Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Natural Plant Materials as a Source of Neuroprotective Peptides

Author(s): Agnieszka Skibska and Renata Perlikowska*

Volume 31, Issue 31, 2024

Published on: 16 August, 2023

Page: [5027 - 5045] Pages: 19

DOI: 10.2174/0929867331666230703145043

Price: $65

Abstract

In many circumstances, some crucial elements of the neuronal defense system fail, slowly leading to neurodegenerative diseases. Activating this natural process by administering exogenous agents to counteract unfavourable changes seems promising. Therefore, looking for neuroprotective therapeutics, we have to focus on compounds that inhibit the primary mechanisms leading to neuronal injuries, e.g., apoptosis, excitotoxicity, oxidative stress, and inflammation. Among many compounds considered neuroprotective agents, protein hydrolysates and peptides derived from natural materials or their synthetic analogues are good candidates. They have several advantages, such as high selectivity and biological activity, a broad range of targets, and high safety profile. This review aims to provide biological activities, the mechanism of action and the functional properties of plant-derived protein hydrolysates and peptides. We focused on their significant role in human health by affecting the nervous system and having neuroprotective and brain-boosting properties, leading to memory and cognitive improving activities. We hope our observation may guide the evaluation of novel peptides with potential neuroprotective effects. Research into neuroprotective peptides may find application in different sectors as ingredients in functional foods or pharmaceuticals to improve human health and prevent diseases.

[1]
Muddapu, V.R.; Dharshini, S.A.P.; Chakravarthy, V.S.; Gromiha, M.M. Neurodegenerative diseases-Is metabolic deficiency the root cause? Front. Neurosci., 2020, 14(213), 213.
[http://dx.doi.org/10.3389/fnins.2020.00213] [PMID: 32296300]
[2]
Qin, N.; Geng, A.; Xue, R. Activated or impaired: An overview of DNA repair in neurodegenerative diseases. Aging Dis., 2022, 13(4), 987-1004.
[http://dx.doi.org/10.14336/AD.2021.1212] [PMID: 35855336]
[3]
Tan, S.H.; Karri, V.; Tay, N.W.R.; Chang, K.H.; Ah, H.Y.; Ng, P.Q.; Ho, H.S.; Keh, H.W.; Candasamy, M. Emerging pathways to neurodegeneration: Dissecting the critical molecular mechanisms in Alzheimer’s disease, Parkinson’s disease. Biomed. Pharmacother., 2019, 111, 765-777.
[http://dx.doi.org/10.1016/j.biopha.2018.12.101] [PMID: 30612001]
[4]
Ayeni, E.A.; Aldossary, A.M.; Ayejoto, D.A.; Gbadegesin, L.A.; Alshehri, A.A.; Alfassam, H.A.; Afewerky, H.K.; Almughem, F.A.; Bello, S.M.; Tawfik, E.A. Neurodegenerative diseases: Implications of environmental and climatic influences on neurotransmitters and neuronal hormones activities. Int. J. Environ. Res. Public Health, 2022, 19(19), 12495.
[http://dx.doi.org/10.3390/ijerph191912495] [PMID: 36231792]
[5]
Dailah, H.G. Potential of therapeutic small molecules in apoptosis regulation in the treatment of neurodegenerative diseases: An updated review. Molecules, 2022, 27(21), 7207.
[http://dx.doi.org/10.3390/molecules27217207] [PMID: 36364033]
[6]
Vajda, F.J.E. Neuroprotection and neurodegenerative disease. J. Clin. Neurosci., 2002, 9(1), 4-8.
[http://dx.doi.org/10.1054/jocn.2001.1027] [PMID: 11749009]
[7]
Burbach, J.P.H. Neuropeptides from concept to online database www.neuropeptides.nl. Eur J Pharmacol., 2010, 626(1), 27-48.
[http://dx.doi.org/10.1016/j.ejphar.2009.10.015] [PMID: 19837055]
[8]
Yeo, X.Y.; Cunliffe, G.; Ho, R.C.; Lee, S.S.; Jung, S. Potentials of neuropeptides as therapeutic agents for neurological diseases. Biomedicines, 2022, 10(2), 343.
[http://dx.doi.org/10.3390/biomedicines10020343] [PMID: 35203552]
[9]
Zheng, Y.; Zhang, L.; Xie, J.; Shi, L. The emerging role of neuropeptides in Parkinson’s disease. Front. Aging Neurosci., 2021, 13, 646726.
[http://dx.doi.org/10.3389/fnagi.2021.646726] [PMID: 33762925]
[10]
Behl, T.; Madaan, P.; Sehgal, A.; Singh, S.; Makeen, H.A.; Albratty, M.; Alhazmi, H.A.; Meraya, A.M.; Bungau, S. Demystifying the neuroprotective role of neuropeptides in Parkinson's disease: A newfangled and eloquent therapeutic perspective. Int. J. Mol. Sci., 2022, 23(9), 1-34.
[http://dx.doi.org/10.3390/ijms23094565]
[11]
Ben-Shushan, S.; Miller, Y. Neuropeptides: Roles and activities as metal chelators in neurodegenerative diseases. J. Phys. Chem. B, 2021, 125(11), 2796-2811.
[http://dx.doi.org/10.1021/acs.jpcb.0c11151] [PMID: 33570949]
[12]
Mirchandani-Duque, M.; Barbancho, M.A.; López-Salas, A.; Alvarez-Contino, J.E.; García-Casares, N.; Fuxe, K.; Borroto-Escuela, D.O.; Narváez, M. Galanin and neuropeptide Y interaction enhances proliferation of granule precursor cells and expression of neuroprotective factors in the rat hippocampus with consequent augmented spatial memory. Biomedicines, 2022, 10(6), 1297.
[http://dx.doi.org/10.3390/biomedicines10061297] [PMID: 35740319]
[13]
Akbarian, M.; Khani, A.; Eghbalpour, S.; Uversky, V.N. Bioactive peptides: Synthesis, sources, applications and proposed mechanisms of action. Int. J. Mol. Sci., 2022, 23(3), 1-30.
[14]
Sarmadi, B.H.; Ismail, A. Antioxidative peptides from food proteins: A review. Peptides, 2010, 31(10), 1949-1956.
[http://dx.doi.org/10.1016/j.peptides.2010.06.020] [PMID: 20600423]
[15]
H, M.; J, F.G. Biofunctional peptides from milk proteins: mineral binding and cytomodulatory effects. Curr. Pharm. Des., 2003, 9(16), 1289-1295.
[http://dx.doi.org/10.2174/1381612033454847] [PMID: 12769737]
[16]
Sánchez, A.; Vázquez, A. Bioactive peptides: A review. Food Qual. Saf., 2017, 1(1), 29-46.
[http://dx.doi.org/10.1093/fqs/fyx006]
[17]
Perlikowska, R. Whether short peptides are good candidates for future neuroprotective therapeutics? Peptides, 2021, 140(170528), 170528.
[http://dx.doi.org/10.1016/j.peptides.2021.170528] [PMID: 33716091]
[18]
Katayama, S.; Nakamura, S. Emerging roles of bioactive peptides on brain health promotion. Int. J. Food Sci. Technol., 2019, 54(6), 1949-1955.
[http://dx.doi.org/10.1111/ijfs.14076]
[19]
Lee, S.Y.; Hur, S.J. Mechanisms of neuroprotective effects of peptides derived from natural materials and their production and assessment. Compr. Rev. Food Sci. Food Saf., 2019, 18(4), 923-935.
[http://dx.doi.org/10.1111/1541-4337.12451] [PMID: 33336993]
[20]
Wang, S.; Sun-Waterhouse, D.; Neil Waterhouse, G.I.; Zheng, L.; Su, G.; Zhao, M. Effects of food-derived bioactive peptides on cognitive deficits and memory decline in neurodegenerative diseases: A review. Trends Food Sci. Technol., 2021, 116, 712-732.
[http://dx.doi.org/10.1016/j.tifs.2021.04.056]
[21]
Galland, F.; de Espindola, J.S.; Lopes, D.S.; Taccola, M.F.; Pacheco, M.T.B. Food-derived bioactive peptides: Mechanisms of action underlying inflammation and oxidative stress in the central nervous system. Food Chem. Adv., 2022, 1(100087), 100087.
[http://dx.doi.org/10.1016/j.focha.2022.100087]
[22]
Nwachukwu, I.D.; Aluko, R.E. Structural and functional properties of food protein-derived antioxidant peptides. J. Food Biochem., 2019, 43(1), e12761.
[http://dx.doi.org/10.1111/jfbc.12761] [PMID: 31353492]
[23]
Giovannini, D.; Andreola, F.; Spitalieri, P.; Krasnowska, E.K.; Colini Baldeschi, A.; Rossi, S.; Sangiuolo, F.; Cozzolino, M.; Serafino, A. Natriuretic peptides are neuroprotective on in vitro models of PD and promote dopaminergic differentiation of hiPSCs-derived neurons via the Wnt/β-catenin signaling. Cell Death Discov., 2021, 7(1), 330.
[http://dx.doi.org/10.1038/s41420-021-00723-6] [PMID: 34725335]
[24]
Ikeda, Y.; Nagase, N.; Tsuji, A.; Kitagishi, Y.; Matsuda, S. Neuroprotection by dipeptidyl-peptidase-4 inhibitors and glucagon-like peptide-1 analogs via the modulation of AKT-signaling pathway in Alzheimer’s disease. World J. Biol. Chem., 2021, 12(6), 104-113.
[http://dx.doi.org/10.4331/wjbc.v12.i6.104] [PMID: 34904048]
[25]
Park, J.E.; Leem, Y.H.; Park, J.S.; Kim, D.Y.; Kang, J.L.; Kim, H.S. Anti-inflammatory and neuroprotective mechanisms of gts-21, an α7 nicotinic acetylcholine receptor agonist, in neuroinflammation and Parkinson's disease mouse models. Int. J. Mol. Sci., 2022, 23(8), 1-19.
[26]
Prasasty, V.; Radifar, M.; Istyastono, E. Natural peptides in drug discovery targeting acetylcholinesterase. Molecules, 2018, 23(9), 1-21.
[http://dx.doi.org/10.3390/molecules23092344]
[27]
Sosalagere, C.; Adesegun Kehinde, B.; Sharma, P. Isolation and functionalities of bioactive peptides from fruits and vegetables: A reviews. Food Chem., 2022, 366, 130494.
[http://dx.doi.org/10.1016/j.foodchem.2021.130494] [PMID: 34293544]
[28]
Fan, H.; Liu, H.; Zhang, Y.; Zhang, S.; Liu, T.; Wang, D. Review on plant-derived bioactive peptides: biological activities, mechanism of action and utilizations in food development. J. Fut. Foods, 2022, 2(2), 143-159.
[http://dx.doi.org/10.1016/j.jfutfo.2022.03.003]
[29]
Viel, T.A.; Toricelli, M.; Pereira, A.A.R.; Souza Abrao, G.; Malerba, H.N.; Maia, J.; Buck, H.S. Mechanisms of neuroplasticity and brain degeneration: strategies for protection during the aging process. Neural Regen. Res., 2021, 16(1), 58-67.
[http://dx.doi.org/10.4103/1673-5374.286952] [PMID: 32788448]
[30]
Gitler, A.D.; Dhillon, P.; Shorter, J. Neurodegenerative disease: models, mechanisms, and a new hope. Dis. Model. Mech., 2017, 10(5), 499-502.
[http://dx.doi.org/10.1242/dmm.030205] [PMID: 28468935]
[31]
Fricker, L.D. Neuropeptides and other bioactive peptides: From discovery to function. Colloq. Ser. Neuropeptides, 2012, 1(2), 1-122.
[http://dx.doi.org/10.4199/C00058ED1V01Y201205NPE003]
[32]
Moujalled, D.; Strasser, A.; Liddell, J.R. Molecular mechanisms of cell death in neurological diseases. Cell Death Differ., 2021, 28(7), 2029-2044.
[http://dx.doi.org/10.1038/s41418-021-00814-y] [PMID: 34099897]
[33]
Gan, L.; Cookson, M.R.; Petrucelli, L.; La Spada, A.R. Converging pathways in neurodegeneration, from genetics to mechanisms. Nat. Neurosci., 2018, 21(10), 1300-1309.
[http://dx.doi.org/10.1038/s41593-018-0237-7] [PMID: 30258237]
[34]
Liu, J.; Chang, L.; Song, Y.; Li, H.; Wu, Y. The role of NMDA receptors in Alzheimer’s disease. Front. Neurosci., 2019, 13, 43.
[http://dx.doi.org/10.3389/fnins.2019.00043] [PMID: 30800052]
[35]
Lee, J.H.; Jeong, S.K.; Kim, B.C.; Park, K.W.; Dash, A. Donepezil across the spectrum of Alzheimer’s disease: dose optimization and clinical relevance. Acta Neurol. Scand., 2015, 131(5), 259-267.
[http://dx.doi.org/10.1111/ane.12386] [PMID: 25690270]
[36]
Sharma, N.K.; Sethy, N.K.; Meena, R.N.; Ilavazhagan, G.; Das, M.; Bhargava, K. Activity-dependent neuroprotective protein (ADNP)-derived peptide (NAP) ameliorates hypobaric hypoxia induced oxidative stress in rat brain. Peptides, 2011, 32(6), 1217-1224.
[http://dx.doi.org/10.1016/j.peptides.2011.03.016] [PMID: 21453737]
[37]
Sharma, K. Cholinesterase inhibitors as Alzheimer’s therapeutics (Review). Mol. Med. Rep., 2019, 20(2), 1479-1487.
[PMID: 31257471]
[38]
Finkel, S.I. Effects of rivastigmine on behavioral and psychological symptoms of dementia in Alzheimer’s disease. Clin. Ther., 2004, 26(7), 980-990.
[http://dx.doi.org/10.1016/S0149-2918(04)90172-5] [PMID: 15336465]
[39]
Iarkov, A.; Barreto, G.E.; Grizzell, J.A.; Echeverria, V. Strategies for the treatment of Parkinson’s disease: Beyond dopamine. Front. Aging Neurosci., 2020, 12(4), 4.
[http://dx.doi.org/10.3389/fnagi.2020.00004] [PMID: 32076403]
[40]
Quinn, N. Fortnightly review: Drug treatment of Parkinson’s disease. BMJ, 1995, 310(6979), 575-579.
[http://dx.doi.org/10.1136/bmj.310.6979.575] [PMID: 7888935]
[41]
Jatana, N.; Apoorva, N.; Malik, S.; Sharma, A.; Latha, N. Inhibitors of catechol-O-methyltransferase in the treatment of neurological disorders. Cent. Nerv. Syst. Agents Med. Chem., 2014, 13(3), 166-194.
[http://dx.doi.org/10.2174/1871524913666140109113341] [PMID: 24450388]
[42]
Le, W.D.; Jankovic, J. Are dopamine receptor agonists neuroprotective in Parkinson’s disease? Drugs Aging, 2001, 18(6), 389-396.
[http://dx.doi.org/10.2165/00002512-200118060-00001] [PMID: 11419913]
[43]
Bonuccelli, U.; Colzi, A.; Del Dotto, P. Pergolide in the treatment of patients with early and advanced Parkinson’s disease. Clin. Neuropharmacol., 2002, 25(1), 1-10.
[http://dx.doi.org/10.1097/00002826-200201000-00001] [PMID: 11852289]
[44]
Cai, Z. Monoamine oxidase inhibitors: Promising therapeutic agents for Alzheimer’s disease (Review). Mol. Med. Rep., 2014, 9(5), 1533-1541.
[http://dx.doi.org/10.3892/mmr.2014.2040] [PMID: 24626484]
[45]
Amato, A.; Terzo, S.; Mulè, F. Natural compounds as beneficial antioxidant agents in neurodegenerative disorders: A focus on Alzheimer’s disease. Antioxidants, 2019, 8(12), 608-622.
[http://dx.doi.org/10.3390/antiox8120608] [PMID: 31801234]
[46]
Zakharova, M. Modern approaches in gene therapy of motor neuron diseases. Med. Res. Rev., 2021, 41(5), 2634-2655.
[http://dx.doi.org/10.1002/med.21705] [PMID: 32638429]
[47]
Doxakis, E. Therapeutic antisense oligonucleotides for movement disorders. Med. Res. Rev., 2021, 41(5), 2656-2688.
[http://dx.doi.org/10.1002/med.21706] [PMID: 32656818]
[48]
Bento-Pereira, C.; Dinkova-Kostova, A.T. Activation of transcription factor Nrf2 to counteract mitochondrial dysfunction in Parkinson’s disease. Med. Res. Rev., 2021, 41(2), 785-802.
[http://dx.doi.org/10.1002/med.21714] [PMID: 32681666]
[49]
Hussain, R.; Zubair, H.; Pursell, S.; Shahab, M. Neurodegenerative diseases: Regenerative mechanisms and novel therapeutic approaches. Brain Sci., 2018, 8(9), 177.
[http://dx.doi.org/10.3390/brainsci8090177] [PMID: 30223579]
[50]
Albertini, C.; Salerno, A.; Sena Murteira Pinheiro, P.; Bolognesi, M.L. From combinations to multitarget-directed ligands: A continuum in Alzheimer’s disease polypharmacology. Med. Res. Rev., 2021, 41(5), 2606-2633.
[http://dx.doi.org/10.1002/med.21699] [PMID: 32557696]
[51]
Durães, F.; Pinto, M.; Sousa, E. Old drugs as new treatments for neurodegenerative diseases. Pharmaceuticals (Basel), 2018, 11(2), 44.
[http://dx.doi.org/10.3390/ph11020044] [PMID: 29751602]
[52]
Mucke, H.A.M. The case of galantamine: Repurposing and late blooming of a cholinergic drug. Future Sci. 2015, 1(4), FSO73, 1-6, 2015, 1(4), 1-6.
[53]
Heinrich, M. Galanthamine from Galanthus and other Amaryllidaceae--chemistry and biology based on traditional use. Alkaloids Chem. Biol., 2010, 68, 157-165.
[http://dx.doi.org/10.1016/S1099-4831(10)06804-5] [PMID: 20334038]
[54]
Lee, H.M.; Kim, Y. Drug repurposing is a new opportunity for developing drugs against neuropsychiatric disorders. Schizophr. Res. Treatment, 2016, 2016(6378137), 1-12.
[http://dx.doi.org/10.1155/2016/6378137] [PMID: 27073698]
[55]
Biagini, G.; Frasoldati, A.; Fuxe, K.; Agnati, L.F. The concept of astrocyte-kinetic drug in the treatment of neurodegenerative diseases: Evidence for l-deprenyl-induced activation of reactive astrocytes. Neurochem. Int., 1994, 25(1), 17-22.
[http://dx.doi.org/10.1016/0197-0186(94)90047-7] [PMID: 7950964]
[56]
Pålhagen, S.; Heinonen, E.; Hägglund, J.; Kaugesaar, T.; Mäki-Ikola, O.; Palm, R. Selegiline slows the progression of the symptoms of Parkinson disease. Neurology, 2006, 66(8), 1200-1206.
[http://dx.doi.org/10.1212/01.wnl.0000204007.46190.54] [PMID: 16540603]
[57]
Elufioye, T.O.; Berida, T.I.; Habtemariam, S. Plants-derived neuroprotective agents: Cutting the cycle of cell death through multiple mechanisms. Evid. Based Complement. Alternat. Med., 2017, 2017(3574012), 1-27.
[http://dx.doi.org/10.1155/2017/3574012] [PMID: 28904554]
[58]
Khazdair, M.R.; Anaeigoudari, A.; Hashemzehi, M.; Mohebbati, R. Neuroprotective potency of some spice herbs, a literature review. J. Tradit. Complement. Med., 2019, 9(2), 98-105.
[http://dx.doi.org/10.1016/j.jtcme.2018.01.002] [PMID: 30963044]
[59]
Chen, H.; Zhao, M.; Lin, L.; Wang, J.; Sun-Waterhouse, D.; Dong, Y.; Zhuang, M.; Su, G. Identification of antioxidative peptides from defatted walnut meal hydrolysate with potential for improving learning and memory. Food Res. Int., 2015, 78, 216-223.
[http://dx.doi.org/10.1016/j.foodres.2015.10.008] [PMID: 28433285]
[60]
Wang, S.; Zheng, L.; Zhao, T.; Zhang, Q.; Su, G.; Zhao, M. The neuroprotective effect of walnut-derived peptides against glutamate-induced damage in PC12 cells: mechanism and bioavailability. Food Sci. Hum. Wellness, 2022, 11(4), 933-942.
[http://dx.doi.org/10.1016/j.fshw.2022.03.021]
[61]
Wang, S.; Su, G.; Zhang, Q.; Zhao, T.; Liu, Y.; Zheng, L.; Zhao, M. Walnut (Juglans regia) peptides reverse sleep deprivation-induced memory impairment in rat via alleviating oxidative stress. J. Agric. Food Chem., 2018, 66(40), 10617-10627.
[http://dx.doi.org/10.1021/acs.jafc.8b03884] [PMID: 30226056]
[62]
Lorenzo, J.M.; Munekata, P.E.S.; Gómez, B.; Barba, F.J.; Mora, L.; Pérez-Santaescolástica, C.; Toldrá, F. Bioactive peptides as natural antioxidants in food products – A review. Trends Food Sci. Technol., 2018, 79, 136-147.
[http://dx.doi.org/10.1016/j.tifs.2018.07.003]
[63]
Matsui, R.; Honda, R.; Kanome, M.; Hagiwara, A.; Matsuda, Y.; Togitani, T.; Ikemoto, N.; Terashima, M. Designing antioxidant peptides based on the antioxidant properties of the amino acid side-chains. Food Chem., 2018, 245, 750-755.
[http://dx.doi.org/10.1016/j.foodchem.2017.11.119] [PMID: 29287436]
[64]
Zhao, K.; Zhao, G.M.; Wu, D.; Soong, Y.; Birk, A.V.; Schiller, P.W.; Szeto, H.H. Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. J. Biol. Chem., 2004, 279(33), 34682-34690.
[http://dx.doi.org/10.1074/jbc.M402999200] [PMID: 15178689]
[65]
Karami, Z.; Akbari-adergani, B. Bioactive food derived peptides: a review on correlation between structure of bioactive peptides and their functional properties. J. Food Sci. Technol., 2019, 56(2), 535-547.
[http://dx.doi.org/10.1007/s13197-018-3549-4] [PMID: 30906011]
[66]
Barashkova, A.S.; Rogozhin, E.A. Isolation of antimicrobial peptides from different plant sources: Does a general extraction method exist? Plant Methods, 2020, 16(1), 143.
[http://dx.doi.org/10.1186/s13007-020-00687-1] [PMID: 33110440]
[67]
Liu, W.; Chen, X.; Li, H.; Zhang, J.; An, J.; Liu, X. Anti-inflammatory function of plant-derived bioactive peptides: A review. Foods, 2022, 11(15), 1-16.
[http://dx.doi.org/10.3390/foods11152361]
[68]
Aguilar-Toalá, J.E.; Hernández-Mendoza, A.; González-Córdova, A.F.; Vallejo-Cordoba, B.; Liceaga, A.M. Potential role of natural bioactive peptides for development of cosmeceutical skin products. Peptides, 2019, 122, 170170.
[http://dx.doi.org/10.1016/j.peptides.2019.170170] [PMID: 31574281]
[69]
Chai, K.F.; Voo, A.Y.H.; Chen, W.N. Bioactive peptides from food fermentation: A comprehensive review of their sources, bioactivities, applications, and future development. Compr. Rev. Food Sci. Food Saf., 2020, 19(6), 3825-3885.
[http://dx.doi.org/10.1111/1541-4337.12651] [PMID: 33337042]
[70]
Jakubczyk, A.; Karaś, M.; Rybczyńska-Tkaczyk, K.; Zielińska, E.; Zieliński, D. Current trends of bioactive peptides-New sources and therapeutic effect. Foods, 2020, 9(7), 1-28.
[http://dx.doi.org/10.3390/foods9070846]
[71]
Liu, Y.Q.; Strappe, P.; Shang, W.T.; Zhou, Z.K. Functional peptides derived from rice bran proteins. Crit. Rev. Food Sci. Nutr., 2019, 59(2), 349-356.
[http://dx.doi.org/10.1080/10408398.2017.1374923] [PMID: 28886263]
[72]
Fadimu, G.J.; Le, T.T.; Gill, H.; Farahnaky, A.; Olatunde, O.O.; Truong, T. Enhancing the biological activities of food protein-derived peptides using non-thermal technologies: A review. Foods, 1823, 11(13), 1-27.
[73]
Daliri, E.B.M.; Oh, D.H.; Lee, B.H. Bioactive Peptides. Foods, 2017, 6(5), 1-21.
[http://dx.doi.org/10.3390/foods6050032]
[74]
Wang, X.; Yu, H.; Xing, R.; Liu, S.; Chen, X.; Li, P. Effect and mechanism of oyster hydrolytic peptides on spatial learning and memory in mice. RSC Advances, 2018, 8(11), 6125-6135.
[http://dx.doi.org/10.1039/C7RA13139A] [PMID: 35539616]
[75]
Kristinsson, H.G.; Rasco, B.A. Fish protein hydrolysates: production, biochemical, and functional properties. Crit. Rev. Food Sci. Nutr., 2000, 40(1), 43-81.
[http://dx.doi.org/10.1080/10408690091189266] [PMID: 10674201]
[76]
Jiang, L.; Xu, H.; Li, Y. Enzymolysis for preparation of ACE inhibitory peptides from walnut protein and studies on its function. J. Chin. Inst. Food Sci. Technol., 2015, 15(2), 79-85.
[77]
Li, W.; Zhao, T.; Zhang, J.; Wu, C.; Zhao, M.; Su, G. Comparison of neuroprotective and cognition-enhancing properties of hydrolysates from soybean, walnut, and peanut protein. J. Chem., 2016, 2016, 1-8.
[http://dx.doi.org/10.1155/2016/9358285]
[78]
Li, X.; Guo, M.; Chi, J.; Ma, J. Bioactive peptides from walnut residue protein. Molecules,, 2020, 25(6), 1-14.
[http://dx.doi.org/10.3390/molecules25061285]
[79]
Gu, M.; Chen, H.P.; Zhao, M.M.; Wang, X.; Yang, B.; Ren, J.Y.; Su, G.W. Identification of antioxidant peptides released from defatted walnut (Juglans Sigillata Dode) meal proteins with pancreatin. Lebensm. Wiss. Technol., 2015, 60(1), 213-220.
[http://dx.doi.org/10.1016/j.lwt.2014.07.052]
[80]
Meloni, B.P.; Mastaglia, F.L.; Knuckey, N.W. Cationic arginine-rich peptides (CARPs): A novel class of neuroprotective agents with a multimodal mechanism of action. Front. Neurol., 2020, 11(108), 108.
[http://dx.doi.org/10.3389/fneur.2020.00108] [PMID: 32158425]
[81]
Wang, S.; Su, G.; Fan, J.; Xiao, Z.; Zheng, L.; Zhao, M.; Wu, J. Arginine-containing peptides derived from walnut protein against cognitive and memory impairment in scopolamine-induced zebrafish: Design, release, and neuroprotection. J. Agric. Food Chem., 2022, 70(37), 11579-11590.
[http://dx.doi.org/10.1021/acs.jafc.2c05104] [PMID: 36098553]
[82]
Feng, L.; Peng, F.; Wang, X.; Li, M.; Lei, H.; Xu, H. Identification and characterization of antioxidative peptides derived from simulated in vitro gastrointestinal digestion of walnut meal proteins. Food Res. Int., 2019, 116, 518-526.
[http://dx.doi.org/10.1016/j.foodres.2018.08.068] [PMID: 30716976]
[83]
Wang, S.; Zheng, L.; Zhao, T.; Zhang, Q.; Liu, Y.; Sun, B.; Su, G.; Zhao, M. Inhibitory effects of walnut (Juglans regia) peptides on neuroinflammation and oxidative stress in lipopolysaccharide-induced cognitive impairment mice. J. Agric. Food Chem., 2020, 68(8), 2381-2392.
[http://dx.doi.org/10.1021/acs.jafc.9b07670] [PMID: 32037817]
[84]
Sheng, J.; Yang, X.; Liu, Q.; Luo, H.; Yin, X.; Liang, M.; Liu, W.; Lan, X.; Wan, J.; Yang, X. Coadministration with tea polyphenols enhances the neuroprotective effect of defatted walnut meal hydrolysate against scopolamine-induced learning and memory deficits in mice. J. Agric. Food Chem., 2020, 68(3), 751-758.
[http://dx.doi.org/10.1021/acs.jafc.9b05081] [PMID: 31861959]
[85]
Sheng, J.; Yang, X.; Chen, J.; Peng, T.; Yin, X.; Liu, W.; Liang, M.; Wan, J.; Yang, X. Antioxidative effects and mechanism study of bioactive peptides from defatted walnut (Juglans regia L.) meal hydrolysate. J. Agric. Food Chem., 2019, 67(12), 3305-3312.
[http://dx.doi.org/10.1021/acs.jafc.8b05722] [PMID: 30817142]
[86]
Ren, D.; Zhao, F.; Liu, C.; Wang, J.; Guo, Y.; Liu, J.; Min, W. Antioxidant hydrolyzed peptides from Manchurian walnut (Juglans mandshurica Maxim.) attenuate scopolamine-induced memory impairment in mice. J. Sci. Food Agric., 2018, 98(13), 5142-5152.
[http://dx.doi.org/10.1002/jsfa.9060] [PMID: 29652442]
[87]
Liu, C.; Guo, Y.; Zhao, F.; Qin, H.; Lu, H.; Fang, L.; Wang, J.; Min, W. Potential mechanisms mediating the protective effects of a peptide from walnut (Juglans mandshurica Maxim.) against hydrogen peroxide induced neurotoxicity in PC12 cells. Food Funct., 2019, 10(6), 3491-3501.
[http://dx.doi.org/10.1039/C8FO02557F] [PMID: 31143910]
[88]
Zhao, F.; Wang, J.; Lu, H.; Fang, L.; Qin, H.; Liu, C.; Min, W. Neuroprotection by walnut-derived peptides through autophagy promotion via Akt/mTOR signaling pathway against oxidative stress in PC12 cells. J. Agric. Food Chem., 2020, 68(11), 3638-3648.
[http://dx.doi.org/10.1021/acs.jafc.9b08252] [PMID: 32090563]
[89]
Prajapati, P.; Sripada, L.; Singh, K.; Bhatelia, K.; Singh, R.; Singh, R. TNF-α regulates miRNA targeting mitochondrial complex-I and induces cell death in dopaminergic cells. Biochim. Biophys. Acta Mol. Basis Dis., 2015, 1852(3), 451-461.
[http://dx.doi.org/10.1016/j.bbadis.2014.11.019] [PMID: 25481834]
[90]
Zheng, L.; Su, G.; Ren, J.; Gu, L.; You, L.; Zhao, M. Isolation and characterization of an oxygen radical absorbance activity peptide from defatted peanut meal hydrolysate and its antioxidant properties. J. Agric. Food Chem., 2012, 60(21), 5431-5437.
[http://dx.doi.org/10.1021/jf3017173] [PMID: 22577732]
[91]
Katayama, S.; Imai, R.; Sugiyama, H.; Nakamura, S. Oral administration of soy peptides suppresses cognitive decline by induction of neurotrophic factors in SAMP8 mice. J. Agric. Food Chem., 2014, 62(16), 3563-3569.
[http://dx.doi.org/10.1021/jf405416s] [PMID: 24678753]
[92]
Shimizu, A.; Mitani, T.; Tanaka, S.; Fujii, H.; Maebuchi, M.; Amiya, Y.; Tanaka, M.; Matsui, T.; Nakamura, S.; Katayama, S. Soybean-derived glycine–arginine dipeptide administration promotes neurotrophic factor expression in the mouse brain. J. Agric. Food Chem., 2018, 66(30), 7935-7941.
[http://dx.doi.org/10.1021/acs.jafc.8b01581] [PMID: 29985005]
[93]
Ju, D.T.; Kumar, A.K.; Kuo, W.W.; Ho, T.J.; Chang, R.L.; Lin, W.T.; Day, C.H.; Viswanadha, V.V.P.; Liao, P.H.; Huang, C.Y. Bioactive peptide VHVV upregulates the long-term memory-related biomarkers in adult spontaneously hypertensive rats. Int. J. Mol. Sci., 20(12), 1-13.
[http://dx.doi.org/10.3390/ijms20123069]
[94]
Tanaka, M.; Kiyohara, H.; Yoshino, A.; Nakano, A.; Takata, F.; Dohgu, S.; Kataoka, Y.; Matsui, T. Brain-transportable soy dipeptide, Tyr-Pro, attenuates amyloid β peptide25-35-induced memory impairment in mice. NPJ Sci. Food, 2020, 4(1), 7.
[http://dx.doi.org/10.1038/s41538-020-0067-3] [PMID: 32377566]
[95]
Maebuchi, M.; Samoto, M.; Kohno, M.; Ito, R.; Koikeda, T.; Hirotsuka, M.; Nakabou, Y. Improvement in the intestinal absorption of soy protein by enzymatic digestion to oligopeptide in healthy adult men. Food Sci. Technol. Res., 2007, 13(1), 45-53.
[http://dx.doi.org/10.3136/fstr.13.45]
[96]
Ichinose, T.; Moriyasu, K.; Nakahata, A.; Tanaka, M.; Matsui, T.; Furuya, S. Orally administrated dipeptide Ser-Tyr efficiently stimulates noradrenergic turnover in the mouse brain. Biosci. Biotechnol. Biochem., 2015, 79(9), 1542-1547.
[http://dx.doi.org/10.1080/09168451.2015.1044932] [PMID: 25996770]
[97]
Ichinose, T.; Murasawa, H.; Ishijima, T.; Okada, S.; Abe, K.; Matsumoto, S.; Matsui, T.; Furuya, S. Tyr-Trp administration facilitates brain norepinephrine metabolism and ameliorates a short-term memory deficit in a mouse model of Alzheimer's disease. PLoS One., 2020, 15(5), 1-17.
[98]
Kannan, A.; Hettiarachchy, N.; Mahadevan, M. Peptides derived from rice bran protect cells from obesity and Alzheimer’s disease. Int. J. Biomed. Res., 2012, 3(3), 131-135.
[http://dx.doi.org/10.7439/ijbr.v3i3.299]
[99]
Hettiarachchy, N.S. Bioactive Pentapeptides from Rice Bran and Use Thereof. U.S. Patent 8575310B2, 2013.,
[100]
Wu, J.; Li, P.; Shi, Y.; Fang, Y.; Zhu, Y.; Fan, F.; Pei, F.; Xia, J.; Xie, M.; Hu, Q. Neuroprotective effects of two selenium-containing peptides, TSeMMM and SeMDPGQQ, derived from selenium-enriched rice protein hydrolysates on Pb2+-induced oxidative stress in HT22 cells. Food Chem. Toxicol., 2020, 135(110932), 110932.
[http://dx.doi.org/10.1016/j.fct.2019.110932] [PMID: 31682935]
[101]
Lu, R.R.; Qian, P.; Sun, Z.; Zhou, X.H.; Chen, T.P.; He, J.F.; Zhang, H.; Wu, J. Hempseed protein derived antioxidative peptides: Purification, identification and protection from hydrogen peroxide-induced apoptosis in PC12 cells. Food Chem., 2010, 123(4), 1210-1218.
[http://dx.doi.org/10.1016/j.foodchem.2010.05.089]
[102]
Rodriguez-Martin, N.M.; Toscano, R.; Villanueva, A.; Pedroche, J.; Millan, F.; Montserrat-de la Paz, S.; Millan-Linares, M.C. Neuroprotective protein hydrolysates from hemp (Cannabis sativa L.) seeds. Food Funct., 2019, 10(10), 6732-6739.
[http://dx.doi.org/10.1039/C9FO01904A] [PMID: 31576391]
[103]
Montserrat-de la Paz, S.; Carrillo-Berdasco, G.; Rivero-Pino, F.; Villanueva-Lazo, A.; Millan-Linares, M.C. Hemp protein hydrolysates modulate inflammasome-related genes in microglial cells. Biology (Basel), 2022, 12(1), 49.
[http://dx.doi.org/10.3390/biology12010049] [PMID: 36671742]
[104]
Wattanathorn, J.; Thukham-mee, W.; Muchimapura, S.; Wannanon, P.; Tong-un, T.; Tiamkao, S. Preventive effect of cashew-derived protein hydrolysate with high fiber on cerebral ischemia. BioMed Res. Int., 2017, 2017(6135023), 1-14.
[http://dx.doi.org/10.1155/2017/6135023] [PMID: 29457029]
[105]
Sato, N.; Furuta, T.; Takeda, T.; Miyabe, Y.; Ura, K.; Takagi, Y.; Yasui, H.; Kumagai, Y.; Kishimura, H. Antioxidant activity of proteins extracted from red alga dulse harvested in Japan. J. Food Biochem, 2019, 43(2), 1-7.
[http://dx.doi.org/10.1111/jfbc.12709]
[106]
Zhu, K.X.; Guo, X.; Guo, X.N.; Peng, W.; Zhou, H.M. Protective effects of wheat germ protein isolate hydrolysates (WGPIH) against hydrogen peroxide-induced oxidative stress in PC12 cells. Food Res. Int., 2013, 53(1), 297-303.
[http://dx.doi.org/10.1016/j.foodres.2013.05.007]
[107]
Chen, J.; Liu, X.; Li, Z.; Qi, A.; Yao, P.; Zhou, Z.; Dong, T.T.X.; Tsim, K.W.K. A review of dietary Ziziphus jujuba fruit (Jujube): Developing health food supplements for brain protection. Evid. Based Complement. Alternat. Med., 2017, 2017(3019568), 3019568.
[PMID: 28680447]
[108]
Zare-Zardini, H.; Tolueinia, B.; Hashemi, A.; ebrahimi, L.; Fesahat, F. Antioxidant and cholinesterase inhibitory activity of a new peptide from Ziziphus jujuba fruits. Am. J. Alzheimers Dis. Other Demen., 2013, 28(7), 702-709.
[http://dx.doi.org/10.1177/1533317513500839] [PMID: 24005854]
[109]
Kanbargi, K.D.; Sonawane, S.K.; Arya, S.S. Functional and antioxidant activity of Ziziphus jujube seed protein hydrolysates. J. Food Meas. Charact., 2016, 10(2), 226-235.
[http://dx.doi.org/10.1007/s11694-015-9297-5]
[110]
Lemus-Conejo, A.; Millan-Linares, M.C.; Toscano, R.; Millan, F.; Pedroche, J.; Muriana, F.J.G.; Montserrat-de la Paz, S. GPETAFLR, a peptide from Lupinus angustifolius L. prevents inflammation in microglial cells and confers neuroprotection in brain. Nutr. Neurosci., 2022, 25(3), 472-484.
[http://dx.doi.org/10.1080/1028415X.2020.1763058] [PMID: 32401697]
[111]
Yang, S.; Kawamura, Y.; Yoshikawa, M. Effect of rubiscolin, a δ opioid peptide derived from Rubisco, on memory consolidation. Peptides, 2003, 24(2), 325-328.
[http://dx.doi.org/10.1016/S0196-9781(03)00044-5] [PMID: 12668220]
[112]
Yoshikawa, M. Bioactive peptides derived from natural proteins with respect to diversity of their receptors and physiological effects. Peptides, 2015, 72, 208-225.
[http://dx.doi.org/10.1016/j.peptides.2015.07.013] [PMID: 26297549]
[113]
Mitsumoto, Y.; Sato, R.; Tagawa, N.; Kato, I. Rubiscolin-6, a δ-opioid peptide from spinach RuBisCO, exerts antidepressant-like effect in restraint-stressed mice. J. Nutr. Sci. Vitaminol. (Tokyo), 2019, 65(2), 202-204.
[http://dx.doi.org/10.3177/jnsv.65.202] [PMID: 31061291]
[114]
Perlikowska, R.; Silva, J.; Alves, C.; Susano, P.; Pedrosa, R. The therapeutic potential of naturally occurring peptides in counteracting SH-SY5Y cells injury. Int. J. Mol. Sci., 2022, 23(19), 1-18.
[115]
Wang, L.; Wang, N.; Zhang, W.; Cheng, X.; Yan, Z.; Shao, G.; Wang, X.; Wang, R.; Fu, C. Therapeutic peptides: current applications and future directions. Signal Transduct. Target. Ther., 2022, 7(1), 48.
[http://dx.doi.org/10.1038/s41392-022-00904-4] [PMID: 35165272]
[116]
Baig, M.H.; Ahmad, K.; Saeed, M.; Alharbi, A.M.; Barreto, G.E.; Ashraf, G.M.; Choi, I. Peptide based therapeutics and their use for the treatment of neurodegenerative and other diseases. Biomed. Pharmacother., 2018, 103, 574-581.
[http://dx.doi.org/10.1016/j.biopha.2018.04.025] [PMID: 29677544]
[117]
MRC Clinical Trials Unit at UCL, Our Research: Neurodegenerative diseases. Available from: https://www.mrcctu.ucl.ac.uk/our-research/neurodegenerative-diseases/ (Accessed August 11, 2023).
[118]
US National Library of Medicine, Clinical Trials Available from: https://clinicaltrials.gov/ct2/results?cond=Neurodegenerative+Diseases&term=neurodegeneration&cntry=&state=&city=&dist= (Accessed August 11, 2023).
[119]
US National Library of Medicine, Clinical Trials: Safety Study of CN-105 Neuroprotective Peptide for Intracerebral Hemorrhage. Available from: https://clinicaltrials.gov/ct2/show/NCT02670824 (Accessed August 11, 2023).
[120]
Wang, H.; Faw, T.D.; Lin, Y.; Huang, S.; Venkatraman, T.N.; Cantillana, V.; Lascola, C.D.; James, M.L.; Laskowitz, D.T. Neuroprotective pentapeptide, CN-105, improves outcomes in translational models of intracerebral hemorrhage. Neurocrit. Care, 2021, 35(2), 441-450.
[http://dx.doi.org/10.1007/s12028-020-01184-y] [PMID: 33474632]
[121]
Weisgraber, K.H. Apolipoprotein E: structure-function relationships. Adv. Protein Chem., 1994, 45, 249-302.
[http://dx.doi.org/10.1016/S0065-3233(08)60642-7] [PMID: 8154371]
[122]
James, M.L.; Komisarow, J.M.; Wang, H.; Laskowitz, D.T. Therapeutic development of apolipoprotein E mimetics for acute brain injury: Augmenting endogenous responses to reduce secondary injury. Neurotherapeutics, 2020, 17(2), 475-483.
[http://dx.doi.org/10.1007/s13311-020-00858-x] [PMID: 32318912]
[123]
James, M.L.; Sullivan, P.M.; Lascola, C.D.; Vitek, M.P.; Laskowitz, D.T. Pharmacogenomic effects of apolipoprotein e on intracerebral hemorrhage. Stroke, 2009, 40(2), 632-639.
[http://dx.doi.org/10.1161/STROKEAHA.108.530402] [PMID: 19109539]
[124]
Li, S.; Wangqin, R.; Meng, X.; Li, H.; Wang, Y.; Wang, H.; Laskowitz, D.; Chen, X.; Wang, Y. Tolerability and pharmacokinetics of single escalating and repeated doses of CN-105 in healthy participants. Clin. Ther., 2022, 44(5), 744-754.
[http://dx.doi.org/10.1016/j.clinthera.2022.03.006] [PMID: 35562205]
[125]
Yenjerla, M.; LaPointe, N.E.; Lopus, M.; Cox, C.; Jordan, M.A.; Feinstein, S.C.; Wilson, L. The neuroprotective peptide NAP does not directly affect polymerization or dynamics of reconstituted neural microtubules. J. Alzheimers Dis., 2010, 19(4), 1377-1386.
[http://dx.doi.org/10.3233/JAD-2010-1335] [PMID: 20061604]
[126]
Gozes, I.; Morimoto, B.H.; Tiong, J.; Fox, A.; Sutherland, K.; Dangoor, D.; Holser-Cochav, M.; Vered, K.; Newton, P.; Aisen, P.S.; Matsuoka, Y.; Dyck, C.H.; Thal, L. NAP: research and development of a peptide derived from activity-dependent neuroprotective protein (ADNP). CNS Drug Rev., 2005, 11(4), 353-368.
[http://dx.doi.org/10.1111/j.1527-3458.2005.tb00053.x] [PMID: 16614735]
[127]
Geerts, H. AL-108 and AL-208, formulations of the neuroprotective NAP fragment of activity-dependent neuroprotective protein, for cognitive disorders. Curr. Opin. Investig. Drugs, 2008, 9(7), 800-811.
[PMID: 18600585]
[128]
US National Library of Medicine, Clinical Trials: Study to Evaluate the Safety and Efficacy of Davunetide for the Treatment of Progressive Supranuclear Palsy. Available from: https://clinicaltrials.gov/ct2/show/NCT01110720 (Accessed August 11, 2023).
[129]
Zemlyak, I.; Furman, S.; Brenneman, D.E.; Gozes, I. A Novel peptide prevents death in enriched neuronal cultures. Regul. Pept., 2000, 96(1-2), 39-43.
[http://dx.doi.org/10.1016/S0167-0115(00)00198-1] [PMID: 11102650]
[130]
Vulih-Shultzman, I.; Pinhasov, A.; Mandel, S.; Grigoriadis, N.; Touloumi, O.; Pittel, Z.; Gozes, I. Activity-dependent neuroprotective protein snippet NAP reduces tau hyperphosphorylation and enhances learning in a novel transgenic mouse model. J. Pharmacol. Exp. Ther., 2007, 323(2), 438-449.
[http://dx.doi.org/10.1124/jpet.107.129551] [PMID: 17720885]
[131]
Alzforum, Networking for a Cure, Clinical Trials: Davunetide. Available from: https://www.alzforum.org/therapeutics/davunetide (Accessed August 11, 2023).
[132]
Boxer, A.L.; Lang, A.E.; Grossman, M.; Knopman, D.S.; Miller, B.L.; Schneider, L.S.; Doody, R.S.; Lees, A.; Golbe, L.I.; Williams, D.R.; Corvol, J.C.; Ludolph, A.; Burn, D.; Lorenzl, S.; Litvan, I.; Roberson, E.D.; Höglinger, G.U.; Koestler, M.; Jack, C.R., Jr; Van Deerlin, V.; Randolph, C.; Lobach, I.V.; Heuer, H.W.; Gozes, I.; Parker, L.; Whitaker, S.; Hirman, J.; Stewart, A.J.; Gold, M.; Morimoto, B.H. Davunetide in patients with progressive supranuclear palsy: a randomised, double-blind, placebo-controlled phase 2/3 trial. Lancet Neurol., 2014, 13(7), 676-685.
[http://dx.doi.org/10.1016/S1474-4422(14)70088-2] [PMID: 24873720]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy