Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Review Article

1,3,4-Oxadiazole and Its Analogs: Recently Adopted Synthetic Approaches and Interaction with Targets

Author(s): Greesh Kumar, Rajnish Kumar*, Avijit Mazumder, Salahuddin and Upendra Kumar

Volume 21, Issue 12, 2024

Published on: 24 August, 2023

Page: [2335 - 2351] Pages: 17

DOI: 10.2174/1570180820666230701000317

Price: $65

Abstract

1,3,4-Oxadiazole is a five-membered heterocyclic compound with one oxygen, two nitrogen, and two carbon atoms arranged in a ring. Several research reports, patents, and marketed drugs have already established 1,3,4-oxadiazole and its analog as potential molecules having a diverse range of pharmacological activities. In this review, we focused on recently acknowledged straightforward synthesis approaches for 1,3,4-oxadiazole and its analogs. Additionally, interactions of the 1,3,4-oxadiazole derivative with different biological targets (enzymes and receptors) have been described. The present findings discussed in this review analysis will aid researchers in conducting future research on 1,3,4-oxadiazole.

[1]
De, S.S.; Khambete, M.P.; Degani, M.S. Oxadiazole scaffolds in anti-tuberculosis drug discovery. Bioorg. Med. Chem. Lett., 2019, 29(16), 1999-2007.
[http://dx.doi.org/10.1016/j.bmcl.2019.06.054] [PMID: 31296357]
[2]
Somani, R.R.; Shirodkar, P.Y. Oxadiazole: A biologically important heterocycle. Der Pharma Chemica, 2011, 42(10)
[3]
Mishra, A.K.; Kumar, A.; Sahu, J.K. Recent Advancements in Biological Activities of Oxadiazole and their Derivatives: A Review. Lett. Org. Chem., 2020, 17(6), 409-429.
[http://dx.doi.org/10.2174/1570178617666191220115426]
[4]
Wei, H.; He, C.; Zhang, J.; Shreeve, J.N. Combination of 1, 2, 4‐Oxadiazole and 1, 2, 5‐oxadiazole moieties for the generation of high‐performance energetic materials. Angew Chem Int, 2015, 54(32), 9367-9371.
[5]
Atmaram, U.A.; Roopan, S.M. Biological activity of oxadiazole and thiadiazole derivatives. Appl. Microbiol. Biotechnol., 2022, 106(9-10), 3489-3505.
[http://dx.doi.org/10.1007/s00253-022-11969-0] [PMID: 35562490]
[6]
Ng, Y.X. Synthesis and characterization of 1, 3, 4-oxadiazoles bearing an indole ring. Doctoral dissertation, UTAR, 2020.
[7]
Banik, B.K.; Sahoo, B.M.; Kumar, B.V.V.R.; Panda, K.C.; Jena, J.; Mahapatra, M.K.; Borah, P. Green synthetic approach: An efficient eco-friendly tool for synthesis of biologically active oxadiazole derivatives. Molecules, 2021, 26(4), 1163.
[http://dx.doi.org/10.3390/molecules26041163] [PMID: 33671751]
[8]
Ajani, O.O.; Iyaye, K.T. Recent advances on oxadiazole motifs: Synthesis, reactions and biological activities. Mediterr. J. Chem., 2020, 10(5), 418.
[http://dx.doi.org/10.13171/mjc10502005121200ooa]
[9]
Zarghi, A.; Hajimahdi, Z.; Mohebbi, S.; Rashidi, H.; Mozaffari, S.; Sarraf, S.; Faizi, M.; Tabatabaee, S.A.; Shafiee, A. Design and synthesis of new 2-substituted-5-[2-(2-halobenzyloxy)phenyl]-1,3,4-oxadiazoles as anticonvulsant agents. Chem. Pharm. Bull., 2008, 56(4), 509-512.
[http://dx.doi.org/10.1248/cpb.56.509] [PMID: 18379099]
[10]
Mohammed Iqbal, A.K.; Khan, A.Y.; Kalashetti, M.B.; Belavagi, N.S.; Gong, Y.D.; Khazi, I.A.M. Synthesis, hypoglycemic and hypolipidemic activities of novel thiazolidinedione derivatives containing thiazole/triazole/oxadiazole ring. Eur. J. Med. Chem., 2012, 53, 308-315.
[http://dx.doi.org/10.1016/j.ejmech.2012.04.015] [PMID: 22575535]
[11]
Tantray, M.A.; Khan, I.; Hamid, H.; Alam, M.S.; Dhulap, A.; Kalam, A. Synthesis of benzimidazole-linked-1,3,4-oxadiazole carboxamides as GSK-3β inhibitors with in vivo antidepressant activity. Bioorg. Chem., 2018, 77, 393-401.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.040] [PMID: 29421716]
[12]
Girges, M.M. Synthesis and pharmacological evaluation of novel series of sulfonate ester-containing 1,3,4-oxadiazole derivatives with anticipated hypoglycemic activity. Arzneimittelforschung, 1994, 44(4), 490-495.
[PMID: 8011002]
[13]
Husain, A.; Ajmal, M. Synthesis of novel 1,3,4-oxadiazole derivatives and their biological properties. Acta Pharm., 2009, 59(2), 223-233.
[http://dx.doi.org/10.2478/v10007-009-0011-1] [PMID: 19564146]
[14]
Musser, J.H.; Brown, R.E.; Loev, B.; Bailey, K.; Jones, H.; Kahen, R.; Huang, F.; Khandwala, A.; Leibowitz, M.; Sonnino-Goldman, P. Synthesis of 2-(2,3-dihydro-2-oxo-1,3,4-oxadiazol-5-yl) benzo heterocycles. A novel series of orally active antiallergic agents. J. Med. Chem., 1984, 27(2), 121-125.
[http://dx.doi.org/10.1021/jm00368a004] [PMID: 6198518]
[15]
Küçükgüzel, Ş.G.; Oruç, E.E.; Rollas, S.; Şahin, F.; Özbek, A. Synthesis, characterisation and biological activity of novel 4-thiazolidinones, 1,3,4-oxadiazoles and some related compounds. Eur. J. Med. Chem., 2002, 37(3), 197-206.
[http://dx.doi.org/10.1016/S0223-5234(01)01326-5] [PMID: 11900864]
[16]
Iškauskienė, M.; Kadlecová, A.; Voller, J.; Janovská, L.; Malinauskienė, V.; Žukauskaitė, A.; Šačkus, A. Synthesis of 5‐[(1 H ‐indol‐3‐yl)methyl]‐1,3,4‐oxadiazole‐2(3 H)‐thiones and their protective activity against oxidative stress. Arch. Pharm., 2021, 354(6), 2100001.
[http://dx.doi.org/10.1002/ardp.202100001] [PMID: 33733468]
[17]
Benmansour, F.; Eydoux, C.; Querat, G.; de Lamballerie, X.; Canard, B.; Alvarez, K.; Guillemot, J.C.; Barral, K. Novel 2-phenyl-5-[(E)-2-(thiophen-2-yl)ethenyl]-1,3,4-oxadiazole and 3-phenyl-5-[(E)-2-(thiophen-2-yl)ethenyl]-1,2,4-oxadiazole derivatives as dengue virus inhibitors targeting NS5 polymerase. Eur. J. Med. Chem., 2016, 109, 146-156.
[http://dx.doi.org/10.1016/j.ejmech.2015.12.046] [PMID: 26774922]
[18]
Xu, C.; Han, Y.; Xu, S.; Wang, R.; Yue, M.; Tian, Y.; Li, X.; Zhao, Y.; Gong, P. Design, synthesis and biological evaluation of new Axl kinase inhibitors containing 1,3,4-oxadiazole acetamide moiety as novel linker. Eur. J. Med. Chem., 2020, 186, 111867.
[http://dx.doi.org/10.1016/j.ejmech.2019.111867] [PMID: 31757525]
[19]
Choubey, P.K.; Tripathi, A.; Tripathi, M.K.; Seth, A.; Shrivastava, S.K. Design, synthesis, and evaluation of N-benzylpyrrolidine and 1,3,4-oxadiazole as multitargeted hybrids for the treatment of Alzheimer’s disease. Bioorg. Chem., 2021, 111, 104922.
[http://dx.doi.org/10.1016/j.bioorg.2021.104922] [PMID: 33945941]
[20]
Kashid, B.B.; Salunkhe, P.H.; Dongare, B.B.; More, K.R.; Khedkar, V.M.; Ghanwat, A.A. Synthesis of novel of 2, 5-disubstituted 1, 3, 4- oxadiazole derivatives and their in vitro anti-inflammatory, anti-oxidant evaluation, and molecular docking study. Bioorg. Med. Chem. Lett., 2020, 30(12), 127136.
[http://dx.doi.org/10.1016/j.bmcl.2020.127136] [PMID: 32280025]
[21]
Patel, N.B.; Purohit, A.C.; Rajani, D.P.; Moo-Puc, R.; Rivera, G. New 2-benzylsulfanyl-nicotinic acid based 1,3,4-oxadiazoles: Their synthesis and biological evaluation. Eur. J. Med. Chem., 2013, 62, 677-687.
[http://dx.doi.org/10.1016/j.ejmech.2012.12.055] [PMID: 23434641]
[22]
Aydın, E.; Şentürk, A.M.; Küçük, H.B.; Güzel, M. Cytotoxic activity and docking studies of 2-arenoxybenzaldehyde n-acyl hydrazone and 1, 3, 4-oxadiazole derivatives against various cancer cell lines. Molecules, 2022, 27(21), 7309.
[http://dx.doi.org/10.3390/molecules27217309] [PMID: 36364134]
[23]
Bhattacharyya, S.; Rana, D.; Bhattacharyya, S.N. A Thermodynamic Study of molecular association by gas-liquid chromatography: Trilaurylaminealcohol systems. J. Indian Chem. Soc., 1997, 74(7), 548-551.
[24]
Bhattacharyya, S.; Rana, D.; Bhattacharyya, S.N. Determination of heat of formation of associated systems by calorimetry. J. Indian Chem. Soc., 1997, 74(2), 103-107.
[25]
Bhattacharyya, S.; Rana, D.; Bhattacharyya, S.N. A thermodynamic study of molecular association by gas-liquid chromatography. J. Indian Chem. Soc., 1997, 74(6), 456-463.
[26]
James, N.D.; Growcott, J.W. Zibotentan. Drugs Future, 2009, 34(8), 624-633.
[http://dx.doi.org/10.1358/dof.2009.034.08.1400202]
[27]
Ogata, M.; Atobe, H.; Kushida, H.; Yamamoto, K. In vitro sensitivity of mycoplasmas isolated from various animals and sewage to antibiotics and nitrofurans. J. Antibiot., 1971, 24(7), 443-451.
[http://dx.doi.org/10.7164/antibiotics.24.443] [PMID: 4327309]
[28]
Adelstein, G.W.; Yen, C.H.; Dajani, E.Z.; Bianchi, R.G. 3,3-Diphenyl-3-(2-alkyl-1,3,4-oxadiazol-5-yl)propylcycloalkylamines, a novel series of antidiarrheal agents. J. Med. Chem., 1976, 19(10), 1221-1225.
[http://dx.doi.org/10.1021/jm00232a010] [PMID: 994153]
[29]
Savarino, A. A historical sketch of the discovery and development of HIV-1 integrase inhibitors. Expert Opin. Investig. Drugs, 2006, 15(12), 1507-1522.
[http://dx.doi.org/10.1517/13543784.15.12.1507] [PMID: 17107277]
[30]
Brandenberger, H.; Maes, R.A. Eds.; Analytical toxicology for clinical, forensic and pharmaceutical chemists; Walter de Gruyter, 2011.
[33]
Sarkar, D.; Joshi, R.A.; Anjali, P.L; Joshi, R.R.; Vijay, M.K. Antimycobacterial activity. Patent WO2016108249A1, 2016.
[34]
Seetharamaiah, S.S.N.; Appukkuttan, P.; Muralidhara, R.; Pottayil, G.N.S. Immunomodulators. Patent AU2016230767A1, 2016.
[35]
Ahrens, H.; Braun, R.; Hansjorg, D.; Elmar, G.; Arnim, K.; Stefan, L.; Stephen, D.L.; Christopher, H.R.; Andreas, V.A. Acylated N-(1,2,5-oxadiazole-3-yl)-, N-(1,3,4-oxadiazole-2-yl)-, n-(tetrazole-5- yl)- and N-(triazole-5-yl)-aryl carboxamides, and use thereof as herbicides. Patent AU2016330250A1, 2018.
[36]
Francisco-Javier, P; Luis, C Stemmng bleeding and for treating cancer. Patent WO2020060963A1, 2020.
[37]
Lee, C.S.; Oh, J.K. Histone deacetylase 6 inhibitor. Patent WO2020240492A1, 2020.
[38]
Peng, X.; Zhang, J.; De, Z. Herbicidal Patent WO2021082345A1, 2021.
[39]
Dufour, J.; Anne-Sophie, R.; Aurelie, M.; Jacopo, N.; Thomas, V.; Sophie, D.; Christoph, A.B.; Ruth, M. Fungicides Patent WO2021255169A1, 2021.
[40]
Dobrotă, C.; Paraschivescu, C.C.; Dumitru, I.; Matache, M.; Baciu, I.; Ruţă, L.L. Convenient preparation of unsymmetrical 2,5-disubstituted 1,3,4-oxadiazoles promoted by Dess–Martin reagent. Tetrahedron Lett., 2009, 50(17), 1886-1888.
[http://dx.doi.org/10.1016/j.tetlet.2009.02.054]
[41]
Pardeshi, S.P.; Patil, S.S.; Bobade, V.D. N-Chlorosuccinimide/1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU)–Mediated Synthesis of 2,5-Disubstituted 1,3,4-Oxadiazoles. Synth. Commun., 2010, 40(11), 1601-1606.
[http://dx.doi.org/10.1080/00397910903134592]
[42]
Gao, P.; Wei, Y. Efficient oxidative cyclization of N-acylhydrazones for the synthesis of 2,5-disubstituted 1,3,4- oxadiazoles using t -BuOI under neutral conditions. hc, 2013, 19(2), 113-119.
[http://dx.doi.org/10.1515/hc-2012-0179]
[43]
Prakash, O.; Kumar, M.; Kumar, R.; Sharma, C.; Aneja, K.R. Hypervalent iodine(III) mediated synthesis of novel unsymmetrical 2,5-disubstituted 1,3,4-oxadiazoles as antibacterial and antifungal agents. Eur. J. Med. Chem., 2010, 45(9), 4252-4257.
[http://dx.doi.org/10.1016/j.ejmech.2010.06.023] [PMID: 20630627]
[44]
Musad, E.A.; Mohamed, R.; Ali Saeed, B.; Vishwanath, B.S.; Lokanatha Rai, K.M. Synthesis and evaluation of antioxidant and antibacterial activities of new substituted bis(1,3,4-oxadiazoles), 3,5-bis(substituted) pyrazoles and isoxazoles. Bioorg. Med. Chem. Lett., 2011, 21(12), 3536-3540.
[http://dx.doi.org/10.1016/j.bmcl.2011.04.142] [PMID: 21612921]
[45]
Al-Ghorbani, M.; Gouda, M.A.; Baashen, M. A Review on Synthetic Routes of 5-Aryl-1, 3, 4-oxadiazoles. Indian J. Heterocycl. Chem., 2019, 29(01), 27-37.
[46]
Guin, S.; Ghosh, T.; Rout, S.K.; Banerjee, A.; Patel, B.K. Cu(II) catalyzed imine C-H functionalization leading to synthesis of 2,5-substituted 1,3,4-oxadiazoles. Org. Lett., 2011, 13(22), 5976-5979.
[http://dx.doi.org/10.1021/ol202409r] [PMID: 22007797]
[47]
Başpınar Küçük, H.; Alhonaish, A.; Yıldız, T.; Güzel, M. An efficient approach to access 2,5‐disubstituted 1,3,4‐oxadiazoles by oxidation of 2‐arenoxybenzaldehyde N‐ acyl hydrazones with molecular iodine. ChemistrySelect, 2022, 7(26), 202201391.
[http://dx.doi.org/10.1002/slct.202201391]
[48]
Gao, Q.; Liu, S.; Wu, X.; Zhang, J.; Wu, A. Direct annulation of hydrazides to 1, 3, 4-oxadiazoles via oxidative C (CO)–C (methyl) bond cleavage of methyl ketones. Org. Lett., 2015, 17(12), 2960-2963.
[http://dx.doi.org/10.1021/acs.orglett.5b01241] [PMID: 26035338]
[49]
Yu, W.; Huang, G.; Zhang, Y.; Liu, H.; Dong, L.; Yu, X.; Li, Y.; Chang, J. I2-mediated oxidative C-O bond formation for the synthesis of 1,3,4-oxadiazoles from aldehydes and hydrazides. J. Org. Chem., 2013, 78(20), 10337-10343.
[http://dx.doi.org/10.1021/jo401751h] [PMID: 24059837]
[50]
Rajak, H.; Kharya, M.D.; Mishra, P. Synthesis and local anesthetic activity of some novel N-[5-(4-substituted)phenyl-1,3,4-oxadiazol-2-yl]-2-(substituted)-acetamides. Arch. Pharm., 2008, 341(4), 247-261.
[http://dx.doi.org/10.1002/ardp.200700146] [PMID: 18293435]
[51]
Redhu, S.; Kharb, R. Recent updates on chemistry and pharmacological aspects of 1, 3, 4-oxadiazole scaffold. Int. J. Pharm. Innov., 2013, 3(1), 93-110.
[52]
Pore, D.M.; Mahadik, S.M.; Desai, U.V. Trichloroisocyanuric acid–mediated one-pot synthesis of unsymmetrical 2, 5-disubstituted 1, 3, 4-oxadiazoles at ambient temperature. Synth. Commun., 2008, 38(18), 3121-3128.
[http://dx.doi.org/10.1080/00397910802054289]
[53]
Sangshetti, J.N.; Dharmadhikari, P.P.; Chouthe, R.S.; Fatema, B.; Lad, V.; Karande, V.; Darandale, S.N.; Shinde, D.B. Microwave assisted nano (ZnO–TiO2) catalyzed synthesis of some new 4,5,6,7-tetrahydro-6-((5-substituted-1,3,4-oxadiazol-2-yl)methyl)thieno[2,3-c]pyridine as antimicrobial agents. Bioorg. Med. Chem. Lett., 2013, 23(7), 2250-2253.
[http://dx.doi.org/10.1016/j.bmcl.2013.01.041] [PMID: 23434418]
[54]
Patel, K.D.; Prajapati, S.M.; Panchal, S.N.; Patel, H.D. Review of synthesis of 1, 3, 4-oxadiazole derivatives. Synth. Commun., 2014, 44(13), 1859-1875.
[http://dx.doi.org/10.1080/00397911.2013.879901]
[55]
Sangshetti, J.N.; Chabukswar, A.R.; Shinde, D.B. Microwave assisted one pot synthesis of some novel 2,5-disubstituted 1,3,4-oxadiazoles as antifungal agents. Bioorg. Med. Chem. Lett., 2011, 21(1), 444-448.
[http://dx.doi.org/10.1016/j.bmcl.2010.10.120] [PMID: 21095127]
[56]
Paraschivescu, C.C.; Matache, M.; Dobrotă, C.; Nicolescu, A.; Maxim, C.; Deleanu, C.; Fărcăşanu, I.C.; Hădade, N.D. Unexpected Formation of N -(1-(2-Aryl-hydrazono)isoindolin-2-yl)benzamides and Their Conversion into 1,2-(Bis-1,3,4-oxadiazol-2-yl)benzenes. J. Org. Chem., 2013, 78(6), 2670-2679.
[http://dx.doi.org/10.1021/jo400023z] [PMID: 23394598]
[57]
Romeo, G.; Chiacchio, U. Oxadiazoles. In: Modern Heterocyclic Chemistry; , 2011; pp. 1047-1252.
[58]
Kumar, S. Synthesis and biological activity of 5-substituted-2-amino-1,3,4-oxadiazole derivatives. Turk. J. Chem., 2011, 35(1), 99-108.
[http://dx.doi.org/10.3906/kim-0908-177]
[59]
Ma, H.Y.; Zha, Z.G.; Zhang, Z.L.; Meng, L.; Wang, Z.Y. Electrosynthesis of oxadiazoles from benzoylhydrazines. Chin. Chem. Lett., 2013, 24(9), 780-782.
[http://dx.doi.org/10.1016/j.cclet.2013.05.032]
[60]
Maghari, S.; Ramezanpour, S.; Darvish, F.; Balalaie, S.; Rominger, F.; Bijanzadeh, H.R. A new and efficient synthesis of 1,3,4-oxadiazole derivatives using TBTU. Tetrahedron, 2013, 69(8), 2075-2080.
[http://dx.doi.org/10.1016/j.tet.2012.11.071]
[61]
Guin, S.; Rout, S.K.; Ghosh, T.; Khatun, N.; Patel, B.K. A one pot synthesis of [1,3,4]-oxadiazoles mediated by molecular iodine. RSC Advances, 2012, 2(8), 3180-3183.
[http://dx.doi.org/10.1039/c2ra00044j]
[62]
Wan, Z.K.; Ousman, E.F.; Papaioannou, N.; Saiah, E. Phosphonium-mediated cyclization of N-(2-aminophenyl)thioureas: efficient synthesis of 2-aminobenzimidazoles. Tetrahedron Lett., 2011, 52(32), 4149-4152.
[http://dx.doi.org/10.1016/j.tetlet.2011.05.146]
[63]
Chaudhari, P.S.; Pathare, S.P.; Akamanchi, K.G. o-Iodoxybenzoic acid mediated oxidative desulfurization initiated domino reactions for synthesis of azoles. J. Org. Chem., 2012, 77(8), 3716-3723.
[http://dx.doi.org/10.1021/jo2025509] [PMID: 22423599]
[64]
Yang, S.J.; Lee, S.H.; Kwak, H.J.; Gong, Y.D. Regioselective synthesis of 2-amino-substituted 1,3,4-oxadiazole and 1,3,4-thiadiazole derivatives via reagent-based cyclization of thiosemicarbazide intermediate. J. Org. Chem., 2013, 78(2), 438-444.
[http://dx.doi.org/10.1021/jo302324r] [PMID: 23215154]
[65]
Dolman, S.J.; Gosselin, F.; O’Shea, P.D.; Davies, I.W. Superior reactivity of thiosemicarbazides in the synthesis of 2-amino-1,3,4-oxadiazoles. J. Org. Chem., 2006, 71(25), 9548-9551.
[http://dx.doi.org/10.1021/jo0618730] [PMID: 17137395]
[66]
Pouliot, M.F.; Angers, L.; Hamel, J.D.; Paquin, J.F. Synthesis of 1,3,4-oxadiazoles from 1,2-diacylhydrazines using [Et 2 NSF 2]BF 4 as a practical cyclodehydration agent. Org. Biomol. Chem., 2012, 10(5), 988-993.
[http://dx.doi.org/10.1039/C1OB06512B] [PMID: 22159592]
[67]
Stabile, P.; Lamonica, A.; Ribecai, A.; Castoldi, D.; Guercio, G.; Curcuruto, O. Mild and convenient one-pot synthesis of 1,3,4-oxadiazoles. Tetrahedron Lett., 2010, 51(37), 4801-4805.
[http://dx.doi.org/10.1016/j.tetlet.2010.06.139]
[68]
Diao, P.; Ge, Y. zhang, W.; Xu, C.; Zhang, N.; Guo, C. Synthesis of 2,5-disubstituted 1,3,4-oxadiazoles by visible-light-mediated decarboxylation–cyclization of hydrazides and diketones. Tetrahedron Lett., 2018, 59(8), 767-770.
[http://dx.doi.org/10.1016/j.tetlet.2018.01.037]
[69]
Gurupadaswamy, H.D.; Girish, V.; Kavitha, C.V.; Raghavan, S.C.; Khanum, S.A. Synthesis and evaluation of 2,5-di(4-aryloylaryloxymethyl)-1,3,4-oxadiazoles as anti-cancer agents. Eur. J. Med. Chem., 2013, 63, 536-543.
[http://dx.doi.org/10.1016/j.ejmech.2013.02.040] [PMID: 23535322]
[70]
Sharma, G.V.M.; Begum, A. Rakesh; Krishna, P.R. Zirconium(IV) chloride mediated cyclodehydration of 1,2‐Diacylhydrazines: A convenient synthesis of 2,5‐Diaryl 1,3,4‐Oxadiazoles. Synth. Commun., 2004, 34(13), 2387-2391.
[http://dx.doi.org/10.1081/SCC-120039492]
[71]
Qiao, J.X.; Wang, T.C.; Hu, C.; Li, J.; Wexler, R.R.; Lam, P.Y.S. Transformation of anionically activated trifluoromethyl groups to heterocycles under mild aqueous conditions. Org. Lett., 2011, 13(7), 1804-1807.
[http://dx.doi.org/10.1021/ol200326u] [PMID: 21381681]
[72]
Yarmohammadi, E.; Beyzaei, H.; Aryan, R.; Moradi, A. Ultrasound-assisted, low-solvent and acid/base-free synthesis of 5-substituted 1,3,4-oxadiazole-2-thiols as potent antimicrobial and antioxidant agents. Mol. Divers., 2021, 25(4), 2367-2378.
[http://dx.doi.org/10.1007/s11030-020-10125-y] [PMID: 32770458]
[73]
Kumar, A.; Makrandi, J.K. An iodine-mediated green synthesis of 1,3,4-oxadiazoles under solvent-free conditions using grinding technique. Green Chem. Lett. Rev., 2011, 4(1), 87-89.
[http://dx.doi.org/10.1080/17518253.2010.502909]
[74]
Xie, Y.; Liu, J.; Yang, P.; Shi, X.; Li, J. Synthesis of 2-amino-1,3,4-oxadiazoles from isoselenocyanates via cyclodeselenization. Tetrahedron, 2011, 67(30), 5369-5374.
[http://dx.doi.org/10.1016/j.tet.2011.05.100]
[75]
Ramazani, A.; Rezaei, A. Novel one-pot, four-component condensation reaction: an efficient approach for the synthesis of 2,5-disubstituted 1,3,4-oxadiazole derivatives by a Ugi-4CR/aza-Wittig sequence. Org. Lett., 2010, 12(12), 2852-2855.
[http://dx.doi.org/10.1021/ol100931q] [PMID: 20481612]
[76]
Matheau-Raven, D.; Dixon, D.J. General α‐Amino 1,3,4‐oxadiazole synthesis via late‐stage reductive functionalization of tertiary amides and lactams**. Angew. Chem. Int. Ed., 2021, 60(36), 19725-19729.
[http://dx.doi.org/10.1002/anie.202107536] [PMID: 34191400]
[77]
Kudelko, A.; Zieliński, W. Microwave-assisted synthesis of 2-styryl-1,3,4-oxadiazoles from cinnamic acid hydrazide and triethyl orthoesters. Tetrahedron Lett., 2012, 53(1), 76-77.
[http://dx.doi.org/10.1016/j.tetlet.2011.10.152]
[78]
Polshettiwar, V.; Varma, R.S. Greener and rapid access to bio-active heterocycles: one-pot solvent-free synthesis of 1,3,4-oxadiazoles and 1,3,4-thiadiazoles. Tetrahedron Lett., 2008, 49(5), 879-883.
[http://dx.doi.org/10.1016/j.tetlet.2007.11.165]
[79]
Harish, K.P.; Mohana, K.N.; Mallesha, L.; Prasanna, K.B.N. Synthesis of novel 1-[5-(4-methoxy-phenyl)-[1,3,4]oxadiazol-2-yl]-piperazine derivatives and evaluation of their in vivo anticonvulsant activity. Eur. J. Med. Chem., 2013, 65, 276-283.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.054] [PMID: 23727537]
[80]
Kumar, R.; Abdullah, M.M. Synthesis and anticonvulsant potential of some new 4-[5-substituted-[1, 3, 4] oxadiazole-2-yl]-2-phenylquinolines. Indian J. Heterocycl. Chem., 2019, 29, 79-86.
[81]
Sharma, U.; Pal, D.; Prasad, R. Alkaline phosphatase: An overview. Indian J. Clin. Biochem., 2014, 29(3), 269-278.
[http://dx.doi.org/10.1007/s12291-013-0408-y] [PMID: 24966474]
[82]
Iqbal, Z.; Iqbal, A.; Ashraf, Z.; Latif, M.; Hassan, M.; Nadeem, H. Synthesis and docking studies of N ‐(5‐(alkylthio)‐1,3,4‐oxadiazol‐ 2‐yl)methyl)benzamide analogues as potential alkaline phosphatase inhibitors. Drug Dev. Res., 2019, 80(5), ddr.21542.
[http://dx.doi.org/10.1002/ddr.21542] [PMID: 31032540]
[83]
Sirkisoon, S.R.; Carpenter, R.L.; Rimkus, T.; Miller, L.; Metheny-Barlow, L.; Lo, H.W. EGFR and HER2 signaling in breast cancer brain metastasis. Front. Biosci. (Elite Ed.), 2016, 8(2), 245-263.
[PMID: 26709660]
[84]
El Mansouri, A.E.; Maatallah, M.; Ait Benhassou, H.; Moumen, A.; Mehdi, A.; Snoeck, R.; Andrei, G.; Zahouily, M.; Lazrek, H.B. Design, synthesis, chemical characterization, biological evaluation, and docking study of new 1,3,4-oxadiazole homonucleoside analogs. Nucleosides Nucleotides Nucleic Acids, 2020, 39(8), 1088-1107.
[http://dx.doi.org/10.1080/15257770.2020.1761982] [PMID: 32397827]
[85]
Elamin, Y.Y.; Rafee, S.; Osman, N.; O Byrne, K.J.; Gately, K. Thymidine phosphorylase in cancer; enemy or friend? Cancer Microenviron., 2016, 9(1), 33-43.
[http://dx.doi.org/10.1007/s12307-015-0173-y] [PMID: 26298314]
[86]
Bajaj, S.; Roy, P.P.; Singh, J. Synthesis, thymidine phosphorylase inhibitory and computational study of novel 1,3,4-oxadiazole-2-thione derivatives as potential anticancer agents. Comput. Biol. Chem., 2018, 76, 151-160.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.05.013] [PMID: 30015176]
[87]
Çoruh, I.; Çevik, Ö.; Yelekçi, K.; Djikic, T.; Küçükgüzel, Ş.G. Synthesis, anticancer activity, and molecular modeling of etodolac-thioether derivatives as potent methionine aminopeptidase (type II) inhibitors. Arch. Pharm., 2018, 351(3-4), 1700195.
[http://dx.doi.org/10.1002/ardp.201700195] [PMID: 29575045]
[88]
Sun, J.; Li, M.H.; Qian, S.S.; Guo, F.J.; Dang, X.F.; Wang, X.M.; Xue, Y.R.; Zhu, H.L. Synthesis and antitumor activity of 1,3,4-oxadiazole possessing 1,4-benzodioxan moiety as a novel class of potent methionine aminopeptidase type II inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(10), 2876-2879.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.068] [PMID: 23582273]
[89]
Zhao, J.; Guan, J.L. Signal transduction by focal adhesion kinase in cancer. Cancer Metastasis Rev., 2009, 28(1-2), 35-49.
[http://dx.doi.org/10.1007/s10555-008-9165-4] [PMID: 19169797]
[90]
Sun, J.; Ren, S.Z.; Lu, X.Y.; Li, J.J.; Shen, F.Q.; Xu, C.; Zhu, H.L. Discovery of a series of 1,3,4-oxadiazole-2(3 H)-thione derivatives containing piperazine skeleton as potential FAK inhibitors. Bioorg. Med. Chem., 2017, 25(9), 2593-2600.
[http://dx.doi.org/10.1016/j.bmc.2017.03.038] [PMID: 28363444]
[91]
Savitz, J.; Lucki, I.; Drevets, W.C. 5-HT1A receptor function in major depressive disorder. Prog. Neurobiol., 2009, 88(1), 17-31.
[http://dx.doi.org/10.1016/j.pneurobio.2009.01.009] [PMID: 19428959]
[92]
Wang, S.; Qi, L.; Liu, H.; Lei, K.; Wang, X.; Liu, R. Synthesis of 1,3,4-oxadiazoles derivatives with antidepressant activity and their binding to the 5-HT 1A receptor. RSC Advances, 2020, 10(51), 30848-30857.
[http://dx.doi.org/10.1039/D0RA05886F] [PMID: 35516063]
[93]
Costi, M.P.; Ferrari, S.; Venturelli, A.; Calò, S.; Tondi, D.; Barlocco, D. Thymidylate synthase structure, function and implication in drug discovery. Curr. Med. Chem., 2005, 12(19), 2241-2258.
[http://dx.doi.org/10.2174/0929867054864868] [PMID: 16178783]
[94]
Du, Q.R.; Li, D.D.; Pi, Y.Z.; Li, J.R.; Sun, J.; Fang, F.; Zhong, W.Q.; Gong, H.B.; Zhu, H.L. Novel 1,3,4-oxadiazole thioether derivatives targeting thymidylate synthase as dual anticancer/antimicrobial agents. Bioorg. Med. Chem., 2013, 21(8), 2286-2297.
[http://dx.doi.org/10.1016/j.bmc.2013.02.008] [PMID: 23490159]
[95]
Enna, S.J. The GABA receptors; Humana Press, 2007, pp. 1-21.
[http://dx.doi.org/10.1007/978-1-59745-465-0]
[96]
Malfatti, C.R.M.; Perry, M.L.S.; Schweigert, I.D.; Muller, A.P.; Paquetti, L.; Rigo, F.K.; Fighera, M.R.; Garrido-Sanabria, E.R.; Mello, C.F. Convulsions induced by methylmalonic acid are associated with glutamic acid decarboxylase inhibition in rats: A role for GABA in the seizures presented by methylmalonic acidemic patients? Neuroscience, 2007, 146(4), 1879-1887.
[http://dx.doi.org/10.1016/j.neuroscience.2007.03.022] [PMID: 17467181]
[97]
Wang, S.; Liu, H.; Wang, X.; Lei, K.; Li, G.; Li, J.; Liu, R.; Quan, Z. Synthesis of 1,3,4-oxadiazole derivatives with anticonvulsant activity and their binding to the GABAA receptor. Eur. J. Med. Chem., 2020, 206, 112672.
[http://dx.doi.org/10.1016/j.ejmech.2020.112672] [PMID: 32798790]
[98]
Seo, S.Y.; Sharma, V.K.; Sharma, N. Mushroom tyrosinase: recent prospects. J. Agric. Food Chem., 2003, 51(10), 2837-2853.
[http://dx.doi.org/10.1021/jf020826f] [PMID: 12720364]
[99]
Vanjare, B.D.; Choi, N.G.; Mahajan, P.G.; Raza, H.; Hassan, M.; Han, Y.; Yu, S.M.; Kim, S.J.; Seo, S.Y.; Lee, K.H. Novel 1,3,4-oxadiazole compounds inhibit the tyrosinase and melanin level: Synthesis, in-vitro, and in-silico studies. Bioorg. Med. Chem., 2021, 41, 116222.
[http://dx.doi.org/10.1016/j.bmc.2021.116222] [PMID: 34058664]
[100]
Perez, M.; Castillo, Y. Bacterial beta-ketoacyl-acyl carrier protein synthase III (FabH): An attractive target for the design of new broad-spectrum antimicrobial agents. Mini Rev. Med. Chem., 2008, 8(1), 36-45.
[http://dx.doi.org/10.2174/138955708783331559] [PMID: 18220983]
[101]
Li, Y.; Luo, Y.; Hu, Y.; Zhu, D.D.; Zhang, S.; Liu, Z.J.; Gong, H.B.; Zhu, H.L. Design, synthesis and antimicrobial activities of nitroimidazole derivatives containing 1,3,4-oxadiazole scaffold as FabH inhibitors. Bioorg. Med. Chem., 2012, 20(14), 4316-4322.
[http://dx.doi.org/10.1016/j.bmc.2012.05.050] [PMID: 22710102]
[102]
Zamora, R.; Vodovotz, Y.; Billiar, T.R. Inducible nitric oxide synthase and inflammatory diseases. Mol. Med., 2000, 6(5), 347-373.
[http://dx.doi.org/10.1007/BF03401781] [PMID: 10952018]
[103]
Koksal, M.; Dedeoglu-Erdogan, A.; Bader, M.; Gurdal, E.E.; Sippl, W.; Reis, R.; Ozgurbuz, M.; Sipahi, H.; Celik, T. Design, synthesis, and molecular docking of novel 3,5‐disubstituted‐1,3,4‐oxadiazole derivatives as iNOS inhibitors. Arch. Pharm., 2021, 354(8), 2000469.
[http://dx.doi.org/10.1002/ardp.202000469] [PMID: 33969533]
[104]
Morita, I. Distinct functions of COX-1 and COX-2. Prostaglandins Other Lipid Mediat., 2002, 68-69, 165-175.
[http://dx.doi.org/10.1016/S0090-6980(02)00029-1] [PMID: 12432916]
[105]
Banerjee, A.G.; Das, N.; Shengule, S.A.; Srivastava, R.S.; Shrivastava, S.K. Synthesis, characterization, evaluation and molecular dynamics studies of 5, 6–diphenyl–1,2,4–triazin–3(2 H)–one derivatives bearing 5–substituted 1,3,4–oxadiazole as potential anti–inflammatory and analgesic agents. Eur. J. Med. Chem., 2015, 101, 81-95.
[http://dx.doi.org/10.1016/j.ejmech.2015.06.020] [PMID: 26117820]
[106]
Guo, X.; Zhao, B.; Fan, Z.; Yang, D.; Zhang, N.; Wu, Q.; Yu, B.; Zhou, S.; Kalinina, T.A.; Belskaya, N.P. Discovery of novel thiazole carboxamides as antifungal succinate dehydrogenase inhibitors. J. Agric. Food Chem., 2019, 67(6), 1647-1655.
[http://dx.doi.org/10.1021/acs.jafc.8b06935] [PMID: 30669828]
[107]
Wu, Y.Y.; Shao, W.B.; Zhu, J.J.; Long, Z.Q.; Liu, L.W.; Wang, P.Y.; Li, Z.; Yang, S. Novel 1, 3, 4-oxadiazole-2-carbohydrazides as prospective agricultural antifungal agents potentially targeting succinate dehydrogenase. J. Agric. Food Chem., 2019, 67(50), 13892-13903.
[http://dx.doi.org/10.1021/acs.jafc.9b05942] [PMID: 31774673]
[108]
Zarn, J.A.; Brüschweiler, B.J.; Schlatter, J.R. Azole fungicides affect mammalian steroidogenesis by inhibiting sterol 14 alpha-demethylase and aromatase. Environ. Health Perspect., 2003, 111(3), 255-261.
[http://dx.doi.org/10.1289/ehp.5785] [PMID: 12611652]
[109]
Wani, M.Y.; Ahmad, A.; Shiekh, R.A.; Al-Ghamdi, K.J.; Sobral, A.J.F.N. Imidazole clubbed 1,3,4-oxadiazole derivatives as potential antifungal agents. Bioorg. Med. Chem., 2015, 23(15), 4172-4180.
[http://dx.doi.org/10.1016/j.bmc.2015.06.053] [PMID: 26164624]
[110]
Cain, R.J.; Ridley, A.J. Phosphoinositide 3-kinases in cell migration. Biol. Cell, 2009, 101(1), 13-29.
[http://dx.doi.org/10.1042/BC20080079] [PMID: 19055486]
[111]
Tang, J.F.; Lv, X.H.; Wang, X.L.; Sun, J.; Zhang, Y.B.; Yang, Y.S.; Gong, H.B.; Zhu, H.L. Design, synthesis, biological evaluation and molecular modeling of novel 1,3,4-oxadiazole derivatives based on Vanillic acid as potential immunosuppressive agents. Bioorg. Med. Chem., 2012, 20(14), 4226-4236.
[http://dx.doi.org/10.1016/j.bmc.2012.05.055] [PMID: 22727369]

© 2025 Bentham Science Publishers | Privacy Policy