Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

STAT3 Signaling Axis and Tamoxifen in Breast Cancer: A Promising Target for Treatment Resistance

Author(s): Mohammad Yasin Zamanian, Maryam Golmohammadi, Ali Alalak, Zahra Kamiab, Rasha Obaid, Andrés Alexis Ramírez-Coronel, Ahmed Hjazi, Munther Abosaooda, Yasser Mustafa, Mahsa Heidari, Amita Verma*, Yashar Nazari and Gholamreza Bazmandegan*

Volume 23, Issue 16, 2023

Published on: 31 July, 2023

Page: [1819 - 1828] Pages: 10

DOI: 10.2174/1871520623666230713101119

Price: $65

Abstract

Signal transducers and activators of transcription 3 (STAT 3) have been proposed to be responsible for breast cancer development. Moreover, evidence depicted that upregulation of STAT3 is responsible for angiogenesis, metastasis, and chemo-resistance of breast cancer. Tamoxifen (TAM) resistance is a major concern in breast cancer management which is mediated by numerous signaling pathways such as STAT3. Therefore, STAT3 targeting inhibitors would be beneficial in breast cancer treatment. The information on the topic in this review was gathered from scientific databases such as PubMed, Scopus, Google Scholar, and ScienceDirect. The present review highlights STAT3 signaling axis discoveries and TAM targeting STAT3 in breast cancer. Based on the results of this study, we found that following prolonged TAM treatment, STAT3 showed overexpression and resulted in drug resistance. Moreover, it was concluded that STAT3 plays an important role in breast cancer stem cells, which correlated with TAM resistance.

Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Marina, D.; Åse, K.R.; Buch-Larsen, K.; Linn, G.; Michael, A.; Peter, S. Influence of the anti‐oestrogens tamoxifen and letrozole on thyroid function in women with early and advanced breast cancer: A systematic review. Cancer Med., 2022, 12(2), 967-982.
[PMID: 35748065]
[3]
Cao, W.; Chen, H.D.; Yu, Y.W.; Li, N.; Chen, W.Q. Changing profiles of cancer burden worldwide and in China: A secondary analysis of the global cancer statistics 2020. Chin. Med. J., 2021, 134(7), 783-791.
[http://dx.doi.org/10.1097/CM9.0000000000001474] [PMID: 33734139]
[4]
Shaath, H.; Elango, R.; Alajez, N.M. Molecular classification of breast cancer utilizing long non-coding RNA (lncRNA) transcriptomes identifies novel diagnostic lncRNA panel for triple-negative breast cancer. Cancers, 2021, 13(21), 5350.
[http://dx.doi.org/10.3390/cancers13215350] [PMID: 34771513]
[5]
Li, M.; Tingting, Y.; Miaozhou, W.; Yanqiu, C.; Yingyuan, W. Advances in single-cell sequencing technology and its applications in triple-negative. Breast Cancer, 2021, 14, 465-474.
[PMID: 36540278]
[6]
Niraula, S.; Ocana, A.; Ennis, M.; Goodwin, P.J. Body size and breast cancer prognosis in relation to hormone receptor and menopausal status: A meta-analysis. Breast Cancer Res. Treat., 2012, 134(2), 769-781.
[http://dx.doi.org/10.1007/s10549-012-2073-x] [PMID: 22562122]
[7]
Veronesi, U.; Boyle, P.; Goldhirsch, A. Orecchia, R.; Viale, G. Breas t cancer. Lancet, 2005, 365(9472), 1727-1741.
[http://dx.doi.org/10.1016/S0140-6736(05)66546-4] [PMID: 15894099]
[8]
Group, E.B.C.T.C. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet, 2005, 365(9472), 1687-1717.
[http://dx.doi.org/10.1016/S0140-6736(05)66544-0] [PMID: 15894097]
[9]
Montagna, E.; Zagami, P.; Masiero, M.; Mazzocco, K.; Pravettoni, G.; Munzone, E. Assessing predictors of tamoxifen nonadherence in patients with early breast cancer. Patient Prefer. Adherence, 2021, 15, 2051-2061.
[http://dx.doi.org/10.2147/PPA.S285768] [PMID: 34552323]
[10]
Francis, P.A.; Pagani, O.; Fleming, G.F.; Walley, B.A.; Colleoni, M.; Láng, I.; Gómez, H.L.; Tondini, C.; Ciruelos, E.; Burstein, H.J.; Bonnefoi, H.R.; Bellet, M.; Martino, S.; Geyer, C.E., Jr; Goetz, M.P.; Stearns, V.; Pinotti, G.; Puglisi, F.; Spazzapan, S.; Climent, M.A.; Pavesi, L.; Ruhstaller, T.; Davidson, N.E.; Coleman, R.; Debled, M.; Buchholz, S.; Ingle, J.N.; Winer, E.P.; Maibach, R.; Rabaglio-Poretti, M.; Ruepp, B.; Di Leo, A.; Coates, A.S.; Gelber, R.D.; Goldhirsch, A.; Regan, M.M. Tailoring adjuvant endocrine therapy for premenopausal breast cancer. N. Engl. J. Med., 2018, 379(2), 122-137.
[http://dx.doi.org/10.1056/NEJMoa1803164] [PMID: 29863451]
[11]
Burstein, H.J.; Lacchetti, C.; Anderson, H.; Buchholz, T.A.; Davidson, N.E.; Gelmon, K.E.; Giordano, S.H.; Hudis, C.A.; Solky, A.J.; Stearns, V.; Winer, E.P.; Griggs, J.J. Adjuvant endocrine therapy for women with hormone receptor–positive breast cancer: American Society of Clinical Oncology clinical practice guideline update on ovarian suppression. J. Clin. Oncol., 2016, 34(14), 1689-1701.
[http://dx.doi.org/10.1200/JCO.2015.65.9573] [PMID: 26884586]
[12]
Traboulsi, T.; El Ezzy, M.; Gleason, J.L.; Mader, S. Antiestrogens: Structure-activity relationships and use in breast cancer treatment. J. Mol. Endocrinol., 2017, 58(1), R15-R31.
[http://dx.doi.org/10.1530/JME-16-0024] [PMID: 27729460]
[13]
Patel, H.K.; Bihani, T. Selective estrogen receptor modulators (SERMs) and selective estrogen receptor degraders (SERDs) in cancer treatment. Pharmacol. Ther., 2018, 186, 1-24.
[http://dx.doi.org/10.1016/j.pharmthera.2017.12.012] [PMID: 29289555]
[14]
Tsoi, H.; You, C.P.; Leung, M.H.; Man, E.P.S.; Khoo, U.S. Targeting ribosome biogenesis to combat tamoxifen resistance in ER+ve breast cancer. Cancers, 2022, 14(5), 1251.
[http://dx.doi.org/10.3390/cancers14051251] [PMID: 35267559]
[15]
Pan, H.; Gray, R.; Braybrooke, J.; Davies, C.; Taylor, C.; McGale, P.; Peto, R.; Pritchard, K.I.; Bergh, J.; Dowsett, M.; Hayes, D.F. 20-year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years. N. Engl. J. Med., 2017, 377(19), 1836-1846.
[http://dx.doi.org/10.1056/NEJMoa1701830] [PMID: 29117498]
[16]
Ali, S.; Rasool, M.; Chaoudhry, H.; Pushparaj, P.N.; Jha, P.; Hafiz, A.; Mahfooz, M.; Sami, G.A.; Kamal, M.A.; Bashir, S.; Ali, A.; Jamal, M.S. Molecular mechanisms and mode of tamoxifen resistance in breast cancer. Bioinformation, 2016, 12(3), 135-139.
[http://dx.doi.org/10.6026/97320630012135] [PMID: 28149048]
[17]
Sanyakamdhorn, S.; Agudelo, D.; Bekale, L.; Tajmir-Riahi, H.A. Targeted conjugation of breast anticancer drug tamoxifen and its metabolites with synthetic polymers. Colloids Surf. B Biointerfaces, 2016, 145, 55-63.
[http://dx.doi.org/10.1016/j.colsurfb.2016.04.035] [PMID: 27137803]
[18]
Davies, C.; Godwin, J.; Gray, R.; Clarke, M.; Cutter, D.; Darby, S.; McGale, P.; Pan, H.C.; Taylor, C.; Wang, Y.C.; Dowsett, M.; Ingle, J.; Peto, R. Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: Patient-level meta-analysis of randomised trials. Lancet, 2011, 378(9793), 771-784.
[http://dx.doi.org/10.1016/S0140-6736(11)60993-8] [PMID: 21802721]
[19]
Helland, T.; Alsomairy, S.; Lin, C.; Søiland, H.; Mellgren, G.; Hertz, D.L. Generating a precision endoxifen prediction algorithm to advance personalized tamoxifen treatment in patients with breast cancer. J. Pers. Med., 2021, 11(3), 201.
[http://dx.doi.org/10.3390/jpm11030201] [PMID: 33805613]
[20]
Yu, D.; Qi, S.; Guan, X.; Yu, W.; Yu, X.; Cai, M.; Li, Q.; Wang, W.; Zhang, W.; Qin, J.J. Inhibition of STAT3 signaling pathway by terphenyllin suppresses growth and metastasis of gastric cancer. Front. Pharmacol., 2022, 13, 870367.
[http://dx.doi.org/10.3389/fphar.2022.870367] [PMID: 35401187]
[21]
Mou, J.; Huang, M.; Wang, F.; Xu, X.; Xie, H.; Lu, H.; Li, M.; Li, Y.; Kong, W.; Chen, J.; Xiao, Y.; Chen, Y.; Wang, C.; Ren, J. HMGN5 escorts oncogenic STAT3 signaling by regulating the chromatin landscape in breast cancer tumorigenesis. Mol. Cancer Res., 2022, 20(12), 1724-1738.
[http://dx.doi.org/10.1158/1541-7786.MCR-22-0241] [PMID: 36066963]
[22]
Li, Y.; Wang, H.; Liu, W.; Hou, J.; Xu, J.; Guo, Y.; Hu, P. Cratoxylumxanthone C, a natural xanthone, inhibits lung cancer proliferation and metastasis by regulating STAT3 and FAK signal pathways. Front. Pharmacol., 2022, 13, 920422.
[http://dx.doi.org/10.3389/fphar.2022.920422] [PMID: 36016565]
[23]
He, S.L.; Zhao, X.; Yi, S.J. CircAHNAK upregulates EIF2B5 expression to inhibit the progression of ovarian cancer by modulating the JAK2/STAT3 signaling pathway. Carcinogenesis, 2022, 43(10), 941-955.
[http://dx.doi.org/10.1093/carcin/bgac053] [PMID: 35710311]
[24]
Yan, R.; Lin, F.; Hu, C.; Tong, S. Association between STAT3 polymorphisms and cancer risk: A meta-analysis. Mol. Genet. Genomics, 2015, 290(6), 2261-2270.
[http://dx.doi.org/10.1007/s00438-015-1074-y] [PMID: 26063618]
[25]
Yuan, K.; Ye, J.; Liu, Z.; Ren, Y.; He, W.; Xu, J.; He, Y.; Yuan, Y. Complement C3 overexpression activates JAK2/STAT3 pathway and correlates with gastric cancer progression. J. Exp. Clin. Cancer Res., 2020, 39(1), 9.
[http://dx.doi.org/10.1186/s13046-019-1514-3] [PMID: 31928530]
[26]
Wingelhofer, B.; Neubauer, H.A.; Valent, P.; Han, X.; Constantinescu, S.N.; Gunning, P.T.; Müller, M.; Moriggl, R. Implications of STAT3 and STAT5 signaling on gene regulation and chromatin remodeling in hematopoietic cancer. Leukemia, 2018, 32(8), 1713-1726.
[http://dx.doi.org/10.1038/s41375-018-0117-x] [PMID: 29728695]
[27]
Jaśkiewicz, A.; Domoradzki, T.; Pająk, B. Targeting the JAK2/STAT3 pathway—Can we compare it to the two faces of the God Janus? Int. J. Mol. Sci., 2020, 21(21), 8261.
[http://dx.doi.org/10.3390/ijms21218261] [PMID: 33158194]
[28]
Gu, Y.; Mohammad, I.; Liu, Z. Overview of the STAT 3 signaling pathway in cancer and the development of specific inhibitors. Oncol. Lett., 2020, 19(4), 2585-2594.
[http://dx.doi.org/10.3892/ol.2020.11394] [PMID: 32218808]
[29]
Johnson, D.E.; O’Keefe, R.A.; Grandis, J.R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat. Rev. Clin. Oncol., 2018, 15(4), 234-248.
[http://dx.doi.org/10.1038/nrclinonc.2018.8] [PMID: 29405201]
[30]
Liang, Y.; Kong, D.; Zhang, Y.; Li, S.; Li, Y.; Ramamoorthy, A.; Ma, J. Fisetin inhibits cell proliferation and induces apoptosis via JAK/STAT3 signaling pathways in human thyroid TPC 1 cancer cells. Biotechnol. Bioprocess Eng.; BBE, 2020, 25(2), 197-205.
[http://dx.doi.org/10.1007/s12257-019-0326-9]
[31]
Tsoi, H.; Man, E.P.S.; Chau, K.M.; Khoo, U.S. Targeting the IL-6/STAT3 signalling cascade to reverse tamoxifen resistance in estrogen receptor positive breast cancer. Cancers, 2021, 13(7), 1511.
[http://dx.doi.org/10.3390/cancers13071511] [PMID: 33806019]
[32]
Liu, W.H.; Chen, M.T.; Wang, M.L.; Lee, Y.Y.; Chiou, G.Y.; Chien, C.S.; Huang, P.I.; Chen, Y.W.; Huang, M.C.; Chiou, S.H.; Shih, Y.H.; Ma, H.I. Cisplatin-selected resistance is associated with increased motility and stem-like properties via activation of STAT3/Snail axis in atypical teratoid/rhabdoid tumor cells. Oncotarget, 2015, 6(3), 1750-1768.
[http://dx.doi.org/10.18632/oncotarget.2737] [PMID: 25638155]
[33]
Jubair, S.; Alkhateeb, A.; Tabl, A.A.; Rueda, L.; Ngom, A. A novel approach to identify subtype-specific network biomarkers of breast cancer survivability. Netw. Model. Anal. Health Inform. Bioinform., 2020, 9(1), 43.
[http://dx.doi.org/10.1007/s13721-020-00249-4]
[34]
Bui, Q.T. Im, J.H.; Jeong, S.B.; Kim, Y.M.; Lim, S.C.; Kim, B.; Kang, K.W. Essential role of Notch4/STAT3 signaling in epithelial–mesenchymal transition of tamoxifen-resistant human breast cancer. Cancer Lett., 2017, 390, 115-125.
[http://dx.doi.org/10.1016/j.canlet.2017.01.014] [PMID: 28108315]
[35]
Zhu, N.; Zhang, J.; Du, Y.; Qin, X.; Miao, R.; Nan, J.; Chen, X.; Sun, J.; Zhao, R.; Zhang, X.; Shi, L.; Li, X.; Lin, Y.; Wei, W.; Mao, A.; Zhang, Z.; Stark, G.R.; Wang, Y.; Yang, J. Loss of ZIP facilitates JAK2-STAT3 activation in tamoxifen-resistant breast cancer. Proc. Natl. Acad. Sci., 2020, 117(26), 15047-15054.
[http://dx.doi.org/10.1073/pnas.1910278117] [PMID: 32532922]
[36]
Ishii, Y.; Waxman, S.; Germain, D. Tamoxifen stimulates the growth of cyclin D1-overexpressing breast cancer cells by promoting the activation of signal transducer and activator of transcription 3. Cancer Res., 2008, 68(3), 852-860.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2879] [PMID: 18245487]
[37]
Yi, E.H.; Lee, C.S.; Lee, J.K.; Lee, Y.J.; Shin, M.K.; Cho, C.H.; Kang, K.W.; Lee, J.W.; Han, W.; Noh, D.Y.; Kim, Y.N.; Cho, I.H.; Ye, S. STAT3-RANTES autocrine signaling is essential for tamoxifen resistance in human breast cancer cells. Mol. Cancer Res., 2013, 11(1), 31-42.
[http://dx.doi.org/10.1158/1541-7786.MCR-12-0217] [PMID: 23074171]
[38]
Wang, X.; Wang, G.; Zhao, Y.; Liu, X.; Ding, Q.; Shi, J.; Ding, Y.; Wang, S. STAT3 mediates resistance of CD44+CD24-/low breast cancer stem cells to tamoxifen in vitro. J. Biomed. Res., 2012, 26(5), 325-335.
[http://dx.doi.org/10.7555/JBR.26.20110050] [PMID: 23554768]
[39]
Simões, B.M.; Santiago-Gómez, A.; Chiodo, C.; Moreira, T.; Conole, D.; Lovell, S.; Alferez, D.; Eyre, R.; Spence, K.; Sarmiento-Castro, A.; Kohler, B.; Morisset, L.; Lanzino, M.; Andò, S.; Marangoni, E.; Sims, A.H.; Tate, E.W.; Howell, S.J.; Clarke, R.B. Targeting STAT3 signaling using stabilised sulforaphane (SFX-01) inhibits endocrine resistant stem-like cells in ER-positive breast cancer. Oncogene, 2020, 39(25), 4896-4908.
[http://dx.doi.org/10.1038/s41388-020-1335-z] [PMID: 32472077]
[40]
Kilker, R.L.; Planas-Silva, M.D. Cyclin D1 is necessary for tamoxifen-induced cell cycle progression in human breast cancer cells. Cancer Res., 2006, 66(23), 11478-11484.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-1755] [PMID: 17145896]
[41]
Shi, Q.; Li, Y.; Li, S.; Jin, L.; Lai, H.; Wu, Y.; Cai, Z.; Zhu, M.; Li, Q.; Li, Y.; Wang, J.; Liu, Y.; Wu, Z.; Song, E.; Liu, Q. LncRNA DILA1 inhibits Cyclin D1 degradation and contributes to tamoxifen resistance in breast cancer. Nat. Commun., 2020, 11(1), 5513.
[http://dx.doi.org/10.1038/s41467-020-19349-w] [PMID: 33139730]
[42]
Jirström, K.; Stendahl, M.; Rydén, L.; Kronblad, Å.; Bendahl, P.O.; Stål, O.; Landberg, G. Adverse effect of adjuvant tamoxifen in premenopausal breast cancer with cyclin D1 gene amplification. Cancer Res., 2005, 65(17), 8009-8016.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0746] [PMID: 16140974]
[43]
Stendahl, M.; Kronblad, Å.; Rydén, L.; Emdin, S.; Bengtsson, N.O.; Landberg, G. Cyclin D1 overexpression is a negative predictive factor for tamoxifen response in postmenopausal breast cancer patients. Br. J. Cancer, 2004, 90(10), 1942-1948.
[http://dx.doi.org/10.1038/sj.bjc.6601831] [PMID: 15138475]
[44]
Parakh, S.; Ernst, M.; Poh, A.R. Multicellular effects of STAT3 in non-small cell lung cancer: Mechanistic insights and therapeutic opportunities. Cancers, 2021, 13(24), 6228.
[http://dx.doi.org/10.3390/cancers13246228] [PMID: 34944848]
[45]
Santoni, M.; Miccini, F.; Cimadamore, A.; Piva, F.; Massari, F.; Cheng, L.; Lopez-Beltran, A.; Montironi, R.; Battelli, N. An update on investigational therapies that target STAT3 for the treatment of cancer. Expert Opin. Investig. Drugs, 2021, 30(3), 245-251.
[http://dx.doi.org/10.1080/13543784.2021.1891222] [PMID: 33599169]
[46]
Chalikonda, G.; Lee, H.; Sheik, A.; Huh, Y.S. Targeting key transcriptional factor STAT3 in colorectal cancer. Mol. Cell. Biochem., 2021, 476(9), 3219-3228.
[http://dx.doi.org/10.1007/s11010-021-04156-8] [PMID: 33866491]
[47]
Galoczova, M.; Coates, P.; Vojtesek, B. STAT3, stem cells, cancer stem cells and p63. Cell. Mol. Biol. Lett., 2018, 23(1), 12.
[http://dx.doi.org/10.1186/s11658-018-0078-0] [PMID: 29588647]
[48]
Decker, T.; Kovarik, P.; Meinke, A. GAS elements: A few nucleotides with a major impact on cytokine-induced gene expression. J. Interferon Cytokine Res., 1997, 17(3), 121-134.
[http://dx.doi.org/10.1089/jir.1997.17.121] [PMID: 9085936]
[49]
Andrés, R.M.; Hald, A.; Johansen, C.; Kragballe, K.; Iversen, L. Studies of Jak/STAT3 expression and signalling in psoriasis identifies STAT3-Ser727 phosphorylation as a modulator of transcriptional activity. Exp. Dermatol., 2013, 22(5), 323-328.
[http://dx.doi.org/10.1111/exd.12128] [PMID: 23614738]
[50]
Huang, Q.; Zhong, Y.; Dong, H.; Zheng, Q.; Shi, S.; Zhu, K.; Qu, X.; Hu, W.; Zhang, X.; Wang, Y. Revisiting signal transducer and activator of transcription 3 (STAT3) as an anticancer target and its inhibitor discovery: Where are we and where should we go? Eur. J. Med. Chem., 2020, 187, 111922.
[http://dx.doi.org/10.1016/j.ejmech.2019.111922] [PMID: 31810784]
[51]
Yuan, Z.; Guan, Y.; Chatterjee, D.; Chin, Y.E. Stat3 dimerization regulated by reversible acetylation of a single lysine residue. Science, 2005, 307(5707), 269-273.
[http://dx.doi.org/10.1126/science.1105166] [PMID: 15653507]
[52]
Park, I.H.; Li, C. Characterization of molecular recognition of STAT3 SH2 domain inhibitors through molecular simulation. J. Mol. Recognit., 2011, 24(2), 254-265.
[http://dx.doi.org/10.1002/jmr.1047] [PMID: 21360612]
[53]
Li, L.X.; Zhou, J.X.; Calvet, J.P.; Godwin, A.K.; Jensen, R.A.; Li, X. Lysine methyltransferase SMYD2 promotes triple negative breast cancer progression. Cell Death Dis., 2018, 9(3), 326.
[http://dx.doi.org/10.1038/s41419-018-0347-x] [PMID: 29487338]
[54]
McDaniel, J.M.; Varley, K.E.; Gertz, J.; Savic, D.S.; Roberts, B.S.; Bailey, S.K.; Shevde, L.A.; Ramaker, R.C.; Lasseigne, B.N.; Kirby, M.K.; Newberry, K.M.; Partridge, E.C.; Jones, A.L.; Boone, B.; Levy, S.E.; Oliver, P.G.; Sexton, K.C.; Grizzle, W.E.; Forero, A.; Buchsbaum, D.J.; Cooper, S.J.; Myers, R.M. Genomic regulation of invasion by STAT3 in triple negative breast cancer. Oncotarget, 2017, 8(5), 8226-8238.
[http://dx.doi.org/10.18632/oncotarget.14153] [PMID: 28030809]
[55]
Moreira, M.P.; da Conceição Braga, L.; Cassali, G.D.; Silva, L.M. STAT3 as a promising chemoresistance biomarker associated with the CD44 +/high /CD24 -/low /ALDH + BCSCs-like subset of the triple-negative breast cancer (TNBC) cell line. Exp. Cell Res., 2018, 363(2), 283-290.
[http://dx.doi.org/10.1016/j.yexcr.2018.01.018] [PMID: 29352988]
[56]
Sasidharan Nair, V.; Toor, S.M.; Ali, B.R.; Elkord, E. Dual inhibition of STAT1 and STAT3 activation downregulates expression of PD-L1 in human breast cancer cells. Expert Opin. Ther. Targets, 2018, 22(6), 547-557.
[http://dx.doi.org/10.1080/14728222.2018.1471137] [PMID: 29702007]
[57]
Demaria, M.; Giorgi, C.; Lebiedzinska, M.; Esposito, G.; D’Angeli, L.; Bartoli, A.; Gough, D.J.; Turkson, J.; Levy, D.E.; Watson, C.J.; Wieckowski, M.R.; Provero, P.; Pinton, P.; Poli, V.A. STAT3-mediated metabolic switch is involved in tumour transformation and STAT3 addiction. Aging, 2010, 2(11), 823-842.
[http://dx.doi.org/10.18632/aging.100232] [PMID: 21084727]
[58]
Mohassab, A.M.; Hassan, H.A.; Abdelhamid, D.; Abdel-Aziz, M. STAT3 transcription factor as target for anti-cancer therapy. Pharmacol. Rep., 2020, 72(5), 1101-1124.
[http://dx.doi.org/10.1007/s43440-020-00156-5] [PMID: 32880101]
[59]
Farkhondeh, T.; Samarghandian, S. Antidotal effects of curcumin against agents-induced cardiovascular toxicity. Cardiovasc. Hematol. Disord. Drug Targets, 2016, 16(1), 30-37.
[http://dx.doi.org/10.2174/1871529X16666160802144510] [PMID: 27492624]
[60]
Ma, M.; Huang, W.; Kong, D. IL-17 inhibits the accumulation of myeloid-derived suppressor cells in breast cancer via activating STAT3. Int. Immunopharmacol., 2018, 59, 148-156.
[http://dx.doi.org/10.1016/j.intimp.2018.04.013] [PMID: 29655056]
[61]
Hao, S.; Chen, X.; Wang, F.; Shao, Q.; Liu, J.; Zhao, H.; Yuan, C.; Ren, H.; Mao, H. Breast cancer cell–derived IL-35 promotes tumor progression via induction of IL-35-producing induced regulatory T cells. Carcinogenesis, 2018, 39(12), 1488-1496.
[http://dx.doi.org/10.1093/carcin/bgy136] [PMID: 30321288]
[62]
Xie, Q.; Yang, Z.; Huang, X.; Zhang, Z.; Li, J.; Ju, J.; Zhang, H.; Ma, J. Ilamycin C induces apoptosis and inhibits migration and invasion in triple-negative breast cancer by suppressing IL-6/STAT3 pathway. J. Hematol. Oncol., 2019, 12(1), 60.
[http://dx.doi.org/10.1186/s13045-019-0744-3] [PMID: 31186039]
[63]
Tawara, K.; Scott, H.; Emathinger, J.; Wolf, C.; LaJoie, D.; Hedeen, D.; Bond, L.; Montgomery, P.; Jorcyk, C. HIGH expression of OSM and IL-6 are associated with decreased breast cancer survival: synergistic induction of IL-6 secretion by OSM and IL-1β. Oncotarget, 2019, 10(21), 2068-2085.
[http://dx.doi.org/10.18632/oncotarget.26699] [PMID: 31007849]
[64]
Tawara, K.; Scott, H.; Emathinger, J.; Ide, A.; Fox, R.; Greiner, D.; LaJoie, D.; Hedeen, D.; Nandakumar, M.; Oler, A.J.; Holzer, R.; Jorcyk, C. Co-Expression of VEGF and IL-6 family cytokines is associated with decreased survival in HER2 negative breast cancer patients: Subtype-specific IL-6 family cytokine-mediated VEGF secretion. Transl. Oncol., 2019, 12(2), 245-255.
[http://dx.doi.org/10.1016/j.tranon.2018.10.004] [PMID: 30439625]
[65]
Chun, J.; Song, K.; Kim, Y.S. Sesquiterpene lactones-enriched fraction of Inula helenium L. induces apoptosis through inhibition of signal transducers and activators of transcription 3 signaling pathway in MDA-MB-231 breast cancer cells. Phytother. Res., 2018, 32(12), 2501-2509.
[http://dx.doi.org/10.1002/ptr.6189] [PMID: 30251272]
[66]
Monteleone, E.; Orecchia, V.; Corrieri, P.; Schiavone, D.; Avalle, L.; Moiso, E.; Savino, A.; Molineris, I.; Provero, P.; Poli, V. SP1 and STAT3 functionally synergize to induce the RhoU Small GTPase and a subclass of non-canonical WNT responsive genes correlating with poor prognosis in breast cancer. Cancers, 2019, 11(1), 101.
[http://dx.doi.org/10.3390/cancers11010101] [PMID: 30654518]
[67]
Hedrick, E.; Cheng, Y.; Jin, U.H.; Kim, K.; Safe, S. Specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 are non-oncogene addiction genes in cancer cells. Oncotarget, 2016, 7(16), 22245-22256.
[http://dx.doi.org/10.18632/oncotarget.7925] [PMID: 26967243]
[68]
Siersbæk, R.; Kumar, S.; Carroll, J.S. Signaling pathways and steroid receptors modulating estrogen receptor α function in breast cancer. Genes Dev., 2018, 32(17-18), 1141-1154.
[http://dx.doi.org/10.1101/gad.316646.118] [PMID: 30181360]
[69]
Hu, R.; Hilakivi-Clarke, L.; Clarke, R. Molecular mechanisms of tamoxifen-associated endometrial cancer. Oncol. Lett., 2015, 9(4), 1495-1501.
[http://dx.doi.org/10.3892/ol.2015.2962] [PMID: 25788989]
[70]
Matutino, A.; Joy, A.A.; Brezden-Masley, C.; Chia, S.; Verma, S. Hormone receptor-positive, HER2-negative metastatic breast cancer: redrawing the lines. Curr. Oncol., 2018, 25(11), 131-141.
[http://dx.doi.org/10.3747/co.25.4000] [PMID: 29910656]
[71]
Clarke, R.; Thompson, E.W.; Leonessa, F.; Lippman, J.; McGarvey, M.; Frandsen, T.L.; Brünner, N. Hormone resistance, invasiveness, and metastatic potential in breast cancer. Breast Cancer Res. Treat., 1993, 24(3), 227-239.
[http://dx.doi.org/10.1007/BF01833263] [PMID: 8435478]
[72]
Kim, M.R.; Choi, H.K.; Cho, K.B.; Kim, H.S.; Kang, K.W. Involvement of Pin1 induction in epithelial-mesenchymal transition of tamoxifen-resistant breast cancer cells. Cancer Sci., 2009, 100(10), 1834-1841.
[http://dx.doi.org/10.1111/j.1349-7006.2009.01260.x] [PMID: 19681904]
[73]
Moon, S.Y.; Lee, H.; Kim, S.; Hong, J.H.; Chun, S.H.; Lee, H.Y.; Kang, K.; Kim, H.S.; Won, H.S.; Ko, Y.H. Inhibition of STAT3 enhances sensitivity to tamoxifen in tamoxifen-resistant breast cancer cells. BMC Cancer, 2021, 21(1), 931.
[http://dx.doi.org/10.1186/s12885-021-08641-7] [PMID: 34407787]
[74]
Beebe, J.D.; Liu, J.Y.; Zhang, J.T. Two decades of research in discovery of anticancer drugs targeting STAT3, how close are we? Pharmacol. Ther., 2018, 191, 74-91.
[http://dx.doi.org/10.1016/j.pharmthera.2018.06.006] [PMID: 29933035]
[75]
Madsen, M.W.; Reiter, B.E.; Lykkesfeldt, A.E. Differential expression of estrogen receptor mRNA splice variants in the tamoxifen resistant human breast cancer cell line, MCF-7/TAMR-1 compared to the parental MCF-7 cell line. Mol. Cell. Endocrinol., 1995, 109(2), 197-207.
[http://dx.doi.org/10.1016/0303-7207(95)03503-Y] [PMID: 7664983]
[76]
Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; Mesirov, J.P. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci., 2005, 102(43), 15545-15550.
[http://dx.doi.org/10.1073/pnas.0506580102] [PMID: 16199517]
[77]
Ray, P.; Dutta, D.; Haque, I.; Nair, G.; Mohammed, J.; Parmer, M.; Kale, N.; Orr, M.; Jain, P.; Banerjee, S.; Reindl, K.M.; Mallik, S.; Kambhampati, S.; Banerjee, S.K.; Quadir, M. pH-sensitive Nanodrug carriers for Codelivery of ERK inhibitor and gemcitabine enhance the inhibition of tumor growth in pancreatic Cancer. Mol. Pharm., 2021, 18(1), 87-100.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00499] [PMID: 33231464]
[78]
Buettner, R.; Mora, L.B.; Jove, R. Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin. Cancer Res., 2002, 8(4), 945-954.
[PMID: 11948098]
[79]
Aggarwal, B.B.; Sethi, G.; Ahn, K.S.; Sandur, S.K.; Pandey, M.K.; Kunnumakkara, A.B.; Sung, B.; Ichikawa, H. Targeting signal-transducer-and-activator-of-transcription-3 for prevention and therapy of cancer: modern target but ancient solution. Ann. N. Y. Acad. Sci., 2006, 1091(1), 151-169.
[http://dx.doi.org/10.1196/annals.1378.063] [PMID: 17341611]
[80]
Fletcher, S.; Turkson, J.; Gunning, P.T. Molecular approaches towards the inhibition of the signal transducer and activator of transcription 3 (Stat3) protein. ChemMedChem, 2008, 3(8), 1159-1168.
[http://dx.doi.org/10.1002/cmdc.200800123] [PMID: 18683176]
[81]
Haura, E.B.; Turkson, J.; Jove, R. Mechanisms of Disease: Insights into the emerging role of signal transducers and activators of transcription in cancer. Nat. Clin. Pract. Oncol., 2005, 2(6), 315-324.
[http://dx.doi.org/10.1038/ncponc0195] [PMID: 16264989]
[82]
Yang, J.; Liao, X.; Agarwal, M.K.; Barnes, L.; Auron, P.E.; Stark, G.R. Unphosphorylated STAT3 accumulates in response to IL-6 and activates transcription by binding to NFκ. B. Genes Dev., 2007, 21(11), 1396-1408.
[http://dx.doi.org/10.1101/gad.1553707] [PMID: 17510282]
[83]
Yang, J.; Huang, J.; Dasgupta, M.; Sears, N.; Miyagi, M.; Wang, B.; Chance, M.R.; Chen, X.; Du, Y.; Wang, Y.; An, L.; Wang, Q.; Lu, T.; Zhang, X.; Wang, Z.; Stark, G.R. Reversible methylation of promoter-bound STAT3 by histone-modifying enzymes. Proc. Natl. Acad. Sci., 2010, 107(50), 21499-21504.
[http://dx.doi.org/10.1073/pnas.1016147107] [PMID: 21098664]
[84]
Lee, H.; Zhang, P.; Herrmann, A.; Yang, C.; Xin, H.; Wang, Z.; Hoon, D.S.B.; Forman, S.J.; Jove, R.; Riggs, A.D.; Yu, H. Acetylated STAT3 is crucial for methylation of tumor-suppressor gene promoters and inhibition by resveratrol results in demethylation. Proc. Natl. Acad. Sci., 2012, 109(20), 7765-7769.
[http://dx.doi.org/10.1073/pnas.1205132109] [PMID: 22547799]
[85]
Li, L.; Shaw, P.E. Autocrine-mediated activation of STAT3 correlates with cell proliferation in breast carcinoma lines. J. Biol. Chem., 2002, 277(20), 17397-17405.
[http://dx.doi.org/10.1074/jbc.M109962200] [PMID: 11859072]
[86]
Leung, E.; Kannan, N.; Krissansen, G.W.; Findlay, M.P.; Baguley, B.C. MCF-7 breast cancer cells selected for tamoxifen resistance acquire new phenotypes differing in DNA content, phospho-HER2 and PAX2 expression, and rapamycin sensitivity. Cancer Biol. Ther., 2010, 9(9), 717-724.
[http://dx.doi.org/10.4161/cbt.9.9.11432] [PMID: 20234184]
[87]
Alvarez, J.V.; Frank, D.A. Genome-wide analysis of STAT target genes: Elucidating the mechanism of STAT-mediated oncogenesis. Cancer Biol. Ther., 2004, 3(11), 1045-1050.
[http://dx.doi.org/10.4161/cbt.3.11.1172] [PMID: 15539936]
[88]
Ray, P.; Nair, G.; Ghosh, A.; Banerjee, S.; Golovko, M.Y.; Banerjee, S.K.; Reindl, K.M.; Mallik, S.; Quadir, M. Microenvironment-sensing, nanocarrier-mediated delivery of combination chemotherapy for pancreatic cancer. J. Cell Commun. Signal., 2019, 13(3), 407-420.
[http://dx.doi.org/10.1007/s12079-019-00514-w] [PMID: 30915617]
[89]
Massarweh, S.; Osborne, C.K.; Creighton, C.J.; Qin, L.; Tsimelzon, A.; Huang, S.; Weiss, H.; Rimawi, M.; Schiff, R. Tamoxifen resistance in breast tumors is driven by growth factor receptor signaling with repression of classic estrogen receptor genomic function. Cancer Res., 2008, 68(3), 826-833.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2707] [PMID: 18245484]
[90]
Moerkens, M.; Zhang, Y.; Wester, L.; van de Water, B.; Meerman, J.H.N. Epidermal growth factor receptor signalling in human breast cancer cells operates parallel to estrogen receptor α signalling and results in tamoxifen insensitive proliferation. BMC Cancer, 2014, 14(1), 283.
[http://dx.doi.org/10.1186/1471-2407-14-283] [PMID: 24758408]
[91]
Yuan, Y.; He, X.; Li, X.; Liu, Y.; Tang, Y.; Deng, H.; Shi, X. Narciclasine induces autophagy-mediated apoptosis in gastric cancer cells through the Akt/mTOR signaling pathway. BMC Pharmacol. Toxicol., 2021, 22(1), 70.
[http://dx.doi.org/10.1186/s40360-021-00537-3] [PMID: 34753517]
[92]
Bräutigam, J.; Bischoff, I.; Schürmann, C.; Buchmann, G.; Epah, J.; Fuchs, S.; Heiss, E.; Brandes, R.P.; Fürst, R. Narciclasine inhibits angiogenic processes by activation of Rho kinase and by downregulation of the VEGF receptor 2. J. Mol. Cell. Cardiol., 2019, 135, 97-108.
[http://dx.doi.org/10.1016/j.yjmcc.2019.08.001] [PMID: 31381906]
[93]
Lv, C.; Huang, Y.; Huang, R.; Wang, Q.; Zhang, H.; Jin, J.; Lu, D.; Zhou, Y.; Shen, Y.; Zhang, W.; Luan, X.; Liu, S. Narciclasine targets STAT3 via distinct mechanisms in tamoxifen-resistant breast cancer cells. Mol. Ther. Oncolytics, 2022, 24, 340-354.
[http://dx.doi.org/10.1016/j.omto.2021.12.025] [PMID: 35118192]
[94]
Sato, K. Cellular functions regulated by phosphorylation of EGFR on Tyr845. Int. J. Mol. Sci., 2013, 14(6), 10761-10790.
[http://dx.doi.org/10.3390/ijms140610761] [PMID: 23702846]
[95]
Silva, C.M. Role of STATs as downstream signal transducers in Src family kinase-mediated tumorigenesis. Oncogene, 2004, 23(48), 8017-8023.
[http://dx.doi.org/10.1038/sj.onc.1208159] [PMID: 15489919]
[96]
Silva, C.M.; Shupnik, M.A. Integration of steroid and growth factor pathways in breast cancer: focus on signal transducers and activators of transcription and their potential role in resistance. Mol. Endocrinol., 2007, 21(7), 1499-1512.
[http://dx.doi.org/10.1210/me.2007-0109] [PMID: 17456797]
[97]
Ball, D.P.; Lewis, A.M.; Williams, D.; Resetca, D.; Wilson, D.J.; Gunning, P.T. Signal transducer and activator of transcription 3 (STAT3) inhibitor, S3I-201, acts as a potent and non-selective alkylating agent. Oncotarget, 2016, 7(15), 20669-20679.
[http://dx.doi.org/10.18632/oncotarget.7838] [PMID: 26942696]
[98]
Li, R.; Zhang, H.; Yu, W.; Chen, Y.; Gui, B.; Liang, J.; Wang, Y.; Sun, L.; Yang, X.; Zhang, Y.; Shi, L.; Li, Y.; Shang, Y. ZIP: A novel transcription repressor, represses EGFR oncogene and suppresses breast carcinogenesis. EMBO J., 2009, 28(18), 2763-2776.
[http://dx.doi.org/10.1038/emboj.2009.211] [PMID: 19644445]
[99]
Hunter, C.A.; Jones, S.A. IL-6 as a keystone cytokine in health and disease. Nat. Immunol., 2015, 16(5), 448-457.
[http://dx.doi.org/10.1038/ni.3153] [PMID: 25898198]
[100]
Mauer, J.; Denson, J.L.; Brüning, J.C. Versatile functions for IL-6 in metabolism and cancer. Trends Immunol., 2015, 36(2), 92-101.
[http://dx.doi.org/10.1016/j.it.2014.12.008] [PMID: 25616716]
[101]
Siersbæk, R.; Scabia, V.; Nagarajan, S.; Chernukhin, I.; Papachristou, E.K.; Broome, R.; Johnston, S.J.; Joosten, S.E.P.; Green, A.R.; Kumar, S.; Jones, J.; Omarjee, S.; Alvarez-Fernandez, R.; Glont, S.; Aitken, S.J.; Kishore, K.; Cheeseman, D.; Rakha, E.A.; D’Santos, C.; Zwart, W.; Russell, A.; Brisken, C.; Carroll, J.S. IL6/STAT3 signaling hijacks estrogen receptor α enhancers to drive breast cancer metastasis. Cancer Cell, 2020, 38(3), 412-423.e9.
[http://dx.doi.org/10.1016/j.ccell.2020.06.007] [PMID: 32679107]
[102]
Jiang, M.; Chen, J.; Zhang, W.; Zhang, R.; Ye, Y.; Liu, P.; Yu, W.; Wei, F.; Ren, X.; Yu, J. Interleukin-6 Trans-signaling pathway promotes immunosuppressive myeloid-derived suppressor cells via suppression of suppressor of cytokine signaling 3 in breast cancer. Front. Immunol., 2017, 8, 1840.
[http://dx.doi.org/10.3389/fimmu.2017.01840] [PMID: 29326716]
[103]
Bachelot, T.; Ray-Coquard, I.; Menetrier-Caux, C.; Rastkha, M.; Duc, A.; Blay, J-Y. Prognostic value of serum levels of interleukin 6 and of serum and plasma levels of vascular endothelial growth factor in hormone-refractory metastatic breast cancer patients. Br. J. Cancer, 2003, 88(11), 1721-1726.
[http://dx.doi.org/10.1038/sj.bjc.6600956] [PMID: 12771987]
[104]
Salgado, R.; Junius, S.; Benoy, I.; Van Dam, P.; Vermeulen, P.; Van Marck, E.; Huget, P.; Dirix, L.Y. Circulating interleukin-6 predicts survival in patients with metastatic breast cancer. Int. J. Cancer, 2003, 103(5), 642-646.
[http://dx.doi.org/10.1002/ijc.10833] [PMID: 12494472]
[105]
Hashizume, M.; Tan, S.L.; Takano, J.; Ohsawa, K.; Hasada, I.; Hanasaki, A.; Ito, I.; Mihara, M.; Nishida, K. Tocilizumab, a humanized anti-IL-6R antibody, as an emerging therapeutic option for rheumatoid arthritis: molecular and cellular mechanistic insights. Int. Rev. Immunol., 2015, 34(3), 265-279.
[http://dx.doi.org/10.3109/08830185.2014.938325] [PMID: 25099958]
[106]
Shou, J.; Massarweh, S.; Osborne, C.K.; Wakeling, A.E.; Ali, S.; Weiss, H.; Schiff, R. Mechanisms of tamoxifen resistance: Increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J. Natl. Cancer Inst., 2004, 96(12), 926-935.
[http://dx.doi.org/10.1093/jnci/djh166] [PMID: 15199112]
[107]
Zhu, Y.; Yan, Y.; Principe, D.R.; Zou, X.; Vassilopoulos, A.; Gius, D. SIRT3 and SIRT4 are mitochondrial tumor suppressor proteins that connect mitochondrial metabolism and carcinogenesis. Cancer Metab., 2014, 2(1), 15.
[http://dx.doi.org/10.1186/2049-3002-2-15] [PMID: 25332769]
[108]
Miyo, M.; Yamamoto, H.; Konno, M.; Colvin, H.; Nishida, N.; Koseki, J.; Kawamoto, K.; Ogawa, H.; Hamabe, A.; Uemura, M.; Nishimura, J.; Hata, T.; Takemasa, I.; Mizushima, T.; Doki, Y.; Mori, M.; Ishii, H. Tumour-suppressive function of SIRT4 in human colorectal cancer. Br. J. Cancer, 2015, 113(3), 492-499.
[http://dx.doi.org/10.1038/bjc.2015.226] [PMID: 26086877]
[109]
Jeong, S.M.; Xiao, C.; Finley, L.W.S.; Lahusen, T.; Souza, A.L.; Pierce, K.; Li, Y.H.; Wang, X.; Laurent, G.; German, N.J.; Xu, X.; Li, C.; Wang, R.H.; Lee, J.; Csibi, A.; Cerione, R.; Blenis, J.; Clish, C.B.; Kimmelman, A.; Deng, C.X.; Haigis, M.C. SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism. Cancer Cell, 2013, 23(4), 450-463.
[http://dx.doi.org/10.1016/j.ccr.2013.02.024] [PMID: 23562301]
[110]
Wang, Y.S.; Du, L.; Liang, X.; Meng, P.; Bi, L.; Wang, Y.; Wang, C.; Tang, B. Sirtuin 4 depletion promotes hepatocellular carcinoma tumorigenesis through regulating adenosine‐monophosphate–activated protein kinase alpha/mammalian target of rapamycin axis in mice. Hepatology, 2019, 69(4), 1614-1631.
[http://dx.doi.org/10.1002/hep.30421] [PMID: 30552782]
[111]
Li, Y.; Zhou, Y.; Wang, F.; Chen, X.; Wang, C.; Wang, J.; Liu, T.; Li, Y.; He, B. SIRT4 is the last puzzle of mitochondrial sirtuins. Bioorg. Med. Chem., 2018, 26(14), 3861-3865.
[http://dx.doi.org/10.1016/j.bmc.2018.07.031] [PMID: 30033389]
[112]
Huang, G.; Zhu, G. Sirtuin-4 (SIRT4), a therapeutic target with oncogenic and tumor-suppressive activity in cancer. OncoTargets Ther., 2018, 11, 3395-3400.
[http://dx.doi.org/10.2147/OTT.S157724] [PMID: 29928130]
[113]
Xing, J.; Li, J.; Fu, L.; Gai, J.; Guan, J.; Li, Q. SIRT4 enhances the sensitivity of ER‐positive breast cancer to tamoxifen by inhibiting the IL‐6/STAT3 signal pathway. Cancer Med., 2019, 8(16), 7086-7097.
[http://dx.doi.org/10.1002/cam4.2557] [PMID: 31573734]
[114]
Shi, Q.; Liu, T.; Zhang, X.; Geng, J.; He, X.; Nu, M.; Pang, D. Decreased sirtuin 4 expression is associated with poor prognosis in patients with invasive breast cancer. Oncol. Lett., 2016, 12(4), 2606-2612.
[http://dx.doi.org/10.3892/ol.2016.5021] [PMID: 27698834]
[115]
Stylianou, S.; Clarke, R.B.; Brennan, K. Aberrant activation of notch signaling in human breast cancer. Cancer Res., 2006, 66(3), 1517-1525.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-3054] [PMID: 16452208]
[116]
Leong, K.G.; Karsan, A. Recent insights into the role of Notch signaling in tumorigenesis. Blood, 2006, 107(6), 2223-2233.
[http://dx.doi.org/10.1182/blood-2005-08-3329] [PMID: 16291593]
[117]
Rizzo, P.; Miao, H.; D’Souza, G.; Osipo, C.; Yun, J.; Zhao, H.; Mascarenhas, J.; Wyatt, D.; Antico, G.; Hao, L.; Yao, K.; Rajan, P.; Hicks, C.; Siziopikou, K.; Selvaggi, S.; Bashir, A.; Bhandari, D.; Marchese, A.; Lendahl, U.; Qin, J-Z.; Tonetti, D.A.; Albain, K.; Nickoloff, B.J.; Miele, L.; Miele, L. Cross-talk between notch and the estrogen receptor in breast cancer suggests novel therapeutic approaches. Cancer Res., 2008, 68(13), 5226-5235.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-5744] [PMID: 18593923]
[118]
Lombardo, Y.; Faronato, M.; Filipovic, A.; Vircillo, V.; Magnani, L.; Coombes, R.C. Nicastrin and Notch4 drive endocrine therapy resistance and epithelial to mesenchymal transition in MCF7 breast cancer cells. Breast Cancer Res., 2014, 16(3), R62.
[http://dx.doi.org/10.1186/bcr3675] [PMID: 24919951]
[119]
Kamakura, S.; Oishi, K.; Yoshimatsu, T.; Nakafuku, M.; Masuyama, N.; Gotoh, Y. Hes binding to STAT3 mediates crosstalk between Notch and JAK–STAT signalling. Nat. Cell Biol., 2004, 6(6), 547-554.
[http://dx.doi.org/10.1038/ncb1138] [PMID: 15156153]
[120]
Chen, X.; Zha, X.; Chen, W.; Zhu, T.; Qiu, J.; Røe, O.D.; Li, J.; Wang, Z.; Yin, Y. Leptin attenuates the anti-estrogen effect of tamoxifen in breast cancer. Biomed. Pharmacother., 2013, 67(1), 22-30.
[http://dx.doi.org/10.1016/j.biopha.2012.10.001] [PMID: 23199901]
[121]
O’Brien, S.N.; Welter, B.H.; Price, T.M. Presence of leptin in breast cell lines and breast tumors. Biochem. Biophys. Res. Commun., 1999, 259(3), 695-698.
[http://dx.doi.org/10.1006/bbrc.1999.0843] [PMID: 10364481]
[122]
Ishikawa, M.; Kitayama, J.; Nagawa, H. Enhanced expression of leptin and leptin receptor (OB-R) in human breast cancer. Clin. Cancer Res., 2004, 10(13), 4325-4331.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0749] [PMID: 15240518]
[123]
Fiorio, E.; Mercanti, A.; Terrasi, M.; Micciolo, R.; Remo, A.; Auriemma, A.; Molino, A.; Parolin, V.; Di Stefano, B.; Bonetti, F.; Giordano, A.; Cetto, G.L.; Surmacz, E. Leptin/HER2 crosstalk in breast cancer: In vitro study and preliminary in vivo analysis. BMC Cancer, 2008, 8(1), 305.
[http://dx.doi.org/10.1186/1471-2407-8-305] [PMID: 18945363]
[124]
Papanikolaou, V.; Stefanou, N.; Dubos, S.; Papathanasiou, I.; Palianopoulou, M.; Valiakou, V.; Tsezou, A. Synergy of leptin/STAT3 with HER2 receptor induces tamoxifen resistance in breast cancer cells through regulation of apoptosis-related genes. Cell. Oncol., 2015, 38(2), 155-164.
[http://dx.doi.org/10.1007/s13402-014-0213-5] [PMID: 25539992]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy