Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

In-silico Study of Secondary Metabolites as Potential Inhibitors of NEF and P24 Protein of HIV-1

Author(s): Krishna Vijay Kumar Singh*

Volume 21, Issue 11, 2024

Published on: 21 August, 2023

Page: [2175 - 2188] Pages: 14

DOI: 10.2174/1570180820666230714112516

Price: $65

Abstract

Introduction: Acquired immune deficiency syndrome (HIV/AIDS) has been a major global health concern for over 38 years. No safe and effective preventive or therapeutic vaccine has been developed although many products have been investigated.

Methods: This computational study was conducted on plant-based active compounds against HIV-1 NEF and p24 protein to obtain and complexes with high binding scores were used for two-dimensional interaction studies via Ligplot to explore hydrogen bond and hydrophobic bond formation. ADMET analysis for best phytocompounds was performed using DruLito, ALOGPS, and PROTOX II.

Results: According to the study conducted, phytocompounds like, Protostrychnine, Isostrychnine, Pseudo- Alpha-Colubrine, Alpha-Colubrine, Camptothecin, Benzo[f]quinoline, and (+) -Camptothecin are safe to be considered as a potential drug candidate after experimental validation against NEF and p24 proteins of HIV-1. While, Picrasidine M, Chaetochromin, 3’,3’-Binaringenin, and Sequoiaflavone displayed high binding scores of -10.8, -8.2, -9.5, -9.2 and -9.0, -8.8, -10.6, -9.0 respectively for NEF and p24 protein. All drugs belong to the toxicity class of either 4 or 5. They are inactive for hepatotoxicity and carcinogenicity but active for immunogenicity.

Conclusion: For further validation of the results the phytocompounds can be extracted through solvent extraction method and tested on cell lines or animal models for their effectiveness.

« Previous
[1]
Larijani, M.S.; Sadat, S.M.; Bolhassani, A.; Pouriayevali, M.H.; Bahramali, G.; Ramezani, A. In silico design and immunologic evaluation of HIV-1 p24-NEF fusion protein to approach a therapeutic vaccine candidate. Curr. HIV Res., 2019, 16(5), 322-337.
[http://dx.doi.org/10.2174/1570162X17666190102151717] [PMID: 30605062]
[2]
Menéndez-Arias, L.; Sebastián-Martín, A.; Álvarez, M. Viral reverse transcriptases. Virus Res., 2017, 234, 153-176.
[http://dx.doi.org/10.1016/j.virusres.2016.12.019] [PMID: 28043823]
[3]
Ganser-Pornillos, B.K.; Yeager, M.; Sundquist, W.I. The structural biology of HIV assembly. Curr. Opin. Struct. Biol., 2008, 18(2), 203-217.
[http://dx.doi.org/10.1016/j.sbi.2008.02.001] [PMID: 18406133]
[4]
Faust, T.B.; Binning, J.M.; Gross, J.D.; Frankel, A.D. Making sense of multifunctional proteins: Human immunodeficiency virus type 1 accessory and regulatory proteins and connections to transcription. Annu. Rev. Virol., 2017, 4(1), 241-260.
[http://dx.doi.org/10.1146/annurev-virology-101416-041654] [PMID: 28961413]
[5]
Whatmore, A.M.; Cook, N.; Hall, G.A.; Sharpe, S.; Rud, E.W.; Cranage, M.P. Repair and evolution of NEF in vivo modulates simian immunodeficiency virus virulence. J. Virol., 1995, 69(8), 5117-5123.
[http://dx.doi.org/10.1128/jvi.69.8.5117-5123.1995] [PMID: 7609080]
[6]
Gorry, P.R.; McPhee, D.A.; Verity, E.; Dyer, W.B.; Wesselingh, S.L.; Learmont, J.; Sullivan, J.S.; Roche, M.; Zaunders, J.J.; Gabuzda, D.; Crowe, S.M.; Mills, J.; Lewin, S.R.; Brew, B.J.; Cunningham, A.L.; Churchill, M.J. Pathogenicity and immunogenicity of attenuated, NEF-deleted HIV-1 strains in vivo. Retrovirology, 2007, 4(1), 66.
[http://dx.doi.org/10.1186/1742-4690-4-66] [PMID: 17888184]
[7]
Foster, J.L.; Garcia, J.V. HIV-1 NEF: At the crossroads. Retrovirology, 2008, 5(1), 84.
[http://dx.doi.org/10.1186/1742-4690-5-84] [PMID: 18808677]
[8]
Stove, V.; Van de Walle, I.; Naessens, E.; Coene, E.; Stove, C.; Plum, J.; Verhasselt, B. Human immunodeficiency virus NEF induces rapid internalization of the T-cell coreceptor CD8alphabeta. J. Virol., 2005, 79(17), 11422-11433.
[http://dx.doi.org/10.1128/JVI.79.17.11422-11433.2005] [PMID: 16103193]
[9]
Swigut, T.; Shohdy, N.; Skowronski, J. Mechanism for down-regulation of CD28 by NEF. EMBO J., 2001, 20(7), 1593-1604.
[http://dx.doi.org/10.1093/emboj/20.7.1593] [PMID: 11285224]
[10]
Pereira, E.A.; daSilva, L.L.P. HIV‐1 Nef: taking control of protein trafficking. Traffic, 2016, 17(9), 976-996.
[http://dx.doi.org/10.1111/tra.12412] [PMID: 27161574]
[11]
Grzesiek, S.; Bax, A.; Hu, J.S.; Tjandra, N.; Kaufman, J.; Palmer, I.; Stahl, S.J.; Wingfield, P.T. Refined solution structure and backbone dynamics of HIV-1 NEF. Protein Sci., 1997, 6(6), 1248-1263.
[http://dx.doi.org/10.1002/pro.5560060613] [PMID: 9194185]
[12]
Kohl, N.E.; Emini, E.A.; Schleif, W.A.; Davis, L.J.; Heimbach, J.C.; Dixon, R.A.; Scolnick, E.M.; Sigal, I.S. Active human immunodeficiency virus protease is required for viral infectivity. Proc. Natl. Acad. Sci., 1988, 85(13), 4686-4690.
[http://dx.doi.org/10.1073/pnas.85.13.4686] [PMID: 3290901]
[13]
Monaco-Malbet, S.; Berthet-Colominas, C.; Novelli, A.; Battaï, N.; Piga, N.; Cheynet, V.; Mallet, F.; Cusack, S. Mutual conformational adaptations in antigen and antibody upon complex formation between an Fab and HIV-1 capsid protein p24. Structure, 2000, 8(10), 1069-1077.
[http://dx.doi.org/10.1016/S0969-2126(00)00507-4] [PMID: 11080628]
[14]
Salehi, B.; Kumar, N.; Şener, B.; Sharifi-Rad, M.; Kılıç, M.; Mahady, G.; Vlaisavljevic, S.; Iriti, M.; Kobarfard, F.; Setzer, W.; Ayatollahi, S.; Ata, A.; Sharifi-Rad, J. Medicinal plants used in the treatment of human immunodeficiency virus. Int. J. Mol. Sci., 2018, 19(5), 1459.
[http://dx.doi.org/10.3390/ijms19051459] [PMID: 29757986]
[15]
Ren, X.; Park, S.Y.; Bonifacino, J.S.; Hurley, J.H. How HIV-1 Nef hijacks the AP-2 clathrin adaptor to downregulate CD4. eLife, 2014, 3, e01754.
[http://dx.doi.org/10.7554/eLife.01754] [PMID: 24473078]
[16]
Voshavar, C. Protease inhibitors for the treatment of HIV/AIDS: Recent advances and future challenges. Curr. Top. Med. Chem., 2019, 19(18), 1571-1598.
[http://dx.doi.org/10.2174/1568026619666190619115243] [PMID: 31237209]
[17]
Kurt Yilmaz, N.; Swanstrom, R.; Schiffer, C.A. Improving viral protease inhibitors to counter drug resistance. Trends Microbiol., 2016, 24(7), 547-557.
[http://dx.doi.org/10.1016/j.tim.2016.03.010] [PMID: 27090931]
[18]
Potempa, M.; Lee, S.K.; Wolfenden, R.; Swanstrom, R. The triple threat of HIV-1 protease inhibitors. Curr. Top. Microbiol. Immunol., 2015, 389, 203-241.
[19]
Pham, H.T.; Xiao, M.A.; Principe, M.A.V.; Wong, A.; Mesplède, T. Pharmaceutical, clinical, and resistance information on doravirine, a novel non-nucleoside reverse transcriptase inhibitor for the treatment of HIV-1 infection. Drugs Context, 2020, 9, 1-11.
[http://dx.doi.org/10.7573/dic.2019-11-4] [PMID: 32180823]
[20]
Balzarini, J.; Aquaro, S.; Hassan-Abdallah, A.; Daluge, S.M.; Perno, C.F.; McGuigan, C. Improved antiviral activity of the aryloxymethoxyalaninyl phosphoramidate (APA) prodrug of abacavir (ABC) is due to the formation of markedly increased carbovir 5 ′ -triphosphate metabolite levels. FEBS Lett., 2004, 573(1-3), 38-44.
[http://dx.doi.org/10.1016/j.febslet.2004.07.049] [PMID: 15327972]
[21]
Anker, M.; Corales, R.B. Raltegravir (MK-0518): A novel integrase inhibitor for the treatment of HIV infection. Expert Opin. Investig. Drugs, 2008, 17(1), 97-103.
[http://dx.doi.org/10.1517/13543784.17.1.97] [PMID: 18095922]
[22]
Pawar, P.; Chawla, A.; Sharma, P.; Arora, S. Novel drug delivery approaches on antiviral and antiretroviral agents. J. Adv. Pharm. Technol. Res., 2012, 3(3), 147-159.
[http://dx.doi.org/10.4103/2231-4040.101007] [PMID: 23057001]

© 2024 Bentham Science Publishers | Privacy Policy