Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Tumor Microenvironment Heterogeneity, Potential Therapeutic Avenues, and Emerging Therapies

Author(s): Xintong Peng, Jingfan Zheng, Tianzi Liu, Ziwen Zhou, Chen Song, Yan Geng, Zichuan Wang and Yan Huang*

Volume 24, Issue 3, 2024

Published on: 03 August, 2023

Page: [288 - 307] Pages: 20

DOI: 10.2174/1568009623666230712095021

Abstract

Objective: This review describes the comprehensive portrait of tumor microenvironment (TME). Additionally, we provided a panoramic perspective on the transformation and functions of the diverse constituents in TME, and the underlying mechanisms of drug resistance, beginning with the immune cells and metabolic dynamics within TME. Lastly, we summarized the most auspicious potential therapeutic strategies.

Results: TME is a unique realm crafted by malignant cells to withstand the onslaught of endogenous and exogenous therapies. Recent research has revealed many small-molecule immunotherapies exhibiting auspicious outcomes in preclinical investigations. Furthermore, some pro-immune mechanisms have emerged as a potential avenue. With the advent of nanosystems and precision targeting, targeted therapy has now transcended the "comfort zone" erected by cancer cells within TME.

Conclusion: The ceaseless metamorphosis of TME fosters the intransigent resilience and proliferation of tumors. However, existing therapies have yet to surmount the formidable obstacles posed by TME. Therefore, scientists should investigate potential avenues for therapeutic intervention and design innovative pharmacological and clinical technologies.

Graphical Abstract

[1]
Salimifard, S.; Masjedi, A.; Hojjat-Farsangi, M.; Ghalamfarsa, G.; Irandoust, M.; Azizi, G.; Mohammadi, H.; Keramati, M.R.; Jadidi-Niaragh, F. Cancer associated fibroblasts as novel promising therapeutic targets in breast cancer. Pathol. Res. Pract., 2020, 216(5), 152915.
[http://dx.doi.org/10.1016/j.prp.2020.152915] [PMID: 32146002]
[2]
Clara, J.A.; Monge, C.; Yang, Y.; Takebe, N. Targeting signalling pathways and the immune microenvironment of cancer stem cells — a clinical update. Nat. Rev. Clin. Oncol., 2020, 17(4), 204-232.
[http://dx.doi.org/10.1038/s41571-019-0293-2] [PMID: 31792354]
[3]
Zajac, A.J.; Blattman, J.N.; Murali-Krishna, K.; Sourdive, D.J.D.; Suresh, M.; Altman, J.D.; Ahmed, R. Viral immune evasion due to persistence of activated T cells without effector function. J. Exp. Med., 1998, 188(12), 2205-2213.
[http://dx.doi.org/10.1084/jem.188.12.2205] [PMID: 9858507]
[4]
Blank, C.U.; Haining, W.N.; Held, W.; Hogan, P.G.; Kallies, A.; Lugli, E.; Lynn, R.C.; Philip, M.; Rao, A.; Restifo, N.P.; Schietinger, A.; Schumacher, T.N.; Schwartzberg, P.L.; Sharpe, A.H.; Speiser, D.E.; Wherry, E.J.; Youngblood, B.A.; Zehn, D. Defining ‘T cell exhaustion’. Nat. Rev. Immunol., 2019, 19(11), 665-674.
[http://dx.doi.org/10.1038/s41577-019-0221-9] [PMID: 31570879]
[5]
Wherry, E.J. T cell exhaustion. Nat. Immunol., 2011, 12(6), 492-499.
[http://dx.doi.org/10.1038/ni.2035] [PMID: 21739672]
[6]
Utzschneider, D.T.; Charmoy, M.; Chennupati, V.; Pousse, L.; Ferreira, D.P.; Calderon-Copete, S.; Danilo, M.; Alfei, F.; Hofmann, M.; Wieland, D.; Pradervand, S.; Thimme, R.; Zehn, D.; Held, W. T Cell factor 1-expressing memory-like CD8+ T cells sustain the immune response to chronic viral infections. Immunity, 2016, 45(2), 415-427.
[http://dx.doi.org/10.1016/j.immuni.2016.07.021] [PMID: 27533016]
[7]
Tumeh, P.C.; Harview, C.L.; Yearley, J.H.; Shintaku, I.P.; Taylor, E.J.M.; Robert, L.; Chmielowski, B.; Spasic, M.; Henry, G.; Ciobanu, V.; West, A.N.; Carmona, M.; Kivork, C.; Seja, E.; Cherry, G.; Gutierrez, A.J.; Grogan, T.R.; Mateus, C.; Tomasic, G.; Glaspy, J.A.; Emerson, R.O.; Robins, H.; Pierce, R.H.; Elashoff, D.A.; Robert, C.; Ribas, A. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature, 2014, 515(7528), 568-571.
[http://dx.doi.org/10.1038/nature13954] [PMID: 25428505]
[8]
Jiang, W.; He, Y.; He, W.; Wu, G.; Zhou, X.; Sheng, Q.; Zhong, W.; Lu, Y.; Ding, Y.; Lu, Q.; Ye, F.; Hua, H. Exhausted CD8+T cells in the tumor immune microenvironment: new pathways to therapy. Front. Immunol., 2021, 11, 622509.
[http://dx.doi.org/10.3389/fimmu.2020.622509] [PMID: 33633741]
[9]
Pauken, K.E.; Sammons, M.A.; Odorizzi, P.M.; Manne, S.; Godec, J.; Khan, O.; Drake, A.M.; Chen, Z.; Sen, D.R.; Kurachi, M.; Barnitz, R.A.; Bartman, C.; Bengsch, B.; Huang, A.C.; Schenkel, J.M.; Vahedi, G.; Haining, W.N.; Berger, S.L.; Wherry, E.J. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science, 2016, 354(6316), 1160-1165.
[http://dx.doi.org/10.1126/science.aaf2807] [PMID: 27789795]
[10]
Miller, B.C.; Sen, D.R.; Al Abosy, R.; Bi, K.; Virkud, Y.V.; LaFleur, M.W.; Yates, K.B.; Lako, A.; Felt, K.; Naik, G.S.; Manos, M.; Gjini, E.; Kuchroo, J.R.; Ishizuka, J.J.; Collier, J.L.; Griffin, G.K.; Maleri, S.; Comstock, D.E.; Weiss, S.A.; Brown, F.D.; Panda, A.; Zimmer, M.D.; Manguso, R.T.; Hodi, F.S.; Rodig, S.J.; Sharpe, A.H.; Haining, W.N. Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol., 2019, 20(3), 326-336.
[http://dx.doi.org/10.1038/s41590-019-0312-6] [PMID: 30778252]
[11]
Liu, X.; Si, F.; Bagley, D.; Ma, F.; Zhang, Y.; Tao, Y.; Shaw, E.; Peng, G. Blockades of effector T cell senescence and exhaustion synergistically enhance antitumor immunity and immunotherapy. J. Immunother. Cancer, 2022, 10(10), e005020.
[http://dx.doi.org/10.1136/jitc-2022-005020] [PMID: 36192086]
[12]
Li, H.; Zhao, A.; Li, M.; Shi, L.; Han, Q.; Hou, Z. Targeting T-cell metabolism to boost immune checkpoint inhibitor therapy. Front. Immunol., 2022, 13, 1046755.
[http://dx.doi.org/10.3389/fimmu.2022.1046755] [PMID: 36569893]
[13]
Fujiki, F.; Morimoto, S.; Katsuhara, A.; Okuda, A.; Ogawa, S.; Ueda, E.; Miyazaki, M.; Isotani, A.; Ikawa, M.; Nishida, S.; Nakajima, H.; Tsuboi, A.; Oka, Y.; Nakata, J.; Hosen, N.; Kumanogoh, A.; Oji, Y.; Sugiyama, H.T. Cell-Intrinsic Vitamin A Metabolism and Its Signaling Are Targets for Memory T Cell-Based Cancer Immunotherapy. Front. Immunol., 2022, 13, 935465.
[http://dx.doi.org/10.3389/fimmu.2022.935465] [PMID: 35844620]
[14]
Ma, X.; Xiao, L.; Liu, L.; Ye, L.; Su, P.; Bi, E.; Wang, Q.; Yang, M.; Qian, J.; Yi, Q. CD36-mediated ferroptosis dampens intratumoral CD8+ T cell effector function and impairs their antitumor ability. Cell Metab., 2021, 33(5), 1001-1012.e5.
[http://dx.doi.org/10.1016/j.cmet.2021.02.015] [PMID: 33691090]
[15]
Rong, D.; Wang, Y.; Liu, L.; Cao, H.; Huang, T.; Liu, H.; Hao, X.; Sun, G.; Sun, G.; Zheng, Z.; Kang, J.; Xia, Y.; Chen, Z.; Tang, W.; Wang, X. GLIS1 intervention enhances anti-PD1 therapy for hepatocellular carcinoma by targeting SGK1-STAT3-PD1 pathway. J. Immunother. Cancer, 2023, 11(2), e005126.
[http://dx.doi.org/10.1136/jitc-2022-005126] [PMID: 36787938]
[16]
Kim, B.S.; Kuen, D.S.; Koh, C.H.; Kim, H.D.; Chang, S.H.; Kim, S.; Jeon, Y.K.; Park, Y.J.; Choi, G.; Kim, J.; Kang, K.W.; Kim, H.Y.; Kang, S.J.; Hwang, S.; Shin, E.C.; Kang, C.Y.; Dong, C.; Chung, Y. Type 17 immunity promotes the exhaustion of CD8 + T cells in cancer. J. Immunother. Cancer, 2021, 9(6), e002603.
[http://dx.doi.org/10.1136/jitc-2021-002603] [PMID: 34083422]
[17]
Nazerai, L.; Willis, S.C.; Yankilevich, P.; Di Leo, L.; Bosisio, F.M.; Frias, A.; Bertolotto, C.; Nersting, J.; Thastrup, M.; Buus, S.; Thomsen, A.R.; Nielsen, M.; Rohrberg, K.S.; Schmiegelow, K.; De Zio, D. Thiopurine 6TG treatment increases tumor immunogenicity and response to immune checkpoint blockade. OncoImmunology, 2023, 12(1), 2158610.
[http://dx.doi.org/10.1080/2162402X.2022.2158610] [PMID: 36545256]
[18]
Long, Y.; Chen, R.; Yu, X.; Tong, Y.; Peng, X.; Li, F.; Hu, C.; Sun, J.; Gong, L. Suppression of Tumor or Host Intrinsic CMTM6 Drives Antitumor Cytotoxicity in a PD-L1–Independent Manner. Cancer Immunol. Res., 2023, 11(2), 241-260.
[http://dx.doi.org/10.1158/2326-6066.CIR-22-0439] [PMID: 36484740]
[19]
Li, A.; Chang, Y.; Song, N.J.; Wu, X.; Chung, D.; Riesenberg, B.P.; Velegraki, M.; Giuliani, G.D.; Das, K.; Okimoto, T.; Kwon, H.; Chakravarthy, K.B.; Bolyard, C.; Wang, Y.; He, K.; Gatti-Mays, M.; Das, J.; Yang, Y.; Gewirth, D.T.; Ma, Q.; Carbone, D.; Li, Z. Selective targeting of GARP-LTGFβ axis in the tumor microenvironment augments PD-1 blockade via enhancing CD8 + T cell antitumor immunity. J. Immunother. Cancer, 2022, 10(9), e005433.
[http://dx.doi.org/10.1136/jitc-2022-005433]
[20]
Yang, L.; Zhang, W.; Sun, J.; Yang, G.; Cai, S.; Sun, F.; Xing, L.; Sun, X. Functional status and spatial interaction of T cell subsets driven by specific tumor microenvironment correlate with recurrence of non-small cell lung cancer. Front. Immunol., 2023, 13, 1022638.
[http://dx.doi.org/10.3389/fimmu.2022.1022638] [PMID: 36685566]
[21]
Yan, Y.; Huang, L.; Liu, Y.; Yi, M.; Chu, Q.; Jiao, D.; Wu, K. Metabolic profiles of regulatory T cells and their adaptations to the tumor microenvironment: implications for antitumor immunity. J. Hematol. Oncol., 2022, 15(1), 104.
[http://dx.doi.org/10.1186/s13045-022-01322-3] [PMID: 35948909]
[22]
Akkaya, B.; Shevach, E.M. Regulatory T cells: Master thieves of the immune system. Cell. Immunol., 2020, 355, 104160.
[http://dx.doi.org/10.1016/j.cellimm.2020.104160] [PMID: 32711171]
[23]
McRitchie, B.R.; Akkaya, B. Exhaust the exhausters: Targeting regulatory T cells in the tumor microenvironment. Front. Immunol., 2022, 13, 940052.
[http://dx.doi.org/10.3389/fimmu.2022.940052] [PMID: 36248808]
[24]
Cinier, J.; Hubert, M.; Besson, L.; Di Roio, A.; Rodriguez, C.; Lombardi, V.; Caux, C.; Ménétrier-Caux, C. Recruitment and expansion of tregs cells in the tumor environment—how to target them? Cancers (Basel), 2021, 13(8), 1850.
[http://dx.doi.org/10.3390/cancers13081850] [PMID: 33924428]
[25]
Kempkes, R.W.M.; Joosten, I.; Koenen, H.J.P.M.; He, X. Metabolic pathways involved in regulatory T cell functionality. Front. Immunol., 2019, 10, 2839.
[http://dx.doi.org/10.3389/fimmu.2019.02839] [PMID: 31849995]
[26]
Wang, H.; Franco, F.; Tsui, Y.C.; Xie, X.; Trefny, M.P.; Zappasodi, R.; Mohmood, S.R.; Fernández-García, J.; Tsai, C.H.; Schulze, I.; Picard, F.; Meylan, E.; Silverstein, R.; Goldberg, I.; Fendt, S.M.; Wolchok, J.D.; Merghoub, T.; Jandus, C.; Zippelius, A.; Ho, P.C. CD36-mediated metabolic adaptation supports regulatory T cell survival and function in tumors. Nat. Immunol., 2020, 21(3), 298-308.
[http://dx.doi.org/10.1038/s41590-019-0589-5] [PMID: 32066953]
[27]
Lim, S.A.; Wei, J.; Nguyen, T.L.M.; Shi, H.; Su, W.; Palacios, G.; Dhungana, Y.; Chapman, N.M.; Long, L.; Saravia, J.; Vogel, P.; Chi, H. Lipid signalling enforces functional specialization of Treg cells in tumours. Nature, 2021, 591(7849), 306-311.
[http://dx.doi.org/10.1038/s41586-021-03235-6] [PMID: 33627871]
[28]
Zappasodi, R.; Serganova, I.; Cohen, I.J.; Maeda, M.; Shindo, M.; Senbabaoglu, Y.; Watson, M.J.; Leftin, A.; Maniyar, R.; Verma, S.; Lubin, M.; Ko, M.; Mane, M.M.; Zhong, H.; Liu, C.; Ghosh, A.; Abu-Akeel, M.; Ackerstaff, E.; Koutcher, J.A.; Ho, P.C.; Delgoffe, G.M.; Blasberg, R.; Wolchok, J.D.; Merghoub, T. CTLA-4 blockade drives loss of Treg stability in glycolysis-low tumours. Nature, 2021, 591(7851), 652-658.
[http://dx.doi.org/10.1038/s41586-021-03326-4] [PMID: 33588426]
[29]
Kim, M.C.; Borcherding, N.; Ahmed, K.K.; Voigt, A.P.; Vishwakarma, A.; Kolb, R.; Kluz, P.N.; Pandey, G.; De, U.; Drashansky, T.; Helm, E.Y.; Zhang, X.; Gibson-Corley, K.N.; Klesney-Tait, J.; Zhu, Y.; Lu, J.; Lu, J.; Huang, X.; Xiang, H.; Cheng, J.; Wang, D.; Wang, Z.; Tang, J.; Hu, J.; Wang, Z.; Liu, H.; Li, M.; Zhuang, H.; Avram, D.; Zhou, D.; Bacher, R.; Zheng, S.G.; Wu, X.; Zakharia, Y.; Zhang, W. CD177 modulates the function and homeostasis of tumor-infiltrating regulatory T cells. Nat. Commun., 2021, 12(1), 5764.
[http://dx.doi.org/10.1038/s41467-021-26091-4] [PMID: 34599187]
[30]
Qi, T.; Luo, Y.; Cui, W.; Zhou, Y.; Ma, X.; Wang, D.; Tian, X.; Wang, Q. Crosstalk between the CBM complex/NF-κB and MAPK/P27 signaling pathways of regulatory T cells contributes to the tumor microenvironment. Front. Cell Dev. Biol., 2022, 10, 911811.
[http://dx.doi.org/10.3389/fcell.2022.911811] [PMID: 35927985]
[31]
Eschweiler, S.; Clarke, J.; Ramírez-Suástegui, C.; Panwar, B.; Madrigal, A.; Chee, S.J.; Karydis, I.; Woo, E.; Alzetani, A.; Elsheikh, S.; Hanley, C.J.; Thomas, G.J.; Friedmann, P.S.; Sanchez-Elsner, T.; Ay, F.; Ottensmeier, C.H.; Vijayanand, P. Intratumoral follicular regulatory T cells curtail anti-PD-1 treatment efficacy. Nat. Immunol., 2021, 22(8), 1052-1063.
[http://dx.doi.org/10.1038/s41590-021-00958-6] [PMID: 34168370]
[32]
Heim, L.; Yang, Z.; Tausche, P.; Hohenberger, K.; Chiriac, M.T.; Koelle, J.; Geppert, C.I.; Kachler, K.; Miksch, S.; Graser, A.; Friedrich, J.; Kharwadkar, R.; Rieker, R.J.; Trufa, D.I.; Sirbu, H.; Neurath, M.F.; Kaplan, M.H.; Finotto, S. IL-9 Producing tumor-infiltrating lymphocytes and Treg subsets drive immune escape of tumor cells in non-small cell lung cancer. Front. Immunol., 2022, 13, 859738.
[http://dx.doi.org/10.3389/fimmu.2022.859738] [PMID: 35514957]
[33]
Li, Z.; Wang, J.; Chen, C.; He, Q.; Xu, X.; Da, Z.; Wang, B.; Wang, M.; Gao, X.; Zhang, G.; Gao, Q.; Si, X.; Luo, Y.; Ma, X. Intratumoral IL-28B gene delivery elicits antitumor effects by remodeling of the tumor microenvironment in H22-bearing mice. J. Immunol. Res., 2022, 2022, 1-13.
[http://dx.doi.org/10.1155/2022/1345971] [PMID: 35935577]
[34]
Noyes, D.; Bag, A.; Oseni, S.; Semidey-Hurtado, J.; Cen, L.; Sarnaik, A.A.; Sondak, V.K.; Adeegbe, D. Tumor-associated Tregs obstruct antitumor immunity by promoting T cell dysfunction and restricting clonal diversity in tumor-infiltrating CD8+ T cells. J. Immunother. Cancer, 2022, 10(5), e004605.
[http://dx.doi.org/10.1136/jitc-2022-004605] [PMID: 35618289]
[35]
Jiang, M.; Yang, Y.; Niu, L.; Li, P.; Chen, Y.; Liao, P.; Wang, Y.; Zheng, J.; Chen, F.; He, H.; Li, H.; Chen, X. MiR-125b-5p modulates the function of regulatory T cells in tumor microenvironment by targeting TNFR2. J. Immunother. Cancer, 2022, 10(11), e005241.
[http://dx.doi.org/10.1136/jitc-2022-005241] [PMID: 36319063]
[36]
Song, J.; Lin, Z.; Liu, Q.; Huang, S.; Han, L.; Fang, Y.; Zhong, P.; Dou, R.; Xiang, Z.; Zheng, J.; Zhang, X.; Wang, S.; Xiong, B. MiR‐192‐5p/RB1/NF‐κBp65 signaling axis promotes IL-10 secretion during gastric cancer EMT to induce Treg cell differentiation in the tumour microenvironment. Clin. Transl. Med., 2022, 12(8), e992.
[http://dx.doi.org/10.1002/ctm2.992] [PMID: 35969010]
[37]
Ni, H.; Zhang, H.; Li, L.; Huang, H.; Guo, H.; Zhang, L.; Li, C.; Xu, J.X.; Nie, C.P.; Li, K.; Zhang, X.; Xia, X.; Li, J. T cell-intrinsic STING signaling promotes regulatory T cell induction and immunosuppression by upregulating FOXP3 transcription in cervical cancer. J. Immunother. Cancer, 2022, 10(9), e005151.
[http://dx.doi.org/10.1136/jitc-2022-005151] [PMID: 36126994]
[38]
Weis-Banke, S.E.; Lisle, T.L.; Perez-Penco, M.; Schina, A.; Hübbe, M.L.; Siersbæk, M.; Holmström, M.O.; Jørgensen, M.A.; Marie Svane, I.; Met, Ö.; Ødum, N.; Madsen, D.H.; Donia, M.; Grøntved, L.; Andersen, M.H. Arginase-2-specific cytotoxic T cells specifically recognize functional regulatory T cells. J. Immunother. Cancer, 2022, 10(10), e005326.
[http://dx.doi.org/10.1136/jitc-2022-005326] [PMID: 36316062]
[39]
Tie, Y.; Tang, F.; Wei, Y.; Wei, X. Immunosuppressive cells in cancer: mechanisms and potential therapeutic targets. J. Hematol. Oncol., 2022, 15(1), 61.
[http://dx.doi.org/10.1186/s13045-022-01282-8] [PMID: 35585567]
[40]
Weaver, J.D.; Stack, E.C.; Buggé, J.A.; Hu, C.; McGrath, L.; Mueller, A.; Wong, M.; Klebanov, B.; Rahman, T.; Kaufman, R.; Fregeau, C.; Spaulding, V.; Priess, M.; Legendre, K.; Jaffe, S.; Upadhyay, D.; Singh, A.; Xu, C.A.; Krukenberg, K.; Zhang, Y.; Ezzyat, Y.; Saddier Axe, D.; Kuhne, M.R.; Meehl, M.A.; Shaffer, D.R.; Weist, B.M.; Wiederschain, D.; Depis, F.; Gostissa, M. Differential expression of CCR8 in tumors versus normal tissue allows specific depletion of tumor-infiltrating T regulatory cells by GS-1811, a novel Fc-optimized anti-CCR8 antibody. OncoImmunology, 2022, 11(1), 2141007.
[http://dx.doi.org/10.1080/2162402X.2022.2141007] [PMID: 36352891]
[41]
Chen, Y.; Jia, M.; Wang, S.; Xu, S.; He, N. Antagonistic antibody targeting TNFR2 inhibits regulatory T cell function to promote anti-tumor activity. Front. Immunol., 2022, 13, 835690.
[http://dx.doi.org/10.3389/fimmu.2022.835690] [PMID: 35251028]
[42]
Davis, E.J.; Martin-Liberal, J.; Kristeleit, R.; Cho, D.C.; Blagden, S.P.; Berthold, D.; Cardin, D.B.; Vieito, M.; Miller, R.E.; Hari Dass, P.; Orcurto, A.; Spencer, K.; Janik, J.E.; Clark, J.; Condamine, T.; Pulini, J.; Chen, X.; Mehnert, J.M. First-in-human phase I/II, open-label study of the anti-OX40 agonist INCAGN01949 in patients with advanced solid tumors. J. Immunother. Cancer, 2022, 10(10), e004235.
[http://dx.doi.org/10.1136/jitc-2021-004235] [PMID: 36316061]
[43]
Domvri, K.; Petanidis, S.; Zarogoulidis, P.; Anestakis, D.; Charalampidis, C.; Tsavlis, D.; Huang, H.; Freitag, L.; Hohenforst-Schmidt, W.; Matthaios, D.; Katopodi, T.; Porpodis, K. Engineered hybrid Treg-targeted nanosomes restrain lung immunosuppression by inducing intratumoral CD8+T cell immunity. Int. J. Nanomedicine, 2022, 17, 4449-4468.
[http://dx.doi.org/10.2147/IJN.S346341] [PMID: 36172007]
[44]
Lauder, S.N.; Smart, K.; Bart, V.M.T.; Pires, A.; Scott, J.; Milutinovic, S.; Godkin, A.; Vanhaesebroeck, B.; Gallimore, A. Treg-driven tumour control by PI3Kδ inhibition limits myeloid-derived suppressor cell expansion. Br. J. Cancer, 2022, 127(9), 1595-1602.
[http://dx.doi.org/10.1038/s41416-022-01917-0] [PMID: 35986086]
[45]
Kalim, K.W.; Yang, J.Q.; Wunderlich, M.; Modur, V.; Nguyen, P.; Li, Y.; Wen, T.; Davis, A.K.; Verma, R.; Lu, Q.R.; Jegga, A.G.; Zheng, Y.; Guo, F. Targeting of Cdc42 GTPase in regulatory T cells unleashes antitumor T-cell immunity. J. Immunother. Cancer, 2022, 10(11), e004806.
[http://dx.doi.org/10.1136/jitc-2022-004806] [PMID: 36427906]
[46]
Netea, M.G.; Balkwill, F.; Chonchol, M.; Cominelli, F.; Donath, M.Y.; Giamarellos-Bourboulis, E.J.; Golenbock, D.; Gresnigt, M.S.; Heneka, M.T.; Hoffman, H.M.; Hotchkiss, R.; Joosten, L.A.B.; Kastner, D.L.; Korte, M.; Latz, E.; Libby, P.; Mandrup-Poulsen, T.; Mantovani, A.; Mills, K.H.G.; Nowak, K.L.; O’Neill, L.A.; Pickkers, P.; van der Poll, T.; Ridker, P.M.; Schalkwijk, J.; Schwartz, D.A.; Siegmund, B.; Steer, C.J.; Tilg, H.; van der Meer, J.W.M.; van de Veerdonk, F.L.; Dinarello, C.A. A guiding map for inflammation. Nat. Immunol., 2017, 18(8), 826-831.
[http://dx.doi.org/10.1038/ni.3790] [PMID: 28722720]
[47]
Cortez-Retamozo, V.; Etzrodt, M.; Newton, A.; Rauch, P.J.; Chudnovskiy, A.; Berger, C.; Ryan, R.J.H.; Iwamoto, Y.; Marinelli, B.; Gorbatov, R.; Forghani, R.; Novobrantseva, T.I.; Koteliansky, V.; Figueiredo, J.L.; Chen, J.W.; Anderson, D.G.; Nahrendorf, M.; Swirski, F.K.; Weissleder, R.; Pittet, M.J. Origins of tumor-associated macrophages and neutrophils. Proc. Natl. Acad. Sci. USA, 2012, 109(7), 2491-2496.
[http://dx.doi.org/10.1073/pnas.1113744109] [PMID: 22308361]
[48]
Mantovani, A.; Marchesi, F.; Malesci, A.; Laghi, L.; Allavena, P. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol., 2017, 14(7), 399-416.
[http://dx.doi.org/10.1038/nrclinonc.2016.217] [PMID: 28117416]
[49]
Locati, M.; Curtale, G.; Mantovani, A. Diversity, Mechanisms, and Significance of Macrophage Plasticity. Annu. Rev. Pathol., 2020, 15(1), 123-147.
[http://dx.doi.org/10.1146/annurev-pathmechdis-012418-012718] [PMID: 31530089]
[50]
Ramirez-Carrozzi, V.R.; Nazarian, A.A.; Li, C.C.; Gore, S.L.; Sridharan, R.; Imbalzano, A.N.; Smale, S.T. Selective and antagonistic functions of SWI/SNF and Mi-2β nucleosome remodeling complexes during an inflammatory response. Genes Dev., 2006, 20(3), 282-296.
[http://dx.doi.org/10.1101/gad.1383206] [PMID: 16452502]
[51]
Zhong, Y.; Yi, C. MicroRNA-720 suppresses M2 macrophage polarization by targeting GATA3. Biosci. Rep., 2016, 36(4), e00363.
[http://dx.doi.org/10.1042/BSR20160105] [PMID: 27354564]
[52]
Jablonski, K.A.; Gaudet, A.D.; Amici, S.A.; Popovich, P.G.; Guerau-de-Arellano, M. Control of the inflammatory macrophage transcriptional signature by miR-155. PLoS One, 2016, 11(7), e0159724.
[http://dx.doi.org/10.1371/journal.pone.0159724] [PMID: 27447824]
[53]
Ying, W.; Tseng, A.; Chang, R.C.A.; Morin, A.; Brehm, T.; Triff, K.; Nair, V.; Zhuang, G.; Song, H.; Kanameni, S.; Wang, H.; Golding, M.C.; Bazer, F.W.; Chapkin, R.S.; Safe, S.; Zhou, B. MicroRNA-223 is a crucial mediator of PPARγ-regulated alternative macrophage activation. J. Clin. Invest., 2015, 125(11), 4149-4159.
[http://dx.doi.org/10.1172/JCI81656] [PMID: 26436647]
[54]
Squadrito, M.L.; Etzrodt, M.; De Palma, M.; Pittet, M.J. MicroRNA-mediated control of macrophages and its implications for cancer. Trends Immunol., 2013, 34(7), 350-359.
[http://dx.doi.org/10.1016/j.it.2013.02.003] [PMID: 23498847]
[55]
Vitale, I.; Manic, G.; Coussens, L.M.; Kroemer, G.; Galluzzi, L. Macrophages and metabolism in the tumor microenvironment. Cell Metab., 2019, 30(1), 36-50.
[http://dx.doi.org/10.1016/j.cmet.2019.06.001] [PMID: 31269428]
[56]
Pu, Y.; Ji, Q. Tumor-associated macrophages regulate PD-1/PD-L1 immunosuppression. Front. Immunol., 2022, 13, 874589.
[http://dx.doi.org/10.3389/fimmu.2022.874589] [PMID: 35592338]
[57]
Dong, L.; Chen, C.; Zhang, Y.; Guo, P.; Wang, Z.; Li, J.; Liu, Y.; Liu, J.; Chang, R.; Li, Y.; Liang, G.; Lai, W.; Sun, M.; Dougherty, U.; Bissonnette, M.B.; Wang, H.; Shen, L.; Xu, M.M.; Han, D. The loss of RNA N6-adenosine methyltransferase Mettl14 in tumor-associated macrophages promotes CD8+ T cell dysfunction and tumor growth. Cancer Cell, 2021, 39(7), 945-957.e10.
[http://dx.doi.org/10.1016/j.ccell.2021.04.016] [PMID: 34019807]
[58]
He, Z.; Zhang, S. Tumor-associated macrophages and their functional transformation in the hypoxic tumor microenvironment. Front. Immunol., 2021, 12, 741305.
[http://dx.doi.org/10.3389/fimmu.2021.741305] [PMID: 34603327]
[59]
Lo Russo, G.; Moro, M.; Sommariva, M.; Cancila, V.; Boeri, M.; Centonze, G.; Ferro, S.; Ganzinelli, M.; Gasparini, P.; Huber, V.; Milione, M.; Porcu, L.; Proto, C.; Pruneri, G.; Signorelli, D.; Sangaletti, S.; Sfondrini, L.; Storti, C.; Tassi, E.; Bardelli, A.; Marsoni, S.; Torri, V.; Tripodo, C.; Colombo, M.P.; Anichini, A.; Rivoltini, L.; Balsari, A.; Sozzi, G.; Garassino, M.C. Antibody–Fc/FcR interaction on macrophages as a mechanism for hyperprogressive disease in non–small cell lung cancer subsequent to PD-1/PD-L1 blockade. Clin. Cancer Res., 2019, 25(3), 989-999.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-1390] [PMID: 30206165]
[60]
Arlauckas, S.P.; Garris, C.S.; Kohler, R.H.; Kitaoka, M.; Cuccarese, M.F.; Yang, K.S.; Miller, M.A.; Carlson, J.C.; Freeman, G.J.; Anthony, R.M.; Weissleder, R.; Pittet, M.J. In vivo imaging reveals a tumor-associated macrophage–mediated resistance pathway in anti–PD-1 therapy. Sci. Transl. Med., 2017, 9(389), eaal3604.
[http://dx.doi.org/10.1126/scitranslmed.aal3604] [PMID: 28490665]
[61]
Kinoshita, J.; Fushida, S.; Yamaguchi, T.; Moriyama, H.; Saito, H.; Shimada, M.; Terai, S.; Okamoto, K.; Nakamura, K.; Ninomiya, I.; Yagi, S.; Inaki, N. Prognostic value of tumor-infiltrating CD163+macrophage in patients with metastatic gastric cancer undergoing multidisciplinary treatment. BMC Cancer, 2022, 22(1), 608.
[http://dx.doi.org/10.1186/s12885-022-09713-y] [PMID: 35658848]
[62]
Sanchez, L.R.; Borriello, L.; Entenberg, D.; Condeelis, J.S.; Oktay, M.H.; Karagiannis, G.S. The emerging roles of macrophages in cancer metastasis and response to chemotherapy. J. Leukoc. Biol., 2019, 106(2), 259-274.
[http://dx.doi.org/10.1002/JLB.MR0218-056RR] [PMID: 30720887]
[63]
Ruffell, B.; Chang-Strachan, D.; Chan, V.; Rosenbusch, A.; Ho, C.M.T.; Pryer, N.; Daniel, D.; Hwang, E.S.; Rugo, H.S.; Coussens, L.M. Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Cancer Cell, 2014, 26(5), 623-637.
[http://dx.doi.org/10.1016/j.ccell.2014.09.006] [PMID: 25446896]
[64]
Cavalleri, T.; Greco, L.; Rubbino, F.; Hamada, T.; Quaranta, M.; Grizzi, F.; Sauta, E.; Craviotto, V.; Bossi, P.; Vetrano, S.; Rimassa, L.; Torri, V.; Bellazzi, R.; Mantovani, A.; Ogino, S.; Malesci, A.; Laghi, L. Tumor-associated macrophages and risk of recurrence in stage III colorectal cancer. J. Pathol. Clin. Res., 2022, 8(4), 307-312.
[http://dx.doi.org/10.1002/cjp2.267] [PMID: 35318822]
[65]
Hughes, R.; Qian, B.Z.; Rowan, C.; Muthana, M.; Keklikoglou, I.; Olson, O.C.; Tazzyman, S.; Danson, S.; Addison, C.; Clemons, M.; Gonzalez-Angulo, A.M.; Joyce, J.A.; De Palma, M.; Pollard, J.W.; Lewis, C.E. Perivascular M2 macrophages stimulate tumor relapse after chemotherapy. Cancer Res., 2015, 75(17), 3479-3491.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-3587] [PMID: 26269531]
[66]
Karagiannis, G.S.; Condeelis, J.S.; Oktay, M.H. Chemotherapy-induced metastasis: mechanisms and translational opportunities. Clin. Exp. Metastasis, 2018, 35(4), 269-284.
[http://dx.doi.org/10.1007/s10585-017-9870-x] [PMID: 29307118]
[67]
Beach, C.; MacLean, D.; Majorova, D.; Arnold, J.N.; Olcina, M.M. The effects of radiation therapy on the macrophage response in cancer. Front. Oncol., 2022, 12, 1020606.
[http://dx.doi.org/10.3389/fonc.2022.1020606] [PMID: 36249052]
[68]
Jones, K.I.; Tiersma, J.; Yuzhalin, A.E.; Gordon-Weeks, A.N.; Buzzelli, J.; Im, J.H.; Muschel, R.J. Radiation combined with macrophage depletion promotes adaptive immunity and potentiates checkpoint blockade. EMBO Mol. Med., 2018, 10(12), e9342.
[http://dx.doi.org/10.15252/emmm.201809342] [PMID: 30442705]
[69]
Rafat, M.; Aguilera, T.A.; Vilalta, M.; Bronsart, L.L.; Soto, L.A.; von Eyben, R.; Golla, M.A.; Ahrari, Y.; Melemenidis, S.; Afghahi, A.; Jenkins, M.J.; Kurian, A.W.; Horst, K.C.; Giaccia, A.J.; Graves, E.E. Macrophages Promote circulating tumor cell–mediated local recurrence following radiotherapy in immunosuppressed patients. Cancer Res., 2018, 78(15), 4241-4252.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-3623] [PMID: 29880480]
[70]
Shi, Y.; Riese, D.J., II; Shen, J. The role of the CXCL12/CXCR4/CXCR7 Chemokine axis in cancer. Front. Pharmacol., 2020, 11, 574667.
[http://dx.doi.org/10.3389/fphar.2020.574667] [PMID: 33363463]
[71]
Guo, X.; Zhao, Y.; Yan, H.; Yang, Y.; Shen, S.; Dai, X.; Ji, X.; Ji, F.; Gong, X.G.; Li, L.; Bai, X.; Feng, X.H.; Liang, T.; Ji, J.; Chen, L.; Wang, H.; Zhao, B. Single tumor-initiating cells evade immune clearance by recruiting type II macrophages. Genes Dev., 2017, 31(3), 247-259.
[http://dx.doi.org/10.1101/gad.294348.116] [PMID: 28223311]
[72]
Wang, S.; Yang, Y.; Ma, P.; Huang, H.; Tang, Q.; Miao, H.; Fang, Y.; Jiang, N.; Li, Y.; Zhu, Q.; Tao, W.; Zha, Y.; Li, N. Landscape and perspectives of macrophage -targeted cancer therapy in clinical trials. Mol. Ther. Oncolytics, 2022, 24, 799-813.
[http://dx.doi.org/10.1016/j.omto.2022.02.019] [PMID: 35317518]
[73]
Sikic, B.I.; Lakhani, N.; Patnaik, A.; Shah, S.A.; Chandana, S.R.; Rasco, D.; Colevas, A.D.; O’Rourke, T.; Narayanan, S.; Papadopoulos, K.; Fisher, G.A.; Villalobos, V.; Prohaska, S.S.; Howard, M.; Beeram, M.; Chao, M.P.; Agoram, B.; Chen, J.Y.; Huang, J.; Axt, M.; Liu, J.; Volkmer, J.P.; Majeti, R.; Weissman, I.L.; Takimoto, C.H.; Supan, D.; Wakelee, H.A.; Aoki, R.; Pegram, M.D.; Padda, S.K. First-in-human, first-in-class phase I trial of the anti-CD47 antibody Hu5F9-G4 in patients with advanced cancers. J. Clin. Oncol., 2019, 37(12), 946-953.
[http://dx.doi.org/10.1200/JCO.18.02018] [PMID: 30811285]
[74]
Kuninty, P.R.; Binnemars-Postma, K.; Jarray, A.; Pednekar, K.P.; Heinrich, M.A.; Pijffers, H.J.; ten Hoopen, H.; Storm, G.; van Hoogevest, P.; den Otter, W.K.; Prakash, J. Cancer immune therapy using engineered ‛tail-flipping’ nanoliposomes targeting alternatively activated macrophages. Nat. Commun., 2022, 13(1), 4548.
[http://dx.doi.org/10.1038/s41467-022-32091-9] [PMID: 35927238]
[75]
Wei, Z.; Zhang, X.; Yong, T.; Bie, N.; Zhan, G.; Li, X.; Liang, Q.; Li, J.; Yu, J.; Huang, G.; Yan, Y.; Zhang, Z.; Zhang, B.; Gan, L.; Huang, B.; Yang, X. Boosting anti-PD-1 therapy with metformin-loaded macrophage-derived microparticles. Nat. Commun., 2021, 12(1), 440.
[http://dx.doi.org/10.1038/s41467-020-20723-x] [PMID: 33469052]
[76]
Katopodi, T.; Petanidis, S.; Charalampidis, C.; Chatziprodromidou, I.; Eskitzis, P.; Tsavlis, D.; Zarogoulidis, P.; Kosmidis, C.; Matthaios, D.; Porpodis, K. Tumor-infiltrating dendritic cells: Decisive roles in cancer immunosurveillance, immunoediting, and tumor T cell tolerance. Cells, 2022, 11(20), 3183.
[http://dx.doi.org/10.3390/cells11203183] [PMID: 36291050]
[77]
Godoy-Tena, G.; Ballestar, E. Epigenetics of dendritic cells in tumor immunology. Cancers (Basel), 2022, 14(5), 1179.
[http://dx.doi.org/10.3390/cancers14051179] [PMID: 35267487]
[78]
Lin, J.H.; Huffman, A.P.; Wattenberg, M.M.; Walter, D.M.; Carpenter, E.L.; Feldser, D.M.; Beatty, G.L.; Furth, E.E.; Vonderheide, R.H. Type 1 conventional dendritic cells are systemically dysregulated early in pancreatic carcinogenesis. J. Exp. Med., 2020, 217(8), e20190673.
[http://dx.doi.org/10.1084/jem.20190673] [PMID: 32453421]
[79]
Huang, L.; Rong, Y.; Tang, X.; Yi, K.; Qi, P.; Hou, J.; Liu, W.; He, Y.; Gao, X.; Yuan, C.; Wang, F. Engineered exosomes as an in situ DC-primed vaccine to boost antitumor immunity in breast cancer. Mol. Cancer, 2022, 21(1), 45.
[http://dx.doi.org/10.1186/s12943-022-01515-x] [PMID: 35148751]
[80]
Zhou, Y.; Slone, N.; Chrisikos, T.T.; Kyrysyuk, O.; Babcock, R.L.; Medik, Y.B.; Li, H.S.; Kleinerman, E.S.; Watowich, S.S. Vaccine efficacy against primary and metastatic cancer with in vitro-generated CD103 + conventional dendritic cells. J. Immunother. Cancer, 2020, 8(1), e000474.
[http://dx.doi.org/10.1136/jitc-2019-000474] [PMID: 32273347]
[81]
Yuan, P.; Zhou, Y.; Wang, Z.; Gui, L.; Ma, B. Dendritic cell-targeting chemokines inhibit colorectal cancer progression. Exploration of Targeted Anti-tumor Therapy, 2022, 3(6), 828-840.
[http://dx.doi.org/10.37349/etat.2022.00115] [PMID: 36654820]
[82]
Gordy, J.T.; Sandhu, A.K.; Fessler, K.; Luo, K.; Kapoor, A.R.; Ayeh, S.K.; Hui, Y.; Schill, C.; Chen, F.; Wang, T.; Karanika, S.; Sunshine, J.C.; Karakousis, P.C.; Markham, R.B. IFNα and 5-Aza-22′-deoxycytidine combined with a dendritic-cell targeting DNA vaccine alter tumor immune cell infiltration in the B16F10 melanoma model. Front. Immunol., 2023, 13, 1074644.
[http://dx.doi.org/10.3389/fimmu.2022.1074644] [PMID: 36741387]
[83]
Ghasemi, M.; Abbasi, L.; Ghanbari Naeini, L.; Kokabian, P.; Nameh Goshay Fard, N.; Givtaj, N. Dendritic cells and natural killer cells: The road to a successful oncolytic virotherapy. Front. Immunol., 2023, 13, 950079.
[http://dx.doi.org/10.3389/fimmu.2022.950079] [PMID: 36703982]
[84]
Wang, Y.; Johnson, K.C.C.; Gatti-Mays, M.E.; Li, Z. Emerging strategies in targeting tumor-resident myeloid cells for cancer immunotherapy. J. Hematol. Oncol., 2022, 15(1), 118.
[http://dx.doi.org/10.1186/s13045-022-01335-y] [PMID: 36031601]
[85]
Gardner, A.; de Mingo Pulido, Á.; Hänggi, K.; Bazargan, S.; Onimus, A.; Kasprzak, A.; Conejo-Garcia, J.R.; Rejniak, K.A.; Ruffell, B. TIM-3 blockade enhances IL-12-dependent antitumor immunity by promoting CD8 + T cell and XCR1 + dendritic cell spatial co-localization. J. Immunother. Cancer, 2022, 10(1), e003571.
[http://dx.doi.org/10.1136/jitc-2021-003571] [PMID: 34987021]
[86]
Xia, L.; Tian, E.; Yu, M.; Liu, C.; Shen, L.; Huang, Y.; Wu, Z.; Tian, J.; Yu, K.; Wang, Y.; Xie, Q.; Zhu, D. RORγt agonist enhances anti-PD-1 therapy by promoting monocyte-derived dendritic cells through CXCL10 in cancers. J. Exp. Clin. Cancer Res., 2022, 41(1), 155.
[http://dx.doi.org/10.1186/s13046-022-02289-2] [PMID: 35459193]
[87]
Zhang, X.; Xu, Y.; Zhao, G.; Liu, R.; Yu, H. Sorafenib inhibits interferon production by plasmacytoid dendritic cells in hepatocellular carcinoma. BMC Cancer, 2022, 22(1), 1239.
[http://dx.doi.org/10.1186/s12885-022-10356-2] [PMID: 36451110]
[88]
Wu, Z.; Xi, Z.; Xiao, Y.; Zhao, X.; Li, J.; Feng, N.; Hu, L.; Zheng, R.; Zhang, N.; Wang, S.; Huang, T. TSH-TSHR axis promotes tumor immune evasion. J. Immunother. Cancer, 2022, 10(1), e004049.
[http://dx.doi.org/10.1136/jitc-2021-004049] [PMID: 35101946]
[89]
Bai, X.; Wong, C.C.; Pan, Y.; Chen, H.; Liu, W.; Zhai, J.; Kang, W.; Shi, Y.; Yamamoto, M.; Tsukamoto, T.; Nomura, S.; Chiu, P.; Yu, J. Kwok-wai Ng, E. Loss of YTHDF1 in gastric tumors restores sensitivity to antitumor immunity by recruiting mature dendritic cells. J. Immunother. Cancer, 2022, 10(2), e003663.
[http://dx.doi.org/10.1136/jitc-2021-003663] [PMID: 35193930]
[90]
Wang, Y.; Zheng, R.; Zhang, Y.; Guo, Y.; Hui, Z.; Wang, P.; Sun, Y. Galectin-9 expression clinically associated with mature dendritic cells infiltration and T cell immune response in colorectal cancer. BMC Cancer, 2022, 22(1), 1319.
[http://dx.doi.org/10.1186/s12885-022-10435-4] [PMID: 36527024]
[91]
Zhou, Y.; Cheng, L.; Liu, L.; Li, X. NK cells are never alone: crosstalk and communication in tumour microenvironments. Mol. Cancer, 2023, 22(1), 34.
[http://dx.doi.org/10.1186/s12943-023-01737-7] [PMID: 36797782]
[92]
Agaugué, S.; Marcenaro, E.; Ferranti, B.; Moretta, L.; Moretta, A. Human natural killer cells exposed to IL-2, IL-12, IL-18, or IL-4 differently modulate priming of naive T cells by monocyte-derived dendritic cells. Blood, 2008, 112(5), 1776-1783.
[http://dx.doi.org/10.1182/blood-2008-02-135871] [PMID: 18579793]
[93]
Sconocchia, G.; Eppenberger, S.; Spagnoli, G.C.; Tornillo, L.; Droeser, R.; Caratelli, S.; Ferrelli, F.; Coppola, A.; Arriga, R.; Lauro, D.; Iezzi, G.; Terracciano, L.; Ferrone, S. NK cells and T cells cooperate during the clinical course of colorectal cancer. OncoImmunology, 2014, 3(8), e952197.
[http://dx.doi.org/10.4161/21624011.2014.952197] [PMID: 25610741]
[94]
Cazzetta, V.; Franzese, S.; Carenza, C.; Della Bella, S.; Mikulak, J.; Mavilio, D. Natural killer–dendritic cell interactions in liver cancer: Implications for immunotherapy. Cancers (Basel), 2021, 13(9), 2184.
[http://dx.doi.org/10.3390/cancers13092184] [PMID: 34062821]
[95]
Trotta, R.; Col, J.D.; Yu, J.; Ciarlariello, D.; Thomas, B.; Zhang, X.; Allard, J., II; Wei, M.; Mao, H.; Byrd, J.C.; Perrotti, D.; Caligiuri, M.A. TGF-beta utilizes SMAD3 to inhibit CD16-mediated IFN-gamma production and antibody-dependent cellular cytotoxicity in human NK cells. J. Immunol., 2008, 181(6), 3784-3792.
[http://dx.doi.org/10.4049/jimmunol.181.6.3784] [PMID: 18768831]
[96]
Bozward, A.G.; Warricker, F.; Oo, Y.H.; Khakoo, S.I. Natural killer cells and regulatory T cells cross talk in hepatocellular carcinoma: exploring therapeutic options for the next decade. Front. Immunol., 2021, 12, 643310.
[http://dx.doi.org/10.3389/fimmu.2021.643310] [PMID: 33995362]
[97]
Littwitz-Salomon, E.; Akhmetzyanova, I.; Vallet, C.; Francois, S.; Dittmer, U.; Gibbert, K. Activated regulatory T cells suppress effector NK cell responses by an IL-2-mediated mechanism during an acute retroviral infection. Retrovirology, 2015, 12(1), 66.
[http://dx.doi.org/10.1186/s12977-015-0191-3] [PMID: 26220086]
[98]
Moreno-Nieves, U.Y.; Tay, J.K.; Saumyaa, S.; Horowitz, N.B.; Shin, J.H.; Mohammad, I.A.; Luca, B.; Mundy, D.C.; Gulati, G.S.; Bedi, N.; Chang, S.; Chen, C.; Kaplan, M.J.; Rosenthal, E.L.; Holsinger, F.C.; Divi, V.; Baik, F.M.; Sirjani, D.B.; Gentles, A.J.; Newman, A.M.; Freud, A.G.; Sunwoo, J.B. Landscape of innate lymphoid cells in human head and neck cancer reveals divergent NK cell states in the tumor microenvironment. Proc. Natl. Acad. Sci. USA, 2021, 118(28), e2101169118.
[http://dx.doi.org/10.1073/pnas.2101169118] [PMID: 34244432]
[99]
Bruno, A.; Ferlazzo, G.; Albini, A.; Noonan, D.M. A think tank of TINK/TANKs: tumor-infiltrating/tumor-associated natural killer cells in tumor progression and angiogenesis. J. Natl. Cancer Inst., 2014, 106(8), 1-13.
[http://dx.doi.org/10.1093/jnci/dju200] [PMID: 25178695]
[100]
Tiwari, A.; Trivedi, R.; Lin, S.Y. Tumor microenvironment: barrier or opportunity towards effective cancer therapy. J. Biomed. Sci., 2022, 29(1), 83.
[http://dx.doi.org/10.1186/s12929-022-00866-3] [PMID: 36253762]
[101]
Valeri, A.; García-Ortiz, A.; Castellano, E.; Córdoba, L.; Maroto-Martín, E.; Encinas, J.; Leivas, A.; Río, P.; Martínez-López, J. Overcoming tumor resistance mechanisms in CAR-NK cell therapy. Front. Immunol., 2022, 13, 953849.
[http://dx.doi.org/10.3389/fimmu.2022.953849] [PMID: 35990652]
[102]
Woan, K.V.; Kim, H.; Bjordahl, R.; Davis, Z.B.; Gaidarova, S.; Goulding, J.; Hancock, B.; Mahmood, S.; Abujarour, R.; Wang, H.; Tuininga, K.; Zhang, B.; Wu, C.Y.; Kodal, B.; Khaw, M.; Bendzick, L.; Rogers, P.; Ge, M.Q.; Bonello, G.; Meza, M.; Felices, M.; Huffman, J.; Dailey, T.; Lee, T.T.; Walcheck, B.; Malmberg, K.J.; Blazar, B.R.; Bryceson, Y.T.; Valamehr, B.; Miller, J.S.; Cichocki, F. Harnessing features of adaptive NK cells to generate iPSC-derived NK cells for enhanced immunotherapy. Cell Stem Cell, 2021, 28(12), 2062-2075.e5.
[http://dx.doi.org/10.1016/j.stem.2021.08.013] [PMID: 34525347]
[103]
Gemelli, M.; Noonan, D.M.; Carlini, V.; Pelosi, G.; Barberis, M.; Ricotta, R.; Albini, A. Overcoming resistance to checkpoint inhibitors: natural killer cells in non-small cell lung cancer. Front. Oncol., 2022, 12, 886440.
[http://dx.doi.org/10.3389/fonc.2022.886440] [PMID: 35712510]
[104]
Nachef, M.; Ali, A.K.; Almutairi, S.M.; Lee, S.H. Targeting SLC1A5 and SLC3A2/SLC7A5 as a potential strategy to strengthen anti-tumor immunity in the tumor microenvironment. Front. Immunol., 2021, 12, 624324.
[http://dx.doi.org/10.3389/fimmu.2021.624324] [PMID: 33953707]
[105]
Cluff, E.; Magdaleno, C.C.; Fernandez, E.; House, T.; Swaminathan, S.; Varadaraj, A.; Rajasekaran, N. Hypoxia-inducible factor-1 alpha expression is induced by IL-2 via the PI3K/mTOR pathway in hypoxic NK cells and supports effector functions in NKL cells and ex vivo expanded NK cells. Cancer Immunol. Immunother., 2022, 71(8), 1989-2005.
[http://dx.doi.org/10.1007/s00262-021-03126-9] [PMID: 34999917]
[106]
dos Reis, F.D.; Jerónimo, C.; Correia, M.P. Epigenetic modulation and prostate cancer: Paving the way for NK cell anti-tumor immunity. Front. Immunol., 2023, 14, 1152572.
[http://dx.doi.org/10.3389/fimmu.2023.1152572] [PMID: 37090711]
[107]
Murugan, D.; Murugesan, V.; Panchapakesan, B.; Rangasamy, L. Nanoparticle enhancement of natural killer (NK) cell-based immunotherapy. Cancers (Basel), 2022, 14(21), 5438.
[http://dx.doi.org/10.3390/cancers14215438] [PMID: 36358857]
[108]
Liu, S.; Zhang, Y.; Liu, Y.; Wang, W.; Gao, S.; Yuan, W.; Sun, Z.; Liu, L.; Wang, C. Ultrasound-targeted microbubble destruction remodels tumour microenvironment to improve immunotherapeutic effect. Br. J. Cancer, 2023, 128(5), 715-725.
[http://dx.doi.org/10.1038/s41416-022-02076-y] [PMID: 36463323]
[109]
Kratzmeier, C.; Singh, S.; Asiedu, E.B.; Webb, T.J. Current developments in the preclinical and clinical use of natural killer T cells. BioDrugs, 2023, 37(1), 57-71.
[http://dx.doi.org/10.1007/s40259-022-00572-4] [PMID: 36525216]
[110]
Hadiloo, K.; Tahmasebi, S.; Esmaeilzadeh, A. CAR-NKT cell therapy: a new promising paradigm of cancer immunotherapy. Cancer Cell Int., 2023, 23(1), 86.
[http://dx.doi.org/10.1186/s12935-023-02923-9] [PMID: 37158883]
[111]
Li, Y.R.; Brown, J.; Yu, Y.; Lee, D.; Zhou, K.; Dunn, Z.S.; Hon, R.; Wilson, M.; Kramer, A.; Zhu, Y.; Fang, Y.; Yang, L. Targeting immunosuppressive tumor-associated macrophages using innate T cells for enhanced antitumor reactivity. Cancers (Basel), 2022, 14(11), 2749.
[http://dx.doi.org/10.3390/cancers14112749] [PMID: 35681730]
[112]
Jenkins, L.; Jungwirth, U.; Avgustinova, A.; Iravani, M.; Mills, A.; Haider, S.; Harper, J.; Isacke, C.M. Cancer-Associated Fibroblasts Suppress CD8+ T-cell Infiltration and Confer Resistance to Immune-Checkpoint Blockade. Cancer Res., 2022, 82(16), 2904-2917.
[http://dx.doi.org/10.1158/0008-5472.CAN-21-4141] [PMID: 35749591]
[113]
Zeng, W.; Xiong, L.; Wu, W.; Li, S.; Liu, J.; Yang, L.; Lao, L.; Huang, P.; Zhang, M.; Chen, H.; Miao, N.; Lin, Z.; Liu, Z.; Yang, X.; Wang, J.; Wang, P.; Song, E.; Yao, Y.; Nie, Y.; Chen, J.; Huang, D. CCL18 signaling from tumor-associated macrophages activates fibroblasts to adopt a chemoresistance-inducing phenotype. Oncogene, 2023, 42(3), 224-237.
[http://dx.doi.org/10.1038/s41388-022-02540-2] [PMID: 36418470]
[114]
Obradovic, A.; Graves, D.; Korrer, M.; Wang, Y.; Roy, S.; Naveed, A.; Xu, Y.; Luginbuhl, A.; Curry, J.; Gibson, M.; Idrees, K.; Hurley, P.; Jiang, P.; Liu, X.S.; Uppaluri, R.; Drake, C.G.; Califano, A.; Kim, Y.J. Immunostimulatory cancer-associated fibroblast subpopulations can predict immunotherapy response in head and neck cancer. Clin. Cancer Res., 2022, 28(10), 2094-2109.
[http://dx.doi.org/10.1158/1078-0432.CCR-21-3570] [PMID: 35262677]
[115]
Shintani, Y.; Kimura, T.; Funaki, S.; Ose, N.; Kanou, T.; Fukui, E. Therapeutic targeting of cancer-associated fibroblasts in the non-small cell lung cancer tumor microenvironment. Cancers (Basel), 2023, 15(2), 335.
[http://dx.doi.org/10.3390/cancers15020335] [PMID: 36672284]
[116]
Sulaiman, R.; De, P.; Aske, J.C.; Lin, X.; Dale, A.; Koirala, N.; Gaster, K.; Espaillat, L.R.; Starks, D.; Dey, N. Patient-derived primary cancer-associated fibroblasts mediate resistance to anti-angiogenic drug in ovarian cancers. Biomedicines, 2023, 11(1), 112.
[http://dx.doi.org/10.3390/biomedicines11010112] [PMID: 36672620]
[117]
Loeck, T.; Schwab, A. The role of the Na + /Ca 2+ -exchanger (NCX) in cancer-associated fibroblasts. Biol. Chem., 2023, 404(4), 325-337.
[http://dx.doi.org/10.1515/hsz-2022-0253] [PMID: 36594183]
[118]
Lavie, D.; Ben-Shmuel, A.; Erez, N.; Scherz-Shouval, R. Cancer-associated fibroblasts in the single-cell era. Nat. Can., 2022, 3(7), 793-807.
[http://dx.doi.org/10.1038/s43018-022-00411-z] [PMID: 35883004]
[119]
Guo, Z.; Zhang, H.; Fu, Y.; Kuang, J.; Zhao, B.; Zhang, L.; Lin, J.; Lin, S.; Wu, D.; Xie, G. Cancer-associated fibroblasts induce growth and radioresistance of breast cancer cells through paracrine IL-6. Cell Death Discov., 2023, 9(1), 6.
[http://dx.doi.org/10.1038/s41420-023-01306-3] [PMID: 36635302]
[120]
Sheta, M.; Taha, E.A.; Lu, Y.; Eguchi, T. Extracellular vesicles: New classification and tumor immunosuppression. Biology (Basel), 2023, 12(1), 110.
[http://dx.doi.org/10.3390/biology12010110] [PMID: 36671802]
[121]
Tang, P.C.T.; Chung, J.Y.F.; Xue, V.W.; Xiao, J.; Meng, X.M.; Huang, X.R.; Zhou, S.; Chan, A.S.W.; Tsang, A.C.M.; Cheng, A.S.L.; Lee, T.L.; Leung, K.T.; Lam, E.W.F.; To, K.F.; Tang, P.M.K.; Lan, H.Y. Smad3 promotes cancer-associated fibroblasts generation via macrophage–myofibroblast transition. Adv. Sci. (Weinh.), 2022, 9(1), 2101235.
[http://dx.doi.org/10.1002/advs.202101235] [PMID: 34791825]
[122]
Luo, H.; Xia, X.; Huang, L.B.; An, H.; Cao, M.; Kim, G.D.; Chen, H.N.; Zhang, W.H.; Shu, Y.; Kong, X.; Ren, Z.; Li, P.H.; Liu, Y.; Tang, H.; Sun, R.; Li, C.; Bai, B.; Jia, W.; Liu, Y.; Zhang, W.; Yang, L.; Peng, Y.; Dai, L.; Hu, H.; Jiang, Y.; Hu, Y.; Zhu, J.; Jiang, H.; Li, Z.; Caulin, C.; Park, J.; Xu, H. Pan-cancer single-cell analysis reveals the heterogeneity and plasticity of cancer-associated fibroblasts in the tumor microenvironment. Nat. Commun., 2022, 13(1), 6619.
[http://dx.doi.org/10.1038/s41467-022-34395-2] [PMID: 36333338]
[123]
Wang, Y.; Gan, G.; Wang, B.; Wu, J.; Cao, Y.; Zhu, D.; Xu, Y.; Wang, X.; Han, H.; Li, X.; Ye, M.; Zhao, J.; Mi, J. Cancer-associated fibroblasts promote irradiated cancer cell recovery through autophagy. EBioMedicine, 2017, 17, 45-56.
[http://dx.doi.org/10.1016/j.ebiom.2017.02.019] [PMID: 28258923]
[124]
Houthuijzen, J.M.; de Bruijn, R.; van der Burg, E.; Drenth, A.P.; Wientjens, E.; Filipovic, T.; Bullock, E.; Brambillasca, C.S.; Pulver, E.M.; Nieuwland, M.; de Rink, I.; van Diepen, F.; Klarenbeek, S.; Kerkhoven, R.; Brunton, V.G.; Scheele, C.L.G.J.; Boelens, M.C.; Jonkers, J. CD26-negative and CD26-positive tissue-resident fibroblasts contribute to functionally distinct CAF subpopulations in breast cancer. Nat. Commun., 2023, 14(1), 183.
[http://dx.doi.org/10.1038/s41467-023-35793-w] [PMID: 36635273]
[125]
Smith, B.N.; Mishra, R.; Billet, S.; Placencio-Hickok, V.R.; Kim, M.; Zhang, L.; Duong, F.; Madhav, A.; Scher, K.; Moldawer, N.; Oppenheim, A.; Angara, B.; You, S.; Tighiouart, M.; Posadas, E.M.; Bhowmick, N.A. Antagonizing CD105 and androgen receptor to target stromal-epithelial interactions for clinical benefit. Mol. Ther., 2023, 31(1), 78-89.
[http://dx.doi.org/10.1016/j.ymthe.2022.08.019] [PMID: 36045587]
[126]
Jin, J.; Barnett, J.D.; Krishnamachary, B.; Mironchik, Y.; Luo, C.K.; Kobayashi, H.; Bhujwalla, Z.M. Evaluating near-infrared photoimmunotherapy for targeting fibroblast activation protein‐α expressing cells in vitro and in vivo. Cancer Sci., 2023, 114(1), 236-246.
[http://dx.doi.org/10.1111/cas.15601] [PMID: 36169301]
[127]
Glabman, R.A.; Choyke, P.L.; Sato, N. Cancer-associated fibroblasts: Tumorigenicity and targeting for cancer therapy. Cancers (Basel), 2022, 14(16), 3906.
[http://dx.doi.org/10.3390/cancers14163906] [PMID: 36010899]
[128]
Huang, T.X.; Tan, X.Y.; Huang, H.S.; Li, Y.T.; Liu, B.L.; Liu, K.S.; Chen, X.; Chen, Z.; Guan, X.Y.; Zou, C.; Fu, L. Targeting cancer-associated fibroblast-secreted WNT2 restores dendritic cell-mediated antitumour immunity. Gut, 2022, 71(2), 333-344.
[http://dx.doi.org/10.1136/gutjnl-2020-322924] [PMID: 33692094]
[129]
Linares, J.F.; Cid-Diaz, T.; Duran, A.; Osrodek, M.; Martinez-Ordoñez, A.; Reina-Campos, M.; Kuo, H.H.; Elemento, O.; Martin, M.L.; Cordes, T.; Thompson, T.C.; Metallo, C.M.; Moscat, J.; Diaz-Meco, M.T. The lactate-NAD+ axis activates cancer-associated fibroblasts by downregulating p62. Cell Rep., 2022, 39(6), 110792.
[http://dx.doi.org/10.1016/j.celrep.2022.110792] [PMID: 35545049]
[130]
Liang, L.; Kaufmann, A.M. The significance of cancer stem cells and epithelial–mesenchymal transition in metastasis and anti-cancer therapy. Int. J. Mol. Sci., 2023, 24(3), 2555.
[http://dx.doi.org/10.3390/ijms24032555] [PMID: 36768876]
[131]
Prager, B.C.; Xie, Q.; Bao, S.; Rich, J.N. Cancer Stem Cells: The Architects of the Tumor Ecosystem. Cell Stem Cell, 2019, 24(1), 41-53.
[http://dx.doi.org/10.1016/j.stem.2018.12.009] [PMID: 30609398]
[132]
Aldoghachi, A.F.; Chong, Z.X.; Yeap, S.K.; Cheong, S.K.; Ho, W.Y.; Ong, A.H.K. Stem cells for cancer therapy: Translating the uncertainties and possibilities of stem cell properties into opportunities for effective cancer therapy. Int. J. Mol. Sci., 2023, 24(2), 1012.
[http://dx.doi.org/10.3390/ijms24021012] [PMID: 36674525]
[133]
Kim, M.; Bakyt, L.; Akhmetkaliyev, A.; Toktarkhanova, D.; Bulanin, D. Re-sensitizing cancer stem cells to conventional chemotherapy agents. Int. J. Mol. Sci., 2023, 24(3), 2122.
[http://dx.doi.org/10.3390/ijms24032122] [PMID: 36768445]
[134]
Hallis, S.P.; Kim, S.K.; Lee, J.H.; Kwak, M.K. Association of NRF2 with HIF-2α-induced cancer stem cell phenotypes in chronic hypoxic condition. Redox Biol., 2023, 60, 102632.
[http://dx.doi.org/10.1016/j.redox.2023.102632] [PMID: 36791645]
[135]
Yan, Y.; He, M.; Zhao, L.; Wu, H.; Zhao, Y.; Han, L.; Wei, B.; Ye, D.; Lv, X.; Wang, Y.; Yao, W.; Zhao, H.; Chen, B.; Jin, Z.; Wen, J.; Zhu, Y.; Yu, T.; Jin, F.; Wei, M. A novel HIF-2α targeted inhibitor suppresses hypoxia-induced breast cancer stemness via SOD2-mtROS-PDI/GPR78-UPRER axis. Cell Death Differ., 2022, 29(9), 1769-1789.
[http://dx.doi.org/10.1038/s41418-022-00963-8] [PMID: 35301432]
[136]
Yuan, S.; Stewart, K.S.; Yang, Y.; Abdusselamoglu, M.D.; Parigi, S.M.; Feinberg, T.Y.; Tumaneng, K.; Yang, H.; Levorse, J.M.; Polak, L.; Ng, D.; Fuchs, E. Ras drives malignancy through stem cell crosstalk with the microenvironment. Nature, 2022, 612(7940), 555-563.
[http://dx.doi.org/10.1038/s41586-022-05475-6] [PMID: 36450983]
[137]
Wen, G.M.; Xu, X.Y.; Xia, P. Metabolism in cancer stem cells: targets for clinical treatment. Cells, 2022, 11(23), 3790.
[http://dx.doi.org/10.3390/cells11233790] [PMID: 36497050]
[138]
Katoh, M.; Katoh, M. WNT signaling and cancer stemness. Essays Biochem., 2022, 66(4), 319-331.
[http://dx.doi.org/10.1042/EBC20220016] [PMID: 35837811]
[139]
Nayak, A.; Warrier, N.M.; Kumar, P. Cancer Stem Cells and the Tumor Microenvironment: Targeting the Critical Crosstalk through Nanocarrier Systems. Stem Cell Rev. Rep., 2022, 18(7), 2209-2233.
[http://dx.doi.org/10.1007/s12015-022-10426-9] [PMID: 35876959]
[140]
Manni, W.; Min, W. Signaling pathways in the regulation of cancer stem cells and associated targeted therapy. MedComm, 2022, 3(4), e176.
[141]
Thirusangu, P.; Ray, U.; Sarkar Bhattacharya, S.; Oien, D.B.; Jin, L.; Staub, J.; Kannan, N.; Molina, J.R.; Shridhar, V. PFKFB3 regulates cancer stemness through the hippo pathway in small cell lung carcinoma. Oncogene, 2022, 41(33), 4003-4017.
[http://dx.doi.org/10.1038/s41388-022-02391-x] [PMID: 35804016]
[142]
Lee, Y.G.; Park, D.H.; Chae, Y.C. Role of mitochondrial stress response in cancer progression. Cells, 2022, 11(5), 771.
[http://dx.doi.org/10.3390/cells11050771] [PMID: 35269393]
[143]
Su, Z.; Yang, Z.; Xu, Y.; Chen, Y.; Yu, Q. Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol. Cancer, 2015, 14(1), 48.
[http://dx.doi.org/10.1186/s12943-015-0321-5] [PMID: 25743109]
[144]
Giampazolias, E.; Tait, S.W.G. Mitochondria and the hallmarks of cancer. FEBS J., 2016, 283(5), 803-814.
[http://dx.doi.org/10.1111/febs.13603] [PMID: 26607558]
[145]
Cairns, R.A.; Harris, I.S.; Mak, T.W. Regulation of cancer cell metabolism. Nat. Rev. Cancer, 2011, 11(2), 85-95.
[http://dx.doi.org/10.1038/nrc2981] [PMID: 21258394]
[146]
Gorrini, C.; Harris, I.S.; Mak, T.W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov., 2013, 12(12), 931-947.
[http://dx.doi.org/10.1038/nrd4002] [PMID: 24287781]
[147]
Jiang, J.; Wang, K.; Chen, Y.; Chen, H.; Nice, E.C.; Huang, C. Redox regulation in tumor cell epithelial–mesenchymal transition: molecular basis and therapeutic strategy. Signal Transduct. Target. Ther., 2017, 2(1), 17036.
[http://dx.doi.org/10.1038/sigtrans.2017.36] [PMID: 29263924]
[148]
Nogueira, V.; Park, Y.; Chen, C.C.; Xu, P.Z.; Chen, M.L.; Tonic, I.; Unterman, T.; Hay, N. Akt determines replicative senescence and oxidative or oncogenic premature senescence and sensitizes cells to oxidative apoptosis. Cancer Cell, 2008, 14(6), 458-470.
[http://dx.doi.org/10.1016/j.ccr.2008.11.003] [PMID: 19061837]
[149]
Schieber, M.; Chandel, N.S. ROS function in redox signaling and oxidative stress. Curr. Biol., 2014, 24(10), R453-R462.
[http://dx.doi.org/10.1016/j.cub.2014.03.034] [PMID: 24845678]
[150]
Noh, J.; Kwon, B.; Han, E.; Park, M.; Yang, W.; Cho, W.; Yoo, W.; Khang, G.; Lee, D. Amplification of oxidative stress by a dual stimuli-responsive hybrid drug enhances cancer cell death. Nat. Commun., 2015, 6(1), 6907.
[http://dx.doi.org/10.1038/ncomms7907] [PMID: 25892552]
[151]
Riley, J.S.; Tait, S.W.G. Mitochondrial DNA in inflammation and immunity. EMBO Rep., 2020, 21(4), e49799.
[http://dx.doi.org/10.15252/embr.201949799] [PMID: 32202065]
[152]
Chourasia, A.H.; Boland, M.L.; Macleod, K.F. Mitophagy and cancer. Cancer Metab., 2015, 3(1), 4.
[http://dx.doi.org/10.1186/s40170-015-0130-8] [PMID: 25810907]
[153]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[154]
Kurihara, Y.; Kanki, T.; Aoki, Y.; Hirota, Y.; Saigusa, T.; Uchiumi, T.; Kang, D. Mitophagy plays an essential role in reducing mitochondrial production of reactive oxygen species and mutation of mitochondrial DNA by maintaining mitochondrial quantity and quality in yeast. J. Biol. Chem., 2012, 287(5), 3265-3272.
[http://dx.doi.org/10.1074/jbc.M111.280156] [PMID: 22157017]
[155]
Guadamillas, M.C.; Cerezo, A.; del Pozo, M.A. Overcoming anoikis – pathways to anchorage-independent growth in cancer. J. Cell Sci., 2011, 124(19), 3189-3197.
[http://dx.doi.org/10.1242/jcs.072165] [PMID: 21940791]
[156]
Esteban-Martínez, L.; Sierra-Filardi, E.; McGreal, R.S.; Salazar-Roa, M.; Mariño, G.; Seco, E.; Durand, S.; Enot, D.; Graña, O.; Malumbres, M.; Cvekl, A.; Cuervo, A.M.; Kroemer, G.; Boya, P. Programmed mitophagy is essential for the glycolytic switch during cell differentiation. EMBO J., 2017, 36(12), 1688-1706.
[http://dx.doi.org/10.15252/embj.201695916] [PMID: 28465321]
[157]
Quail, D.F.; Joyce, J.A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med., 2013, 19(11), 1423-1437.
[http://dx.doi.org/10.1038/nm.3394] [PMID: 24202395]
[158]
Taghizadeh-Hesary, F.; Akbari, H.; Bahadori, M.; Behnam, B. Targeted anti-mitochondrial therapy: The future of oncology. Genes (Basel), 2022, 13(10), 1728.
[http://dx.doi.org/10.3390/genes13101728] [PMID: 36292613]
[159]
Nahacka, Z.; Novak, J.; Zobalova, R.; Neuzil, J. Miro proteins and their role in mitochondrial transfer in cancer and beyond. Front. Cell Dev. Biol., 2022, 10, 937753.
[http://dx.doi.org/10.3389/fcell.2022.937753] [PMID: 35959487]
[160]
Fang, H.; Li, H.; Zhang, H.; Wang, S.; Xu, S.; Chang, L.; Yang, Y.; Cui, R. Short-chain L-3-hydroxyacyl-CoA dehydrogenase: A novel vital oncogene or tumor suppressor gene in cancers. Front. Pharmacol., 2022, 13, 1019312.
[http://dx.doi.org/10.3389/fphar.2022.1019312] [PMID: 36313354]
[161]
Liu, Z.; Tian, J.; Peng, F.; Wang, J. Hypermethylation of mitochondrial DNA facilitates bone metastasis of renal cell carcinoma. J. Cancer, 2022, 13(1), 304-312.
[http://dx.doi.org/10.7150/jca.62278] [PMID: 34976191]
[162]
Xie, X.Q.; Yang, Y.; Wang, Q.; Liu, H.F.; Fang, X.Y.; Li, C.L.; Jiang, Y.Z.; Wang, S.; Zhao, H.Y.; Miao, J.Y.; Ding, S.S.; Liu, X.D.; Yao, X.H.; Yang, W.T.; Jiang, J.; Shao, Z.M.; Jin, G.; Bian, X.W. Targeting ATAD3A-PINK1-mitophagy axis overcomes chemoimmunotherapy resistance by redirecting PD-L1 to mitochondria. Cell Res., 2023, 33(3), 215-228.
[http://dx.doi.org/10.1038/s41422-022-00766-z] [PMID: 36627348]
[163]
Song, C.; Pan, S.; Zhang, J.; Li, N.; Geng, Q. Mitophagy: A novel perspective for insighting into cancer and cancer treatment. Cell Prolif., 2022, 55(12), e13327.
[http://dx.doi.org/10.1111/cpr.13327] [PMID: 36200262]
[164]
Wenes, M.; Jaccard, A.; Wyss, T.; Maldonado-Pérez, N.; Teoh, S.T.; Lepez, A.; Renaud, F.; Franco, F.; Waridel, P.; Yacoub Maroun, C.; Tschumi, B.; Dumauthioz, N.; Zhang, L.; Donda, A.; Martín, F.; Migliorini, D.; Lunt, S.Y.; Ho, P.C.; Romero, P. The mitochondrial pyruvate carrier regulates memory T cell differentiation and antitumor function. Cell Metab., 2022, 34(5), 731-746.e9.
[http://dx.doi.org/10.1016/j.cmet.2022.03.013] [PMID: 35452600]
[165]
Hayat, U.; Elliott, G.T.; Olszanski, A.J.; Altieri, D.C. Feasibility and safety of targeting mitochondria for cancer therapy – preclinical characterization of gamitrinib, a first-in-class, mitochondriaL-targeted small molecule Hsp90 inhibitor. Cancer Biol. Ther., 2022, 23(1), 117-126.
[http://dx.doi.org/10.1080/15384047.2022.2029132] [PMID: 35129069]
[166]
Xu, J.; Shamul, J.G.; Kwizera, E.A.; He, X. Recent advancements in mitochondria-targeted nanoparticle drug delivery for cancer therapy. Nanomaterials (Basel), 2022, 12(5), 743.
[http://dx.doi.org/10.3390/nano12050743] [PMID: 35269231]
[167]
Luo, J.; Wang, X.; Shi, Z.; Zeng, Y.; He, L.; Cao, J.; Sun, Y.; Zhang, T.; Huang, P. Enhancement of antitumor immunotherapy using mitochondria-targeted cancer cell membrane-biomimetic MOF-mediated sonodynamic therapy and checkpoint blockade immunotherapy. J. Nanobiotechnology, 2022, 20(1), 228.
[http://dx.doi.org/10.1186/s12951-022-01453-2] [PMID: 35568916]
[168]
Amoêdo, N.D.; Valencia, J.P.; Rodrigues, M.F.; Galina, A.; Rumjanek, F.D. How does the metabolism of tumour cells differ from that of normal cells. Biosci. Rep., 2013, 33(6), e00080.
[http://dx.doi.org/10.1042/BSR20130066] [PMID: 24079832]
[169]
Guo, C.; Chen, S.; Liu, W.; Ma, Y.; Li, J.; Fisher, P.B.; Fang, X.; Wang, X.Y. Immunometabolism: A new target for improving cancer immunotherapy. Adv. Cancer Res., 2019, 143, 195-253.
[http://dx.doi.org/10.1016/bs.acr.2019.03.004] [PMID: 31202359]
[170]
Teijeira, A.; Garasa, S.; Etxeberria, I.; Gato-Cañas, M.; Melero, I.; Delgoffe, G.M. Metabolic consequences of T-cell costimulation in anticancer immunity. Cancer Immunol. Res., 2019, 7(10), 1564-1569.
[http://dx.doi.org/10.1158/2326-6066.CIR-19-0115] [PMID: 31575551]
[171]
Chang, C.H.; Curtis, J.D.; Maggi, L.B., Jr; Faubert, B.; Villarino, A.V.; O’Sullivan, D.; Huang, S.C.C.; van der Windt, G.J.W.; Blagih, J.; Qiu, J.; Weber, J.D.; Pearce, E.J.; Jones, R.G.; Pearce, E.L. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell, 2013, 153(6), 1239-1251.
[http://dx.doi.org/10.1016/j.cell.2013.05.016] [PMID: 23746840]
[172]
Puthenveetil, A.; Dubey, S. Metabolic reprograming of tumor-associated macrophages. Ann. Transl. Med., 2020, 8(16), 1030.
[http://dx.doi.org/10.21037/atm-20-2037] [PMID: 32953830]
[173]
Chang, C.H.; Qiu, J.; O’Sullivan, D.; Buck, M.D.; Noguchi, T.; Curtis, J.D.; Chen, Q.; Gindin, M.; Gubin, M.M.; van der Windt, G.J.W.; Tonc, E.; Schreiber, R.D.; Pearce, E.J.; Pearce, E.L. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell, 2015, 162(6), 1229-1241.
[http://dx.doi.org/10.1016/j.cell.2015.08.016] [PMID: 26321679]
[174]
Liu, X.; Zhao, Y.; Wu, X.; Liu, Z.; Liu, X. A novel strategy to fuel cancer immunotherapy: targeting glucose metabolism to remodel the tumor microenvironment. Front. Oncol., 2022, 12, 931104.
[http://dx.doi.org/10.3389/fonc.2022.931104] [PMID: 35924168]
[175]
Liu, S.; Li, Y.; Yuan, M.; Song, Q.; Liu, M. Correlation between the Warburg effect and progression of triple-negative breast cancer. Front. Oncol., 2023, 12, 1060495.
[http://dx.doi.org/10.3389/fonc.2022.1060495] [PMID: 36776368]
[176]
Choi, H.; Yeo, M.; Kang, Y.; Kim, H.J.; Park, S.G.; Jang, E.; Park, S.H.; Kim, E.; Kang, S. Lactate oxidase/catalase-displaying nanoparticles efficiently consume lactate in the tumor microenvironment to effectively suppress tumor growth. J. Nanobiotechnology, 2023, 21(1), 5.
[http://dx.doi.org/10.1186/s12951-022-01762-6] [PMID: 36597089]
[177]
Feng, Q.; Liu, Z.; Yu, X.; Huang, T.; Chen, J.; Wang, J.; Wilhelm, J.; Li, S.; Song, J.; Li, W.; Sun, Z.; Sumer, B.D.; Li, B.; Fu, Y.X.; Gao, J. Lactate increases stemness of CD8 + T cells to augment anti-tumor immunity. Nat. Commun., 2022, 13(1), 4981.
[http://dx.doi.org/10.1038/s41467-022-32521-8] [PMID: 36068198]
[178]
Chowdhury, S.; Kar, A.; Bhowmik, D.; Gautam, A.; Basak, D.; Sarkar, I.; Ghosh, P.; Sarkar, D.; Deka, A.; Chakraborty, P.; Mukhopadhyay, A.; Mehrotra, S.; Basak, S.; Paul, S.; Chatterjee, S. Intracellular acetyl CoA potentiates the therapeutic efficacy of Antitumor CD8+ T cells. Cancer Res., 2022, 82(14), 2640-2655.
[http://dx.doi.org/10.1158/0008-5472.CAN-21-4052] [PMID: 35648389]
[179]
Wu, S.; Zhang, H.; Gao, C.; Chen, J.; Li, H.; Meng, Z.; Bai, J.; Shen, Q.; Wu, H.; Yin, T. Hyperglycemia enhances immunosuppression and aerobic glycolysis of pancreatic cancer through upregulating Bmi1-UPF1-HK2 pathway. Cell. Mol. Gastroenterol. Hepatol., 2022, 14(5), 1146-1165.
[http://dx.doi.org/10.1016/j.jcmgh.2022.07.008] [PMID: 35863742]
[180]
Sharma, A.; Sinha, S.; Shrivastava, N. Therapeutic targeting hypoxia-inducible factor (HIF-1) in cancer: Cutting gordian knot of cancer cell metabolism. Front. Genet., 2022, 13, 849040.
[http://dx.doi.org/10.3389/fgene.2022.849040] [PMID: 35432450]
[181]
Sunshine, H.; Iruela-Arispe, M.L. Membrane lipids and cell signaling. Curr. Opin. Lipidol., 2017, 28(5), 408-413.
[http://dx.doi.org/10.1097/MOL.0000000000000443] [PMID: 28692598]
[182]
DeBerardinis, R.J.; Chandel, N.S. Fundamentals of cancer metabolism. Sci. Adv., 2016, 2(5), e1600200.
[http://dx.doi.org/10.1126/sciadv.1600200] [PMID: 27386546]
[183]
Corn, K.C.; Windham, M.A.; Rafat, M. Lipids in the tumor microenvironment: From cancer progression to treatment. Prog. Lipid Res., 2020, 80, 101055.
[http://dx.doi.org/10.1016/j.plipres.2020.101055] [PMID: 32791170]
[184]
King, R.J.; Singh, P.K.; Mehla, K. The cholesterol pathway: impact on immunity and cancer. Trends Immunol., 2022, 43(1), 78-92.
[http://dx.doi.org/10.1016/j.it.2021.11.007] [PMID: 34942082]
[185]
Luu, M.; Riester, Z.; Baldrich, A.; Reichardt, N.; Yuille, S.; Busetti, A.; Klein, M.; Wempe, A.; Leister, H.; Raifer, H.; Picard, F.; Muhammad, K.; Ohl, K.; Romero, R.; Fischer, F.; Bauer, C.A.; Huber, M.; Gress, T.M.; Lauth, M.; Danhof, S.; Bopp, T.; Nerreter, T.; Mulder, I.E.; Steinhoff, U.; Hudecek, M.; Visekruna, A. Microbial short-chain fatty acids modulate CD8+ T cell responses and improve adoptive immunotherapy for cancer. Nat. Commun., 2021, 12(1), 4077.
[http://dx.doi.org/10.1038/s41467-021-24331-1] [PMID: 34210970]
[186]
Al-Qadami, G.H.; Secombe, K.R.; Subramaniam, C.B.; Wardill, H.R.; Bowen, J.M. Gut microbiota-derived short-chain fatty acids: Impact on cancer treatment response and toxicities. Microorganisms, 2022, 10(10), 2048.
[http://dx.doi.org/10.3390/microorganisms10102048] [PMID: 36296324]
[187]
Manzo, T.; Prentice, B.M.; Anderson, K.G.; Raman, A.; Schalck, A.; Codreanu, G.S.; Nava Lauson, C.B.; Tiberti, S.; Raimondi, A.; Jones, M.A.; Reyzer, M.; Bates, B.M.; Spraggins, J.M.; Patterson, N.H.; McLean, J.A.; Rai, K.; Tacchetti, C.; Tucci, S.; Wargo, J.A.; Rodighiero, S.; Clise-Dwyer, K.; Sherrod, S.D.; Kim, M.; Navin, N.E.; Caprioli, R.M.; Greenberg, P.D.; Draetta, G.; Nezi, L. Accumulation of long-chain fatty acids in the tumor microenvironment drives dysfunction in intrapancreatic CD8+ T cells. J. Exp. Med., 2020, 217(8), e20191920.
[http://dx.doi.org/10.1084/jem.20191920] [PMID: 32491160]
[188]
Han, S.; Wei, R.; Zhang, X.; Jiang, N.; Fan, M.; Huang, J.H.; Xie, B.; Zhang, L.; Miao, W.; Butler, A.C.P.; Coleman, M.A.; Vaughan, A.T.; Wang, Y.; Chen, H.W.; Liu, J.; Li, J.J. CPT1A/2-mediated FAO enhancement—A metabolic target in radioresistant breast cancer. Front. Oncol., 2019, 9, 1201.
[http://dx.doi.org/10.3389/fonc.2019.01201] [PMID: 31803610]
[189]
Hu, B.; Lin, J.Z.; Yang, X.B.; Sang, X.T. Aberrant lipid metabolism in hepatocellular carcinoma cells as well as immune microenvironment: A review. Cell Prolif., 2020, 53(3), e12772.
[http://dx.doi.org/10.1111/cpr.12772] [PMID: 32003505]
[190]
Chowdhury, P.S.; Chamoto, K.; Kumar, A.; Honjo, T. PPAR-induced fatty acid oxidation in T cells increases the number of tumor-reactive CD8+ T cells and facilitates anti–PD-1 therapy. Cancer Immunol. Res., 2018, 6(11), 1375-1387.
[http://dx.doi.org/10.1158/2326-6066.CIR-18-0095] [PMID: 30143538]
[191]
Ma, X.; Bi, E.; Lu, Y.; Su, P.; Huang, C.; Liu, L.; Wang, Q.; Yang, M.; Kalady, M.F.; Qian, J.; Zhang, A.; Gupte, A.A.; Hamilton, D.J.; Zheng, C.; Yi, Q. Cholesterol induces CD8+ T cell exhaustion in the tumor microenvironment. Cell Metab., 2019, 30(1), 143-156.e5.
[http://dx.doi.org/10.1016/j.cmet.2019.04.002] [PMID: 31031094]
[192]
Yu, W.; Lei, Q.; Yang, L.; Qin, G.; Liu, S.; Wang, D.; Ping, Y.; Zhang, Y. Contradictory roles of lipid metabolism in immune response within the tumor microenvironment. J. Hematol. Oncol., 2021, 14(1), 187.
[http://dx.doi.org/10.1186/s13045-021-01200-4] [PMID: 34742349]
[193]
Odorizzi, P.M.; Pauken, K.E.; Paley, M.A.; Sharpe, A.; Wherry, E.J. Genetic absence of PD-1 promotes accumulation of terminally differentiated exhausted CD8+ T cells. J. Exp. Med., 2015, 212(7), 1125-1137.
[http://dx.doi.org/10.1084/jem.20142237] [PMID: 26034050]
[194]
Zhu, L.; Zhu, X.; Wu, Y. Effects of glucose metabolism, lipid metabolism, and glutamine metabolism on tumor microenvironment and clinical implications. Biomolecules, 2022, 12(4), 580.
[http://dx.doi.org/10.3390/biom12040580] [PMID: 35454171]
[195]
Altman, B.J.; Stine, Z.E.; Dang, C.V. From Krebs to clinic: glutamine metabolism to cancer therapy. Nat. Rev. Cancer, 2016, 16(10), 619-634.
[http://dx.doi.org/10.1038/nrc.2016.71] [PMID: 27492215]
[196]
Reinfeld, B.I.; Madden, M.Z.; Wolf, M.M.; Chytil, A.; Bader, J.E.; Patterson, A.R.; Sugiura, A.; Cohen, A.S.; Ali, A.; Do, B.T.; Muir, A.; Lewis, C.A.; Hongo, R.A.; Young, K.L.; Brown, R.E.; Todd, V.M.; Huffstater, T.; Abraham, A.; O’Neil, R.T.; Wilson, M.H.; Xin, F.; Tantawy, M.N.; Merryman, W.D.; Johnson, R.W.; Williams, C.S.; Mason, E.F.; Mason, F.M.; Beckermann, K.E.; Vander Heiden, M.G.; Manning, H.C.; Rathmell, J.C.; Rathmell, W.K. Cell-programmed nutrient partitioning in the tumour microenvironment. Nature, 2021, 593(7858), 282-288.
[http://dx.doi.org/10.1038/s41586-021-03442-1] [PMID: 33828302]
[197]
Leone, R.D.; Zhao, L.; Englert, J.M.; Sun, I.M.; Oh, M.H.; Sun, I.H.; Arwood, M.L.; Bettencourt, I.A.; Patel, C.H.; Wen, J.; Tam, A.; Blosser, R.L.; Prchalova, E.; Alt, J.; Rais, R.; Slusher, B.S.; Powell, J.D. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science, 2019, 366(6468), 1013-1021.
[http://dx.doi.org/10.1126/science.aav2588] [PMID: 31699883]
[198]
Liu, J.; Shen, H.; Gu, W.; Zheng, H.; Wang, Y.; Ma, G.; Du, J. Prediction of prognosis, immunogenicity and efficacy of immunotherapy based on glutamine metabolism in lung adenocarcinoma. Front. Immunol., 2022, 13, 960738.
[http://dx.doi.org/10.3389/fimmu.2022.960738] [PMID: 36032135]
[199]
Tang, Y.; Wang, S.; Li, Y.; Yuan, C.; Zhang, J.; Xu, Z.; Hu, Y.; Shi, H.; Wang, S. Simultaneous glutamine metabolism and PD-L1 inhibition to enhance suppression of triple-negative breast cancer. J. Nanobiotechnology, 2022, 20(1), 216.
[http://dx.doi.org/10.1186/s12951-022-01424-7] [PMID: 35524267]
[200]
Johnson, M.O.; Wolf, M.M.; Madden, M.Z.; Andrejeva, G.; Sugiura, A.; Contreras, D.C.; Maseda, D.; Liberti, M.V.; Paz, K.; Kishton, R.J.; Johnson, M.E.; de Cubas, A.A.; Wu, P.; Li, G.; Zhang, Y.; Newcomb, D.C.; Wells, A.D.; Restifo, N.P.; Rathmell, W.K.; Locasale, J.W.; Davila, M.L.; Blazar, B.R.; Rathmell, J.C. Distinct regulation of Th17 and Th1 cell differentiation by glutaminase-dependent metabolism. Cell, 2018, 175(7), 1780-1795.e19.
[http://dx.doi.org/10.1016/j.cell.2018.10.001] [PMID: 30392958]
[201]
Huang, M.; Xiong, D.; Pan, J.; Zhang, Q.; Sei, S.; Shoemaker, R.H.; Lubet, R.A.; Montuenga, L.M.; Wang, Y.; Slusher, B.S.; You, M. Targeting glutamine metabolism to enhance immunoprevention of EGFR-driven lung cancer. Adv. Sci. (Weinh.), 2022, 9(26), 2105885.
[http://dx.doi.org/10.1002/advs.202105885] [PMID: 35861366]
[202]
Peyraud, F.; Guegan, J.P.; Bodet, D.; Cousin, S.; Bessede, A.; Italiano, A. Targeting tryptophan catabolism in cancer immunotherapy era: Challenges and perspectives. Front. Immunol., 2022, 13, 807271.
[http://dx.doi.org/10.3389/fimmu.2022.807271] [PMID: 35173722]
[203]
Yoo, H.C.; Han, J.M. Amino acid metabolism in cancer drug resistance. Cells, 2022, 11(1), 140.
[http://dx.doi.org/10.3390/cells11010140] [PMID: 35011702]
[204]
Zhang, H.L.; Chen, P.; Yan, H.X.; Fu, G.B.; Luo, F.F.; Zhang, J.; Zhao, S.M.; Zhai, B.; Yu, J.H.; Chen, L.; Cui, H.S.; Chen, J.; Huang, S.; Zeng, J.; Xu, W.; Wang, H.Y.; Liu, J. Targeting mTORC2/HDAC3 inhibits stemness of liver cancer cells against glutamine starvation. Adv. Sci. (Weinh.), 2022, 9(20), 2103887.
[http://dx.doi.org/10.1002/advs.202103887] [PMID: 35187863]

© 2025 Bentham Science Publishers | Privacy Policy