Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Melatonin and Related Compounds as Antioxidants

Author(s): Alexia Barbarossa, Antonio Carrieri and Alessia Carocci*

Volume 24, Issue 5, 2024

Published on: 27 June, 2023

Page: [546 - 565] Pages: 20

DOI: 10.2174/1389557523666230627140816

Price: $65

Abstract

Oxidative stress has been reported to be involved in the onset and development of several diseases, including neurodegenerative and cardiovascular disorders, some types of cancer, and diabetes. Therefore, finding strategies to detoxify free radicals is an active area of research. One of these strategies is the use of natural or synthetic antioxidants. In this context, melatonin (MLT) has been proven to possess most of the required characteristics of an efficient antioxidant. In addition, its protection against oxidative stress continues after being metabolized, since its metabolites also exhibit antioxidant capacity. Based on the appealing properties of MLT and its metabolites, various synthetic analogues have been developed to obtain compounds with higher activity and lower side effects. This review addresses recent studies with MLT and related compounds as potential antioxidants.

« Previous
Graphical Abstract

[1]
Reiter, R.J. Pineal melatonin: Cell biology of its synthesis and of its physiological interactions. Endocr. Rev., 1991, 12(2), 151-180.
[http://dx.doi.org/10.1210/edrv-12-2-151] [PMID: 1649044]
[2]
Acuña-Castroviejo, D.; Escames, G.; Venegas, C.; Díaz-Casado, M.E.; Lima-Cabello, E.; López, L.C.; Rosales-Corral, S.; Tan, D.X.; Reiter, R.J. Extrapineal melatonin: sources, regulation, and potential functions. Cell. Mol. Life Sci., 2014, 71(16), 2997-3025.
[http://dx.doi.org/10.1007/s00018-014-1579-2] [PMID: 24554058]
[3]
Zisapel, N. New perspectives on the role of melatonin in human sleep, circadian rhythms and their regulation. Br. J. Pharmacol., 2018, 175(16), 3190-3199.
[http://dx.doi.org/10.1111/bph.14116] [PMID: 29318587]
[4]
Ruan, W.; Yuan, X.; Eltzschig, H.K. Circadian rhythm as a therapeutic target. Nat. Rev. Drug Discov., 2021, 20(4), 287-307.
[http://dx.doi.org/10.1038/s41573-020-00109-w] [PMID: 33589815]
[5]
Alamdari, A.F.; Rahnemayan, S.; Rajabi, H.; Vahed, N.; Kashani, H.R.K.; Rezabakhsh, A.; Sanaie, S. Melatonin as a promising modulator of aging related neurodegenerative disorders: Role of microRNAs. Pharmacol. Res., 2021, 173, 105839.
[http://dx.doi.org/10.1016/j.phrs.2021.105839] [PMID: 34418564]
[6]
Hardeland, R.; Cardinali, D.P.; Srinivasan, V.; Spence, D.W.; Brown, G.M.; Pandi-Perumal, S.R. Melatonin—A pleiotropic, orchestrating regulator molecule. Prog. Neurobiol., 2011, 93(3), 350-384.
[http://dx.doi.org/10.1016/j.pneurobio.2010.12.004] [PMID: 21193011]
[7]
Li, Y.; Li, S.; Zhou, Y.; Meng, X.; Zhang, J.J.; Xu, D.P.; Li, H.B. Melatonin for the prevention and treatment of cancer. Oncotarget, 2017, 8(24), 39896-39921.
[http://dx.doi.org/10.18632/oncotarget.16379] [PMID: 28415828]
[8]
Carrillo-Vico, A.; Reiter, R.J.; Lardone, P.J.; Herrera, J.L.; Fernández-Montesinos, R.; Guerrero, J.M.; Pozo, D. The modulatory role of melatonin on immune responsiveness. Curr. Opin. Investig. Drugs, 2006, 7(5), 423-431.
[PMID: 16729718]
[9]
Favero, G.; Franceschetti, L.; Bonomini, F.; Rodella, L.F.; Rezzani, R. Melatonin as an anti-inflammatory agent modulating inflammasome activation. Int. J. Endocrinol., 2017, 2017, 1-13.
[http://dx.doi.org/10.1155/2017/1835195] [PMID: 29104591]
[10]
Danilov, A.; Kurganova, J. Melatonin in chronic pain syndromes. Pain Ther., 2016, 5(1), 1-17.
[http://dx.doi.org/10.1007/s40122-016-0049-y] [PMID: 26984272]
[11]
Alghamdi, B.S. The neuroprotective role of melatonin in neurological disorders. J. Neurosci. Res., 2018, 96(7), 1136-1149.
[http://dx.doi.org/10.1002/jnr.24220] [PMID: 29498103]
[12]
Karaaslan, C.; Suzen, S. Antioxidant properties of melatonin and its potential action in diseases. Curr. Top. Med. Chem., 2015, 15(9), 894-903.
[http://dx.doi.org/10.2174/1568026615666150220120946] [PMID: 25697560]
[13]
Mihardja, M.; Roy, J.; Wong, K.Y.; Aquili, L.; Heng, B.C.; Chan, Y.S.; Fung, M.L.; Lim, L.W. Therapeutic potential of neurogenesis and melatonin regulation in Alzheimer’s disease. Ann. N. Y. Acad. Sci., 2020, 1478(1), 43-62.
[http://dx.doi.org/10.1111/nyas.14436] [PMID: 32700392]
[14]
Tamtaji, O.R.; Reiter, R.J.; Alipoor, R.; Dadgostar, E.; Kouchaki, E.; Asemi, Z. Melatonin and Parkinson disease: Current status and future perspectives for molecular mechanisms. Cell. Mol. Neurobiol., 2020, 40(1), 15-23.
[http://dx.doi.org/10.1007/s10571-019-00720-5] [PMID: 31388798]
[15]
Carocci, A.; Sinicropi, M.S.; Catalano, A.; Lauria, G.; Genchi, G. Melatonin in Parkinson’s disease. A synopsis of Parkinson’s disease; InTech: London, UK, 2014, pp. 71-99.
[16]
Jockers, R.; Delagrange, P.; Dubocovich, M.L.; Markus, R.P.; Renault, N.; Tosini, G.; Cecon, E.; Zlotos, D.P. Update on melatonin receptors: IUPHAR Review 20. Br. J. Pharmacol., 2016, 173(18), 2702-2725.
[http://dx.doi.org/10.1111/bph.13536] [PMID: 27314810]
[17]
Suofu, Y.; Li, W.; Jean-Alphonse, F.G.; Jia, J.; Khattar, N.K.; Li, J.; Baranov, S.V.; Leronni, D.; Mihalik, A.C.; He, Y.; Cecon, E.; Wehbi, V.L.; Kim, J.; Heath, B.E.; Baranova, O.V.; Wang, X.; Gable, M.J.; Kretz, E.S.; Di Benedetto, G.; Lezon, T.R.; Ferrando, L.M.; Larkin, T.M.; Sullivan, M.; Yablonska, S.; Wang, J.; Minnigh, M.B.; Guillaumet, G.; Suzenet, F.; Richardson, R.M.; Poloyac, S.M.; Stolz, D.B.; Jockers, R.; Witt-Enderby, P.A.; Carlisle, D.L.; Vilardaga, J.P.; Friedlander, R.M. Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release. Proc. Natl. Acad. Sci. USA, 2017, 114(38), E7997-E8006.
[http://dx.doi.org/10.1073/pnas.1705768114] [PMID: 28874589]
[18]
Boutin, J.A.; Ferry, G. Is there sufficient evidence that the melatonin binding site MT3 is quinone reductase 2? J. Pharmacol. Exp. Ther., 2019, 368(1), 59-65.
[http://dx.doi.org/10.1124/jpet.118.253260] [PMID: 30389722]
[19]
Fang, N.; Hu, C.; Sun, W.; Xu, Y.; Gu, Y.; Wu, L.; Peng, Q.; Reiter, R.J.; Liu, L. Identification of a novel melatonin-binding nuclear receptor: Vitamin D receptor. J. Pineal Res., 2020, 68(1), e12618.
[http://dx.doi.org/10.1111/jpi.12618] [PMID: 31631405]
[20]
Liu, L.; Labani, N.; Cecon, E.; Jockers, R. Melatonin target proteins: Too many or not enough? Front. Endocrinol. (Lausanne), 2019, 10, 791.
[http://dx.doi.org/10.3389/fendo.2019.00791] [PMID: 31803142]
[21]
Stauch, B.; Johansson, L.C.; McCorvy, J.D.; Patel, N.; Han, G.W.; Huang, X.P.; Gati, C.; Batyuk, A.; Slocum, S.T.; Ishchenko, A.; Brehm, W.; White, T.A.; Michaelian, N.; Madsen, C.; Zhu, L.; Grant, T.D.; Grandner, J.M.; Shiriaeva, A.; Olsen, R.H.J.; Tribo, A.R.; Yous, S.; Stevens, R.C.; Weierstall, U.; Katritch, V.; Roth, B.L.; Liu, W.; Cherezov, V. Structural basis of ligand recognition at the human MT1 melatonin receptor. Nature, 2019, 569(7755), 284-288.
[http://dx.doi.org/10.1038/s41586-019-1141-3] [PMID: 31019306]
[22]
Ishchenko, A.; Stauch, B.; Han, G.W.; Batyuk, A.; Shiriaeva, A.; Li, C.; Zatsepin, N.; Weierstall, U.; Liu, W.; Nango, E.; Nakane, T.; Tanaka, R.; Tono, K.; Joti, Y.; Iwata, S.; Moraes, I.; Gati, C.; Cherezov, V. Toward G protein-coupled receptor structure-based drug design using X-ray lasers. IUCrJ, 2019, 6(6), 1106-1119.
[http://dx.doi.org/10.1107/S2052252519013137] [PMID: 31709066]
[23]
Okamoto, H.H.; Miyauchi, H.; Inoue, A.; Raimondi, F.; Tsujimoto, H.; Kusakizako, T.; Shihoya, W.; Yamashita, K.; Suno, R.; Nomura, N.; Kobayashi, T.; Iwata, S.; Nishizawa, T.; Nureki, O. Cryo-EM structure of the human MT1–Gi signaling complex. Nat. Struct. Mol. Biol., 2021, 28(8), 694-701.
[http://dx.doi.org/10.1038/s41594-021-00634-1] [PMID: 34354246]
[24]
Wang, Q.; Lu, Q.; Guo, Q.; Teng, M.; Gong, Q.; Li, X.; Du, Y.; Liu, Z.; Tao, Y. Structural basis of the ligand binding and signaling mechanism of melatonin receptors. Nat. Commun., 2022, 13(1), 454.
[http://dx.doi.org/10.1038/s41467-022-28111-3] [PMID: 35075127]
[25]
Johansson, L.C.; Stauch, B.; McCorvy, J.D.; Han, G.W.; Patel, N.; Huang, X.P.; Batyuk, A.; Gati, C.; Slocum, S.T.; Li, C.; Grandner, J.M.; Hao, S.; Olsen, R.H.J.; Tribo, A.R.; Zaare, S.; Zhu, L.; Zatsepin, N.A.; Weierstall, U.; Yous, S.; Stevens, R.C.; Liu, W.; Roth, B.L.; Katritch, V.; Cherezov, V. XFEL structures of the human MT2 melatonin receptor reveal the basis of subtype selectivity. Nature, 2019, 569(7755), 289-292.
[http://dx.doi.org/10.1038/s41586-019-1144-0] [PMID: 31019305]
[26]
Galano, A.; Tan, D.X.; Reiter, R.J. On the free radical scavenging activities of melatonin’s metabolites, AFMK and AMK. J. Pineal Res., 2013, 54(3), 245-257.
[http://dx.doi.org/10.1111/jpi.12010] [PMID: 22998574]
[27]
Purushothaman, A.; Sheeja, A.A.; Janardanan, D. Hydroxyl radical scavenging activity of melatonin and its related indolamines. Free Radic. Res., 2020, 54(5), 373-383.
[http://dx.doi.org/10.1080/10715762.2020.1774575] [PMID: 32567401]
[28]
Reiter, R.J.; Mayo, J.C.; Tan, D.X.; Sainz, R.M.; Alatorre-Jimenez, M.; Qin, L. Melatonin as an antioxidant: Under promises but over delivers. J. Pineal Res., 2016, 61(3), 253-278.
[http://dx.doi.org/10.1111/jpi.12360] [PMID: 27500468]
[29]
Galano, A.; Medina, M.E.; Tan, D.X.; Reiter, R.J. Melatonin and its metabolites as copper chelating agents and their role in inhibiting oxidative stress: A physicochemical analysis. J. Pineal Res., 2015, 58(1), 107-116.
[http://dx.doi.org/10.1111/jpi.12196] [PMID: 25424557]
[30]
Reiter, R.; Tan, D.; Rosales-Corral, S.; Galano, A.; Zhou, X.; Xu, B. Mitochondria: Central organelles for melatonin′s antioxidant and anti-aging actions. Molecules, 2018, 23(2), 509.
[http://dx.doi.org/10.3390/molecules23020509] [PMID: 29495303]
[31]
DeMuro, R.L.; Nafziger, A.N.; Blask, D.E.; Menhinick, A.M.; Bertino, J.S., Jr The absolute bioavailability of oral melatonin. J. Clin. Pharmacol., 2000, 40(7), 781-784.
[http://dx.doi.org/10.1177/00912700022009422] [PMID: 10883420]
[32]
Andersen, L.P.H.; Werner, M.U.; Rosenkilde, M.M.; Harpsøe, N.G.; Fuglsang, H.; Rosenberg, J.; Gögenur, I. Pharmacokinetics of oral and intravenous melatonin in healthy volunteers. BMC Pharmacol. Toxicol., 2016, 17(1), 8-17.
[http://dx.doi.org/10.1186/s40360-016-0052-2] [PMID: 26893170]
[33]
Boutin, J.A.; Witt-Enderby, P.A.; Sotriffer, C.; Zlotos, D.P. Melatonin receptor ligands: A pharmaco-chemical perspective. J. Pineal Res., 2020, 69(3), e12672.
[http://dx.doi.org/10.1111/jpi.12672] [PMID: 32531076]
[34]
Özaslan, M.S.; Demir, Y.; Aksoy, M.; Küfrevioğlu, Ö.I.; Beydemir, Ş. Inhibition effects of pesticides on glutathione- S -transferase enzyme activity of Van Lake fish liver. J. Biochem. Mol. Toxicol., 2018, 32(9), e22196.
[http://dx.doi.org/10.1002/jbt.22196] [PMID: 30015991]
[35]
Özaslan, M.S.; Sağlamtaş, R.; Demir, Y.; Genç, Y.; Saraçoğlu, İ.; Gülçin, İ. Isolation of some phenolic compounds from Plantago subulata L. and determination of their antidiabetic, anticholinesterase, antiepileptic and antioxidant activity. Chem. Biodivers., 2022, 19(8), e202200280.
[http://dx.doi.org/10.1002/cbdv.202200280] [PMID: 35796520]
[36]
Bayrak, S.; Öztürk, C.; Demir, Y.; Alım, Z.; Küfrevioglu, Ö.İ. Purification of polyphenol oxidase from potato and investigation of the inhibitory effects of phenolic acids on enzyme activity. Protein Pept. Lett., 2020, 27(3), 187-192.
[http://dx.doi.org/10.2174/0929866526666191002142301] [PMID: 31577197]
[37]
Amaral, F.G.; Cipolla-Neto, J. A brief review about melatonin, a pineal hormone. Arch. Endocrinol. Metab., 2018, 62(4), 472-479.
[http://dx.doi.org/10.20945/2359-3997000000066] [PMID: 30304113]
[38]
Galano, A.; Reiter, R.J. Melatonin and its metabolites vs. oxidative stress: From individual actions to collective protection. J. Pineal Res., 2018, 65(1), e12514.
[http://dx.doi.org/10.1111/jpi.12514] [PMID: 29888508]
[39]
Galano, A.; Tan, D.X.; Reiter, R.J. Cyclic 3-hydroxymelatonin, a key metabolite enhancing the peroxyl radical scavenging activity of melatonin. RSC Advances, 2014, 4(10), 5220-5227.
[http://dx.doi.org/10.1039/c3ra44604b]
[40]
Reiter, R.J.; Tan, D.; Terron, M.P.; Flores, L.J.; Czarnocki, Z. Melatonin and its metabolites: New findings regarding their production and their radical scavenging actions. Acta Biochim. Pol., 2007, 54(1), 1-9.
[http://dx.doi.org/10.18388/abp.2007_3264] [PMID: 17351668]
[41]
Vriend, J.; Reiter, R.J. The Keap1-Nrf2-antioxidant response element pathway: A review of its regulation by melatonin and the proteasome. Mol. Cell. Endocrinol., 2015, 401, 213-220.
[http://dx.doi.org/10.1016/j.mce.2014.12.013] [PMID: 25528518]
[42]
Ding, K.; Wang, H.; Xu, J.; Li, T.; Zhang, L.; Ding, Y.; Zhu, L.; He, J.; Zhou, M. Melatonin stimulates antioxidant enzymes and reduces oxidative stress in experimental traumatic brain injury: The Nrf2–ARE signaling pathway as a potential mechanism. Free Radic. Biol. Med., 2014, 73, 1-11.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.04.031] [PMID: 24810171]
[43]
Galano, A.; Tan, D.X.; Reiter, R. Melatonin: A versatile protector against oxidative DNA damage. Molecules, 2018, 23(3), 530.
[http://dx.doi.org/10.3390/molecules23030530] [PMID: 29495460]
[44]
Reiter, R.J.; Rosales-Corral, S.; Tan, D.X.; Jou, M.J.; Galano, A.; Xu, B. Melatonin as a mitochondria-targeted antioxidant: one of evolution’s best ideas. Cell. Mol. Life Sci., 2017, 74(21), 3863-3881.
[http://dx.doi.org/10.1007/s00018-017-2609-7] [PMID: 28864909]
[45]
Lowes, D.A.; Webster, N.R.; Murphy, M.P.; Galley, H.F. Antioxidants that protect mitochondria reduce interleukin-6 and oxidative stress, improve mitochondrial function, and reduce biochemical markers of organ dysfunction in a rat model of acute sepsis. Br. J. Anaesth., 2013, 110(3), 472-480.
[http://dx.doi.org/10.1093/bja/aes577] [PMID: 23381720]
[46]
Hardeland, R. Melatonin and the electron transport chain. Cell. Mol. Life Sci., 2017, 74(21), 3883-3896.
[http://dx.doi.org/10.1007/s00018-017-2615-9] [PMID: 28785805]
[47]
Paradies, G.; Paradies, V.; Ruggiero, F.M.; Petrosillo, G. Protective role of melatonin in mitochondrial dysfunction and related disorders. Arch. Toxicol., 2015, 89(6), 923-939.
[http://dx.doi.org/10.1007/s00204-015-1475-z] [PMID: 25690732]
[48]
Pandi-Perumal, S.R.; BaHammam, A.S.; Brown, G.M.; Spence, D.W.; Bharti, V.K.; Kaur, C.; Hardeland, R.; Cardinali, D.P. Melatonin antioxidative defense: Therapeutical implications for aging and neurodegenerative processes. Neurotox. Res., 2013, 23(3), 267-300.
[http://dx.doi.org/10.1007/s12640-012-9337-4] [PMID: 22739839]
[49]
Connolly, B.S.; Lang, A.E. Pharmacological treatment of Parkinson disease: A review. JAMA, 2014, 311(16), 1670-1683.
[http://dx.doi.org/10.1001/jama.2014.3654] [PMID: 24756517]
[50]
Paul, R.; Phukan, B.C.; Justin Thenmozhi, A.; Manivasagam, T.; Bhattacharya, P.; Borah, A. Melatonin protects against behavioral deficits, dopamine loss and oxidative stress in homocysteine model of Parkinson’s disease. Life Sci., 2018, 192, 238-245.
[http://dx.doi.org/10.1016/j.lfs.2017.11.016] [PMID: 29138117]
[51]
Jiménez-Delgado, A.; Ortiz, G.G.; Delgado-Lara, D.L.; González-Usigli, H.A.; González-Ortiz, L.J.; Cid-Hernández, M.; Cruz-Serrano, J.A.; Pacheco-Moisés, F.P. Effect of melatonin administration on mitochondrial activity and oxidative stress markers in patients with Parkinson’s disease. Oxid. Med. Cell. Longev., 2021, 2021, 1-7.
[http://dx.doi.org/10.1155/2021/5577541] [PMID: 34707777]
[52]
Jung, Y.J.; Choi, H.; Oh, E. Melatonin attenuates MPP+-induced apoptosis via heat shock protein in a Parkinson’s disease model. Biochem. Biophys. Res. Commun., 2022, 621, 59-66.
[http://dx.doi.org/10.1016/j.bbrc.2022.06.099] [PMID: 35810592]
[53]
Anil, D.A.; Aydin, B.O.; Demir, Y.; Turkmenoglu, B. Design, synthesis, biological evaluation and molecular docking studies of novel 1H-1,2,3-Triazole derivatives as potent inhibitors of carbonic anhydrase, acetylcholinesterase and aldose reductase. J. Mol. Struct., 2022, 1257, 132613.
[http://dx.doi.org/10.1016/j.molstruc.2022.132613]
[54]
Tugrak, M.; Gul, H.I.; Demir, Y.; Levent, S.; Gulcin, I. Synthesis and in vitro carbonic anhydrases and acetylcholinesterase inhibitory activities of novel imidazolinone-based benzenesulfonamides. Arch. Pharm. (Weinheim), 2021, 354(4), 2000375.
[http://dx.doi.org/10.1002/ardp.202000375] [PMID: 33283898]
[55]
Sever, B.; Türkeş, C.; Altıntop, M.D.; Demir, Y.; Akalın Çiftçi, G.; Beydemir, Ş. Novel metabolic enzyme inhibitors designed through the molecular hybridization of thiazole and pyrazoline scaffolds. Arch. Pharm. (Weinheim), 2021, 354(12), 2100294.
[http://dx.doi.org/10.1002/ardp.202100294] [PMID: 34569655]
[56]
Güleç, Ö.; Türkeş, C.; Arslan, M.; Demir, Y.; Yeni, Y.; Hacımüftüoğlu, A.; Ereminsoy, E.; Küfrevioğlu, Ö.İ.; Beydemir, Ş. Cytotoxic effect, enzyme inhibition, and in silico studies of some novel N-substituted sulfonyl amides incorporating 1,3,4-oxadiazol structural motif. Mol. Divers., 2022, 26(5), 2825-2845.
[http://dx.doi.org/10.1007/s11030-022-10422-8] [PMID: 35397086]
[57]
Carocci, A.; Barbarossa, A.; Leuci, R.; Carrieri, A.; Brunetti, L.; Laghezza, A.; Catto, M.; Limongelli, F.; Chaves, S.; Tortorella, P.; Altomare, C.D.; Santos, M.A.; Loiodice, F.; Piemontese, L. Novel phenothiazine/donepezil-like hybrids endowed with antioxidant activity for a multi-target approach to the therapy of Alzheimer’s disease. Antioxidants, 2022, 11(9), 1631.
[http://dx.doi.org/10.3390/antiox11091631] [PMID: 36139705]
[58]
Lin, L.; Huang, Q.X.; Yang, S.S.; Chu, J.; Wang, J.Z.; Tian, Q. Melatonin in Alzheimer’s disease. Int. J. Mol. Sci., 2013, 14(7), 14575-14593.
[http://dx.doi.org/10.3390/ijms140714575] [PMID: 23857055]
[59]
Mendivil-Perez, M.; Soto-Mercado, V.; Guerra-Librero, A.; Fernandez-Gil, B.I.; Florido, J.; Shen, Y.Q.; Tejada, M.A.; Capilla-Gonzalez, V.; Rusanova, I.; Garcia-Verdugo, J.M.; Acuña-Castroviejo, D.; López, L.C.; Velez-Pardo, C.; Jimenez-Del-Rio, M.; Ferrer, J.M.; Escames, G. Melatonin enhances neural stem cell differentiation and engraftment by increasing mitochondrial function. J. Pineal Res., 2017, 63(2), e12415.
[http://dx.doi.org/10.1111/jpi.12415] [PMID: 28423196]
[60]
Roy, J.; Tsui, K.C.; Ng, J.; Fung, M.L.; Lim, L.W. Regulation of melatonin and neurotransmission in Alzheimer’s disease. Int. J. Mol. Sci., 2021, 22(13), 6841.
[http://dx.doi.org/10.3390/ijms22136841] [PMID: 34202125]
[61]
Roy, J.; Wong, K.Y.; Aquili, L.; Uddin, M.S.; Heng, B.C.; Tipoe, G.L.; Wong, K.H.; Fung, M.L.; Lim, L.W. Role of melatonin in Alzheimer’s disease: From preclinical studies to novel melatonin-based therapies. Front. Neuroendocrinol., 2022, 65, 100986.
[http://dx.doi.org/10.1016/j.yfrne.2022.100986] [PMID: 35167824]
[62]
Shirinzadeh, H.; Eren, B.; Gurer-Orhan, H.; Suzen, S.; Özden, S. Novel indole-based analogs of melatonin: Synthesis and in vitro antioxidant activity studies. Molecules, 2010, 15(4), 2187-2202.
[http://dx.doi.org/10.3390/molecules15042187] [PMID: 20428037]
[63]
Yılmaz, A.D.; Coban, T.; Suzen, S. Synthesis and antioxidant activity evaluations of melatonin-based analogue indole-hydrazide/hydrazone derivatives. J. Enzyme Inhib. Med. Chem., 2012, 27(3), 428-436.
[http://dx.doi.org/10.3109/14756366.2011.594048] [PMID: 21740102]
[64]
Suzen, S.; Cihaner, S.S.; Coban, T. Synthesis and comparison of antioxidant properties of indole-based melatonin analogue indole amino Acid derivatives. Chem. Biol. Drug Des., 2012, 79(1), 76-83.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01216.x] [PMID: 21883955]
[65]
Suzen, S.; Tekiner-Gulbas, B.; Shirinzadeh, H.; Uslu, D.; Gurer-Orhan, H.; Gumustas, M.; Ozkan, S.A. Antioxidant activity of indole-based melatonin analogues in erythrocytes and their voltammetric characterization. J. Enzyme Inhib. Med. Chem., 2013, 28(6), 1143-1155.
[http://dx.doi.org/10.3109/14756366.2012.717223] [PMID: 22994658]
[66]
Karaaslan, C.; Kadri, H.; Coban, T.; Suzen, S.; Westwell, A.D. Synthesis and antioxidant properties of substituted 2-phenyl-1H-indoles. Bioorg. Med. Chem. Lett., 2013, 23(9), 2671-2674.
[http://dx.doi.org/10.1016/j.bmcl.2013.02.090] [PMID: 23540647]
[67]
Carocci, A.; Catalano, A.; Bruno, C.; Lovece, A.; Roselli, M.G.; Cavalluzzi, M.M.; De Santis, F.; De Palma, A.; Rusciano, M.R.; Illario, M.; Franchini, C.; Lentini, G. N-(Phenoxyalkyl)amides as MT1 and MT2 ligands: Antioxidant properties and inhibition of Ca2+/CaM-dependent kinase II. Bioorg. Med. Chem., 2013, 21(4), 847-851.
[http://dx.doi.org/10.1016/j.bmc.2012.12.017] [PMID: 23332368]
[68]
Carocci, A.; Catalano, A.; Lovece, A.; Lentini, G.; Duranti, A.; Lucini, V.; Pannacci, M.; Scaglione, F.; Franchini, C. Design, synthesis, and pharmacological effects of structurally simple ligands for MT1 and MT2 melatonin receptors. Bioorg. Med. Chem., 2010, 18(17), 6496-6511.
[http://dx.doi.org/10.1016/j.bmc.2010.06.100] [PMID: 20674373]
[69]
Puskullu, M.O.; Shirinzadeh, H.; Nenni, M.; Gurer-Orhan, H.; Suzen, S. Synthesis and evaluation of antioxidant activity of new quinoline-2-carbaldehyde hydrazone derivatives: bioisosteric melatonin analogues. J. Enzyme Inhib. Med. Chem., 2016, 31(1), 121-125.
[http://dx.doi.org/10.3109/14756366.2015.1005012] [PMID: 25942363]
[70]
Shirinzadeh, H.; Ince, E.; Westwell, A.D.; Gurer-Orhan, H.; Suzen, S. Novel indole-based melatonin analogues substituted with triazole, thiadiazole and carbothioamides: Studies on their antioxidant, chemopreventive and cytotoxic activities. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 1312-1321.
[http://dx.doi.org/10.3109/14756366.2015.1132209] [PMID: 26745200]
[71]
Gurer-Orhan, H.; Karaaslan, C.; Ozcan, S.; Firuzi, O.; Tavakkoli, M.; Saso, L.; Suzen, S. Novel indole-based melatonin analogues: Evaluation of antioxidant activity and protective effect against amyloid β-induced damage. Bioorg. Med. Chem., 2016, 24(8), 1658-1664.
[http://dx.doi.org/10.1016/j.bmc.2016.02.039] [PMID: 26970662]
[72]
Chesnokova, N.B.; Beznos, O.V.; Lozinskaya, N.A.; Volkova, M.S.; Zaryanova, E.V.; Zefirov, N.S.; Grigoryev, A.V. Novel agonists of melatonin receptors as promising hypotensive and neuroprotective agents for therapy of glaucoma. Suppl. B: Biomed. Chem., 2017, 11(3), 272-278.
[73]
Reina, M.; Castañeda-Arriaga, R.; Pérez-González, A.; Guzman-Lopez, E.G.; Tan, D.X.; Reiter, R.J.; Galano, A. A computer-assisted systematic search for melatonin derivatives with high potential as antioxidants. Melatonin Res, 2018, 1(1), 27-58.
[http://dx.doi.org/10.32794/mr11250003]
[74]
Castañeda-Arriaga, R.; Pérez-González, A.; Reina, M.; Galano, A. Computer-designed melatonin derivatives: potent peroxyl radical scavengers with no pro-oxidant behavior. Theor. Chem. Acc., 2020, 139(8), 133.
[http://dx.doi.org/10.1007/s00214-020-02641-9]
[75]
Tchekalarova, J.; Ivanova, N.; Nenchovska, Z.; Tzoneva, R.; Stoyanova, T.; Uzunova, V.; Surcheva, S.; Tzonev, A.; T Angelova, V.; Andreeva-Gateva, P. Evaluation of neurobiological and antioxidant effects of novel melatonin analogs in mice. Saudi Pharm. J., 2020, 28(12), 1566-1579.
[http://dx.doi.org/10.1016/j.jsps.2020.10.004] [PMID: 33424250]
[76]
Panyatip, P.; Pratheepawanit Johns, N.; Priprem, A.; Nakagawa, K.; Puthongking, P. Effect of N-Amide substitution on antioxidative activities of melatonin derivatives. Sci. Pharm., 2020, 88(1), 3.
[http://dx.doi.org/10.3390/scipharm88010003]
[77]
Shirinzadeh, H.; Ghalia, M.; Tascioglu, A.; Adjali, F.I.; Gunesacar, G.; Gurer-Orhan, H.; Suzen, S. Bioisosteric modification on melatonin: Synthesis of new naphthalene derivatives, in vitro antioxidant activity and cytotoxicity studies. Braz. J. Pharm. Sci., 2020, 56, e18124.
[http://dx.doi.org/10.1590/s2175-97902019000418124]
[78]
Shirinzadeh, H.; Neuhaus, E.; Ince Erguc, E.; Tascioglu Aliyev, A.; Gurer-Orhan, H.; Suzen, S. New indole-7-aldehyde derivatives as melatonin analogues; Synthesis and screening their antioxidant and anticancer potential. Bioorg. Chem., 2020, 104, 104219.
[http://dx.doi.org/10.1016/j.bioorg.2020.104219] [PMID: 32916391]
[79]
Elkamhawy, A.; Woo, J.; Gouda, N.A.; Kim, J.; Nada, H.; Roh, E.J.; Park, K.D.; Cho, J.; Lee, K. Melatonin analogues potently inhibit MAO-B and protect pc12 cells against oxidative stress. Antioxidants, 2021, 10(10), 1604.
[http://dx.doi.org/10.3390/antiox10101604] [PMID: 34679739]
[80]
Elkamhawy, A.; Oh, N.K.; Gouda, N.A.; Abdellattif, M.H.; Alshammari, S.O.; Abourehab, M.A.S.; Alshammari, Q.A.; Belal, A.; Kim, M.; Al-Karmalawy, A.A.; Lee, K. Novel hybrid indole-based caffeic acid amide derivatives as potent free radical scavenging agents: Rational design, synthesis, spectroscopic characterization, in silico and in vitro Investigations. Metabolites, 2023, 13(2), 141.
[http://dx.doi.org/10.3390/metabo13020141] [PMID: 36837759]
[81]
Liu, P.; Cheng, M.; Guo, J.; Cao, D.; Luo, J.; Wan, Y.; Fang, Y.; Jin, Y.; Xie, S.S.; Liu, J. Dual functional antioxidant and butyrylcholinesterase inhibitors for the treatment of Alzheimer’s disease: Design, synthesis and evaluation of novel melatonin-alkylbenzylamine hybrids. Bioorg. Med. Chem., 2023, 78, 117146.
[http://dx.doi.org/10.1016/j.bmc.2022.117146] [PMID: 36580744]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy