.; Cui, W.G.; Zhou, W.H.; Zhao, X. Evidence for 5‐HT 1A receptor‐mediated antiallodynic and antihyperalgesic effects of apigenin in mice suffering from mononeuropathy. Br. J. Pharmacol., 2021, 178(19), 4005-4025.
[http://dx.doi.org/10.1111/bph.15574] [PMID: 34030210]
[222]
Gao, W.; Zan, Y.; Wang, Z.J.; Hu, X.; Huang, F. Quercetin ameliorates paclitaxel-induced neuropathic pain by stabilizing mast cells, and subsequently blocking PKCε-dependent activation of TRPV1. Acta Pharmacol. Sin., 2016, 37(9), 1166-1177.
[http://dx.doi.org/10.1038/aps.2016.58] [PMID: 27498772]
[223]
Kato, A.; Minoshima, Y.; Yamamoto, J.; Adachi, I.; Watson, A.A.; Nash, R.J. Protective effects of dietary chamomile tea on diabetic complications. J. Agric. Food Chem., 2008, 56(17), 8206-8211.
[http://dx.doi.org/10.1021/jf8014365] [PMID: 18681440]
[224]
Hashempur, M.H.; Ghasemi, M.S.; Daneshfard, B.; Ghoreishi, P.S.; Lari, Z.N.; Homayouni, K.; Zargaran, A. Efficacy of topical chamomile oil for mild and moderate carpal tunnel syndrome: A randomized double-blind placebo-controlled clinical trial. Complement. Ther. Clin. Pract., 2017, 26, 61-67.
[http://dx.doi.org/10.1016/j.ctcp.2016.11.010] [PMID: 28107852]
[225]
Liu, Y.T.; Gong, P.H.; Xiao, F.Q.; Shao, S.; Zhao, D.Q.; Yan, M.M.; Yang, X.W. Chemical constituents and antioxidant, anti-inflammatory and anti-tumor activities of Melilotus officinalis (Linn.). Pall. Molecules, 2018, 23(2), 271.
[http://dx.doi.org/10.3390/molecules23020271] [PMID: 29382154]
[226]
Merighi, S.; Travagli, A.; Tedeschi, P.; Marchetti, N.; Gessi, S. Antioxidant and Antiinflammatory Effects of Epilobium parviflorum, Melilotus officinalis and Cardiospermum halicacabum Plant extracts in macrophage and microglial cells. Cells, 2021, 10(10), 2691.
[http://dx.doi.org/10.3390/cells10102691] [PMID: 34685671]
[227]
Al-Snafi, A.E. Chemical constituents and pharmacological effects of Melilotus Officinalis-A review. IOSR J. Pharm., 2020, 10(1), 26-36.
[228]
Rashidi, A.; Jahandideh, A.; Hassanpour, S.; Asghari, A. Anti-nociceptive mechanisms of Melilotus officinalis Linn. ethanoic extract in mice: Involvement of opioidergic, nitrergic and muscarinic receptors. J. Basic Clinic. Pathophysiol., 2020, 8(2), 7-14.
[229]
Zangiabadi, N.; Mohtashami, H.; Hojatipour, M.; Jafari, M.; Asadi-Shekaari, M.; Shabani, M. The effect of Angipars on diabetic neuropathy in STZ-induced diabetic male rats: A study on behavioral, electrophysiological, sciatic histological and ultrastructural indices. Sci. World J., 2014, 2014, 721547.
[http://dx.doi.org/10.1155/2014/721547] [PMID: 25614895]
[230]
Bakhshayeshi, S.; Madani, S.; Hemmatabadi, M.; Heshmat, R.; Larijani, B. Effects of Semelil (ANGIPARS™) on diabetic peripheral neuropathy: A randomized, double-blind Placebo-controlled clinical trial. Daru, 2011, 19(1), 65-70.
[PMID: 22615641]
[231]
Verma, NK.; Singh AK; Maurya, A Myristica fragrans (Nutmeg): A Brief Review. EAS J Pharm Pharmacol., 2021, 3(5), 133-137.
[232]
Matulyte, I.; Jekabsone, A.; Jankauskaite, L.; Zavistanaviciute, P.; Sakiene, V.; Bartkiene, E.; Ruzauskas, M.; Kopustinskiene, D.M.; Santini, A.; Bernatoniene, J. The essential oil and hydrolats from Myristica fragrans seeds with magnesium aluminometasilicate as excipient: Antioxidant, antibacterial, and anti-inflammatory activity. Foods, 2020, 9(1), 37.
[http://dx.doi.org/10.3390/foods9010037] [PMID: 31906495]
[233]
Chakraborty, P.; Lavanya, P.; Jayanthi, A. Bioactivity of Myristica fragrans methanol extract. J. Pharm. Res., 2015, 4(9), 1145-1157.
[234]
Arumugam, G.; Purushotham, B.; Swamy, M.K. Myristica fragrans Houtt.: Botanical, pharmacological, and toxicological aspects. In: Natural bio-active compounds; Springer: Singapore, 2019; pp. 81-106.
[235]
Hayfaa, A.S. Malik; Awatif Moker, Evaluation of analgesic activity and toxicity of alkaloids in Myristica fragrans seeds in mice. J. Pain Res., 2013, 6, 611-615.
[http://dx.doi.org/10.2147/JPR.S45591] [PMID: 23946667]
[236]
Yang, X.D.; Fang, P.F.; Xiang, D.X.; Yang, Y.Y. Topical treatments for diabetic neuropathic pain. Exp. Ther. Med., 2019, 17(3), 1963-1976.
[PMID: 30783472]
[237]
Zhang, W.K.; Tao, S.S.; Li, T.T.; Li, Y.S.; Li, X.J.; Tang, H.B.; Cong, R.H.; Ma, F.L.; Wan, C.J. Nutmeg oil alleviates chronic inflammatory pain through inhibition of COX-2 expression and substance P release in vivo. Food Nutr. Res., 2016, 60(1), 30849.
[http://dx.doi.org/10.3402/fnr.v60.30849] [PMID: 27121041]
[238]
Pérez-Rosés, R.; Risco, E.; Vila, R. Peñٌalver, P.; Cañٌigueral, S. Biological and nonbiological antioxidant activity of some essential oils. J. Agric. Food Chem., 2016, 64(23), 4716-4724.
[http://dx.doi.org/10.1021/acs.jafc.6b00986] [PMID: 27214068]
[239]
Kim, D.S.; Lee, H.J.; Jeon, Y.D.; Han, Y.H.; Kee, J.Y.; Kim, H.J.; Shin, H.J.; Kang, J.; Lee, B.S.; Kim, S.H.; Kim, S.J.; Park, S.H.; Choi, B.M.; Park, S.J.; Um, J.Y.; Hong, S.H. Alpha-pinene exhibits anti-inflammatory activity through the suppression of MAPKs and the NF-κB pathway in mouse peritoneal macrophages. Am. J. Chin. Med., 2015, 43(4), 731-742.
[http://dx.doi.org/10.1142/S0192415X15500457] [PMID: 26119957]
[240]
Yu, L.; Yan, J.; Sun, Z. D-limonene exhibits anti-inflammatory and antioxidant properties in an ulcerative colitis rat model via regulation of iNOS, COX-2, PGE2 and ERK signaling pathways. Mol. Med. Rep., 2017, 15(4), 2339-2346.
[http://dx.doi.org/10.3892/mmr.2017.6241] [PMID: 28260017]
[241]
Motilal, S.; Maharaj, R.G. Nutmeg extracts for painful diabetic neuropathy: A randomized, double-blind, controlled study. J. Altern. Complement. Med., 2013, 19(4), 347-352.
[http://dx.doi.org/10.1089/acm.2012.0016] [PMID: 23098698]
[242]
Li, L. The effect of Neuragen PN® on Neuropathic pain: A randomized, double blind, placebo controlled clinical trial. BMC Complement. Altern. Med., 2010, 10(1), 22.
[http://dx.doi.org/10.1186/1472-6882-10-22] [PMID: 20487567]
[243]
Tahir, H.E.; Mahunu, G.K.; Mariod, A.A.; Xiaobo, Z.; Afoakwah, N.A. Biological activities of evening primrose oil. In: Multiple Biological Activities of Unconventional Seed Oils; Elsevier, 2022; pp. 317-332.
[http://dx.doi.org/10.1016/B978-0-12-824135-6.00032-5]
[244]
Timoszuk, M.; Bielawska, K.; Skrzydlewska, E. Evening primrose (Oenothera biennis) biological activity dependent on chemical composition. Antioxidants, 2018, 7(8), 108.
[http://dx.doi.org/10.3390/antiox7080108] [PMID: 30110920]
[245]
Abd-Nikfarjam, B.; Abbasi, M.; Memarzadeh, M.; Farzam, S.A.; Jamshidian, A.; Dolati-Somarin, A. Therapeutic efficacy of Urtica dioica and evening primrose in patients with rheumatoid arthritis: A randomized double-blind, placebo-controlled clinical trial. J. Herb. Med., 2022, 32, 100556.
[http://dx.doi.org/10.1016/j.hermed.2022.100556]
[246]
Amin, M.; Ebrahimzadeh Zagami, S.; Rakhshandeh, H.; Esmaeili, H.; Mirteimori, M. The effect of evening primrose (Oenothera biennis) oil capsule on postpartum pain in multiparous women: A triple-blind randomized clinical trial. J. Midwifery. Reproductive Health, 2022, 10(4), 3480-3489.
[247]
SafaaHussain M.; Abdulridha, MK.; Khudhair, MS. Anti-inflammatory, anti-oxidant, and vasodilating effect of evening primrose oil in type 2 diabetic patients. Int. J. Pharm. Sci. Rev. Res., 2016, 39(2), 173-178.
[248]
Jamal, G.A.; Carmichael, H. The effect of γ-linolenic acid on human diabetic peripheral neuropathy: A double-blind placebo-controlled trial. Diabet. Med., 1990, 7(4), 319-323.
[http://dx.doi.org/10.1111/j.1464-5491.1990.tb01397.x] [PMID: 2159860]
[249]
Nasrabadi, Z.; Rakhshani, M.H.; Ebadi, H.; Akbarzadeh, R. Comparison of the effect of gabapentin and evening primrose oil on peripheral neuropathy pain in patients with type 2 diabetes. Clin. Med., 2019, 26(1), 5-11.
[250]
Rajeshwari, C.; Kumar, A.V.; Andallu, B. Therapeutic potential of Ajwain (Tracyspermum ammi L.) Seeds. In: Nuts and seeds in health and disease prevention; Elsevier, 2011; pp. 153-159.
[251]
Anwar, S.; Ahmed, N.; Habibatni, S.; Abusamra, Y. Ajwain (Trachyspermum ammi L.) oils. In: Essential Oils in Food Preservation, Flavor and Safety; Elsevier, 2016; pp. 181-192.
[http://dx.doi.org/10.1016/B978-0-12-416641-7.00019-5]
[252]
Zarshenas, M.M.; Moein, M.; Samani, S.M.; Petramfar, P. An overview on ajwain (Trachyspermum ammi) pharmacological effects; modern and traditional. J. Nat. Rem., 2013, 14(1), 98-105.
[253]
Singh, G.; Maurya, S.; Catalan, C.; de Lampasona, M.P. Chemical constituents, antifungal and antioxidative effects of ajwain essential oil and its acetone extract. J. Agric. Food Chem., 2004, 52(11), 3292-3296.
[http://dx.doi.org/10.1021/jf035211c] [PMID: 15161185]
[254]
Al-Khazraji, S.M. The pain decreasing effect of the alcoholic extract of Trachyspermum ammi (L.)(Ajwain) in experimental animals. Int. J. Chemtech Res., 2018, 10, 632-639.
[255]
Petramfar, P.; Moein, M.; Samani, S.M.; Tabatabaei, S.H.; Zarshenas, M.M. Trachyspermum ammi 10% topical cream versus placebo on neuropathic pain, a randomized, double-blind, placebo-controlled trial. Neurol. Sci., 2016, 37(9), 1449-1455.
[http://dx.doi.org/10.1007/s10072-016-2600-3] [PMID: 27166709]
[256]
Zhao, T.; Li, C.; Wang, S.; Song, X. Green tea (Camellia sinensis): A review of its phytochemistry, pharmacology, and toxicology. Molecules, 2022, 27(12), 3909.
[http://dx.doi.org/10.3390/molecules27123909] [PMID: 35745040]
[257]
Perucca, E. Cannabinoids in the treatment of epilepsy: Hard evidence at last? J. Epilepsy Res., 2017, 7(2), 61-76.
[http://dx.doi.org/10.14581/jer.17012] [PMID: 29344464]
[258]
Hussain, A.I.; Rathore, H.A.; Sattar, M.Z.A.; Chatha, S.A.S.; Sarker, S.D.; Gilani, A.H. Citrullus colocynthis (L.) Schrad (bitter apple fruit): A review of its phytochemistry, pharmacology, traditional uses and nutritional potential. J. Ethnopharmacol., 2014, 155(1), 54-66.
[http://dx.doi.org/10.1016/j.jep.2014.06.011] [PMID: 24936768]
[259]
Sueth-Santiago, V.; Moraes, J.B.B.; Sobral Alves, E.S.; Vannier-Santos, M.A.; Freire-de-Lima, C.G.; Castro, R.N.; Mendes-Silva, G.P.; Del Cistia, C.N.; Magalhães, L.G; Andricopulo, A.D; Sant´’Anna, C.M.R. Decoté-Ricardo, D.; Freire de Lima, M.E. The effectiveness of natural diarylheptanoids against Trypanosoma cruzi: Cytotoxicity, ultrastructural alterations and molecular modeling studies. PLoS One, 2016, 11(9), e0162926.
[http://dx.doi.org/10.1371/journal.pone.0162926] [PMID: 27658305]
[260]
Velingkar, V.S.; Gupta, G.L.; Hegde, N.B. A current update on phytochemistry, pharmacology and herb-drug interactions of Hypericum perforatum. Phytochem. Rev., 2017, 16(4), 725-744.
[http://dx.doi.org/10.1007/s11101-017-9503-7]
[261]
Ez zoubi, Y.; Bousta, D.; Farah, A. A Phytopharmacological review of a Mediterranean plant: Lavandula stoechas L. Clinical Phytoscience., 2020, 6, 1-9.
[262]
El Mihyaoui, A.; Esteves da Silva, J.C.G.; Charfi, S.; Candela Castillo, M.E.; Lamarti, A.; Arnao, M.B. Chamomile (Matricaria chamomilla L.): A review of ethnomedicinal use, phytochemistry and pharmacological uses. Life, 2022, 12(4), 479.
[http://dx.doi.org/10.3390/life12040479] [PMID: 35454969]
[263]
Kuete, V. Myristica fragrans: A review. In: Medicinal Spices and Vegetables from Africa; Academic Press, 2017; pp. 497-5012.
[http://dx.doi.org/10.1016/B978-0-12-809286-6.00023-6]
[264]
Jia, M.; Nie, Y.; Cao, D-P.; Xue, Y-Y.; Wang, J-S.; Zhao, L. Potential antiosteoporotic agents from plants: A comprehensive review. Evid. Based Complement. Alternat. Med., 2012, 20125, 364604.
[http://dx.doi.org/10.1155/2012/364604] [PMID: 23365596]
[265]
Montserrat-de la Paz, S. Fernández-Arche, M.A.; Ángel-Martín, M.; García-Giménez, M.D. Phytochemical characterization of potential nutraceutical ingredients from Evening Primrose oil (Oenothera biennis L.). Phytochem. Lett., 2014, 8, 158-162.
[http://dx.doi.org/10.1016/j.phytol.2013.08.008]
[266]
Chahal, K.; Dhaiwal, K.; Kumar, A.; Kataria, D.; Singla, N. Chemical composition of Trachyspermum ammi L. and its biological properties: A review. J. Pharmacogn. Phytochem., 2017, 6(3), 131-140.
[267]
Kraft, B.; Frickey, N.A.; Kaufmann, R.M.; Reif, M.; Frey, R.; Gustorff, B.; Kress, H.G. Lack of analgesia by oral standardized cannabis extract on acute inflammatory pain and hyperalgesia in volunteers. Anesthesiology, 2008, 109(1), 101-110.
[http://dx.doi.org/10.1097/ALN.0b013e31817881e1] [PMID: 18580179]
[268]
Wilsey, B.; Marcotte, T.; Tsodikov, A.; Millman, J.; Bentley, H.; Gouaux, B.; Fishman, S. A randomized, placebo-controlled, crossover trial of cannabis cigarettes in neuropathic pain. J. Pain, 2008, 9(6), 506-521.
[http://dx.doi.org/10.1016/j.jpain.2007.12.010] [PMID: 18403272]
[269]
Berman, J.S.; Symonds, C.; Birch, R. Efficacy of two cannabis based medicinal extracts for relief of central neuropathic pain from brachial plexus avulsion: Results of a randomised controlled trial. Pain, 2004, 112(3), 299-306.
[http://dx.doi.org/10.1016/j.pain.2004.09.013] [PMID: 15561385]
[270]
Ware, M.A.; Wang, T.; Shapiro, S.; Robinson, A.; Ducruet, T.; Huynh, T.; Gamsa, A.; Bennett, G.J.; Collet, J.P. Smoked cannabis for chronic neuropathic pain: A randomized controlled trial. CMAJ, 2010, 182(14), E694-E701.
[http://dx.doi.org/10.1503/cmaj.091414] [PMID: 20805210]
[271]
Svendsen, K.B.; Jensen, T.S.; Bach, F.W. Does the cannabinoid dronabinol reduce central pain in multiple sclerosis? Randomised double blind placebo controlled crossover trial. BMJ, 2004, 329(7460), 253.
[http://dx.doi.org/10.1136/bmj.38149.566979.AE] [PMID: 15258006]
[272]
Rog, D.J.; Nurmikko, T.J.; Friede, T.; Young, C.A. Randomized, controlled trial of cannabis-based medicine in central pain in multiple sclerosis. Neurology, 2005, 65(6), 812-819.
[http://dx.doi.org/10.1212/01.wnl.0000176753.45410.8b] [PMID: 16186518]
[273]
Corey-Bloom, J.; Wolfson, T.; Gamst, A.; Jin, S.; Marcotte, T.D.; Bentley, H.; Gouaux, B. Smoked cannabis for spasticity in multiple sclerosis: A randomized, placebo-controlled trial. CMAJ, 2012, 184(10), 1143-1150.
[http://dx.doi.org/10.1503/cmaj.110837] [PMID: 22586334]
[274]
Langford, R.M.; Mares, J.; Novotna, A.; Vachova, M.; Novakova, I.; Notcutt, W.; Ratcliffe, S. A double-blind, randomized, placebo-controlled, parallel-group study of THC/CBD oromucosal spray in combination with the existing treatment regimen, in the relief of central neuropathic pain in patients with multiple sclerosis. J. Neurol., 2013, 260(4), 984-997.
[http://dx.doi.org/10.1007/s00415-012-6739-4] [PMID: 23180178]
[275]
Turcotte, D.; Doupe, M.; Torabi, M.; Gomori, A.; Ethans, K.; Esfahani, F.; Galloway, K.; Namaka, M. Nabilone as an adjunctive to gabapentin for multiple sclerosis-induced neuropathic pain: A randomized controlled trial. Pain Med., 2015, 16(1), 149-159.
[http://dx.doi.org/10.1111/pme.12569] [PMID: 25288189]
[276]
Bernstein, J.E.; Korman, N.J.; Bickers, D.R.; Dahl, M.V.; Millikan, L.E. Topical capsaicin treatment of chronic postherpetic neuralgia. J. Am. Acad. Dermatol., 1989, 21(2), 265-270.
[http://dx.doi.org/10.1016/S0190-9622(89)70171-7] [PMID: 2768576]
[277]
Backonja, M.; Wallace, M.S.; Blonsky, E.R.; Cutler, B.J.; Malan, P., Jr; Rauck, R.; Tobias, J. NGX-4010, a high-concentration capsaicin patch, for the treatment of postherpetic neuralgia: A randomised, double-blind study. Lancet Neurol., 2008, 7(12), 1106-1112.
[http://dx.doi.org/10.1016/S1474-4422(08)70228-X] [PMID: 18977178]
[278]
Backonja, M.M.; Malan, T.P.; Vanhove, G.F.; Tobias, J.K. NGX-4010, a high-concentration capsaicin patch, for the treatment of postherpetic neuralgia: A randomized, double-blind, controlled study with an open-label extension. Pain Med., 2010, 11(4), 600-608.
[http://dx.doi.org/10.1111/j.1526-4637.2009.00793.x] [PMID: 20113411]
[279]
Vinik, A.I.; Perrot, S.; Vinik, E.J.; Pazdera, L.; Jacobs, H.; Stoker, M.; Long, S.K.; Snijder, R.J.; van der Stoep, M.; Ortega, E.; Katz, N. Capsaicin 8% patch repeat treatment plus standard of care (SOC) versus SOC alone in painful diabetic peripheral neuropathy: A randomised, 52-week, open-label, safety study. BMC Neurol., 2016, 16(1), 251.
[http://dx.doi.org/10.1186/s12883-016-0752-7] [PMID: 27919222]
[280]
Haanpää. M.; Cruccu, G.; Nurmikko, T.J.; McBride, W.T.; Docu Axelarad, A.; Bosilkov, A.; Chambers, C.; Ernault, E.; Abdulahad, A.K. Capsaicin 8% patch versus oral pregabalin in patients with peripheral neuropathic pain. Eur. J. Pain, 2016, 20(2), 316-328.
[http://dx.doi.org/10.1002/ejp.731] [PMID: 26581442]
[281]
Abe, H.; Kawai, Y.; Mori, T.; Tomida, K.; Kubota, Y.; Umeda, T.; Tani, T. The Kampo medicine Goshajinkigan prevents neuropathy in breast cancer patients treated with docetaxel. Asian Pac. J. Cancer Prev., 2013, 14(11), 6351-6356.
[http://dx.doi.org/10.7314/APJCP.2013.14.11.6351] [PMID: 24377531]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy