Generic placeholder image

Current Chemical Biology

Editor-in-Chief

ISSN (Print): 2212-7968
ISSN (Online): 1872-3136

Research Article

MgO-MgAl2O4: An Efficient Catalyst for Multicomponent Synthesis of Substituted 4H-pyran

Author(s): Mustapha Dib*, Marieme Kacem, Soumaya Talbi, Hajiba Ouchetto, Khadija Ouchetto, Abdellatif Essoumhi, Abderrafia Hafid and Mostafa Khouili

Volume 17, Issue 3, 2023

Published on: 17 July, 2023

Page: [160 - 169] Pages: 10

DOI: 10.2174/2212796817666230626120825

Price: $65

Abstract

Background: The 4H-pyran compounds are an important class of heterocyclic compounds due to their diverse biological and pharmaceutical properties. Moreover, 4H-pyran is a crucial structural component commonly encountered in the pharmaceutical industry. Thus, it has recently gained significant attention from industry researchers and academic organizations. Herein, we report an efficient and eco-friendly one-pot strategy to synthesize bioactive compounds containing 4H-pyran motifs via a multicomponent reaction. This reaction occurs by reacting equimolar amounts of ethyl acetoacetate, malononitrile, and substituted aldehyde under mild conditions in the presence of a solid catalyst, MgO-MgAl2O4. This latter, was obtained by heat treatment, at 800°C, of a layered double hydroxide with the metal cation ratio of Mg2+/Al3+ = 3:1, and it was characterized by some techniques including XRD, TG-DTA, FT-IR and N2 adsorption-desorption. Therefore, bioactive compounds containing the pyran unit may possess intriguing biological properties. The synthetic protocol offers advantages such as a simple procedure, good to excellent yields, and easy catalyst separation from the reaction mixture.

Methods: Substituted 4H-pyran derivatives were prepared by the condensation reaction of substituted aldehydes, ethyl acetoacetate and malononitrile using MgO-MgAl2O4 catalyst under mild conditions. This study aims to develop an efficient methodology for synthesizing 4H-pyran heterocyclic compounds that have potential applications in biological sciences. The study utilizes MgO-MgAl2O4 as a highly effective heterogeneous catalyst.

Results: The present research details the synthesis of 4H-pyran bioactive compounds using sustainable reaction conditions, which resulted in high yields and facilitated the easy separation of the catalyst from the reaction mixture.

Conclusion: In summary, the MgO-MgAl2O4 spinel nanostructure has been successfully prepared and fully characterized by using different physicochemical techniques such as XRD, TG-DTA, FT-IR and N2 adsorption-desorption. Afterwards, its catalytic activity was investigated through the one-pot condensation of aryl aldehyde, malononitrile and ethyl acetoacetate. Moreover, it exhibits good catalytic activity for the synthesis of 4H-pyran derivatives under green conditions. These latter have many benefits, such as simple procedure, good to excellent yields and easy separation of the catalyst from the reaction mixture.

Graphical Abstract

[1]
Sadek, K.U.; Mekheimer, R.A.H.; Abd-Elmonem, M.; Abdel-Hameed, A.; Elnagdi, M.H. Recent developments in the enantioselective synthesis of polyfunctionalized pyran and chromene derivatives. Tetrahedron Asymmetry, 2017, 28(11), 1462-1485.
[http://dx.doi.org/10.1016/j.tetasy.2017.10.020]
[2]
Brahmachari, G.; Banerjee, B. Facile and one-pot access to diverse and densely functionalized 2-Amino-3-cyano-4 H -pyrans and pyran-annulated heterocyclic scaffolds via an eco-friendly multicomponent reaction at room temperature using urea as a novel organo-catalyst. ACS Sustain. Chem.& Eng., 2014, 2(3), 411-422.
[http://dx.doi.org/10.1021/sc400312n]
[3]
Hossaini, Z.; Sheikholeslami-Farahani, F.; Rostami-Charati, F. Green synthesis of phosphoryl-2-oxo-2H-pyran via three component reaction of trialkyl phosphites. Comb. Chem. High Throughput Screen., 2014, 17(9), 804-807.
[http://dx.doi.org/10.2174/1386207317666141106155038] [PMID: 25373506]
[4]
Wang, D.C.; Xie, Y.M.; Fan, C.; Yao, S.; Song, H. Efficient and mild cyclization procedures for the synthesis of novel 2-amino-4H-pyran derivatives with potential antitumor activity. Chin. Chem. Lett., 2014, 25(7), 1011-1013.
[http://dx.doi.org/10.1016/j.cclet.2014.04.026]
[5]
Uzzaman, S.; Dar, A.M.; Sohail, A.; Bhat, S. mustafa, M.F.; Khan, Y. Synthesis, molecular docking and biological evaluation of new steroidal 4H-pyrans. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 117, 493-501.
[http://dx.doi.org/10.1016/j.saa.2013.08.019] [PMID: 24021949]
[6]
Waghmare, A.S.; Pandit, S.S.; Suryawanshi, D.M. DABCO catalyzed green and efficient synthesis of 2-Amino-4H-pyrans and their bio-logical evaluation as antimicrobial and anticancer agents. Comb. Chem. High Throughput Screen., 2018, 21(4), 254-261.
[http://dx.doi.org/10.2174/1386207321666180315095422] [PMID: 29542410]
[7]
Kumar, D.; Singh, G.; Sharma, P.; Qayum, A.; Mahajan, G.; Mintoo, M.J.; Singh, S.K.; Mondhe, D.M.; Bedi, P.M.S.; Jain, S K.; Gupta, G.K. 4-aryl/heteroaryl-4H-fused pyrans as anti-proliferative agents: Design, synthesis and biological evaluation, anti-cancer agents in medicinal chemistry. Anticancer. Agents Med. Chem., 2018, 18(1), 57-73.
[http://dx.doi.org/10.2174/1871520617666170918143911]
[8]
Saxena, A.; Shastri, L.; Sunagar, V. Green approach for the synthesis of 4-coumarin-4 H -pyrans from 4-formylcoumarins and their antibacterial study. Synth. Commun., 2017, 47(17), 1570-1576.
[http://dx.doi.org/10.1080/00397911.2017.1336557]
[9]
Shafaei, F.; Najar, A.H. Green synthesis of 4H-pyran derivatives using Fe3O4-MNPs as efficient nanocatalyst: Study of antioxidant ac-tivity. Comb. Chem. High Throughput Screen., 2020, 23(5), 446-454.
[http://dx.doi.org/10.2174/1386207322666191022130235] [PMID: 31642772]
[10]
Maduraiveeran, G. Nanoporous structured mixed transition metal oxides nanomaterials for electrochemical energy conversion technologies. Mater. Lett., 2021, 283, 128763.
[http://dx.doi.org/10.1016/j.matlet.2020.128763]
[11]
Uberuaga, B.P.; Perriot, R. Spatially-varying inversion near grain boundaries in MgAl 2 O 4 spinel. RSC Advances, 2020, 10(20), 11737-11742.
[http://dx.doi.org/10.1039/D0RA00700E] [PMID: 35496618]
[12]
Mouyane, M.; Jaber, B.; Bendjemil, B.; Bernard, J.; Houivet, D.; Noudem, J.G. Sintering behavior of magnesium aluminate spinel MgAl 2 O 4 synthesized by different methods. Int. J. Appl. Ceram. Technol., 2019, 16(3), 1138-1149.
[http://dx.doi.org/10.1111/ijac.13172]
[13]
Sharma, A.; Krishnan, M.; Ganganahalli, G.; Saraswathy, S.; Biswas, P.; Johnson, R.; Abraham, K.M.; Iyer, S.R. In vitro evaluation of magnesium aluminate [MgAl2O4] spinel ceramic based polyphasic composite scaffold for craniofacial bone tissue engineering. Ceram. Int., 2021, 47(10), 13678-13692.
[http://dx.doi.org/10.1016/j.ceramint.2021.01.229]
[14]
Nasrollahzadeh, M.; Ehsani, A.; Rostami-Vartouni, A. Ultrasound-promoted green approach for the synthesis of sulfonamides using natural, stable and reusable Natrolite nanozeolite catalyst at room temperature. Ultrason. Sonochem., 2014, 21(1), 275-282.
[http://dx.doi.org/10.1016/j.ultsonch.2013.07.012] [PMID: 23958356]
[15]
Pupovac, K.; Palkovits, R. Cu/MgAl(2)O(4) as bifunctional catalyst for aldol condensation of 5-hydroxymethylfurfural and selective transfer hydrogenation. ChemSusChem, 2013, 6(11), 2103-2110.
[http://dx.doi.org/10.1002/cssc.201300414] [PMID: 24038987]
[16]
Hashemzehi, M.; Saghatoleslami, N.; Nayebzadeh, H. Microwave-assisted solution combustion synthesis of spinel-type mixed oxides for esterification reaction. Chem. Eng. Commun., 2017, 204(4), 415-423.
[http://dx.doi.org/10.1080/00986445.2016.1273831]
[17]
Tijero, J.M.G.; Ibarra, A. Use of luminescence of Mn2+ and Cr3+ in probing the disordering process in MgAl2O4 spinels. J. Phys. Chem. Solids, 1993, 54(2), 203-207.
[http://dx.doi.org/10.1016/0022-3697(93)90309-F]
[18]
de Souza, G.; Ruoso, C.; Marcilio, N.R.; Perez-Lopez, O.W. Dry reforming of methane over Mg-Co-Al mixed oxides catalysts: Effect of Mg content and reduction conditions. Chem. Eng. Commun., 2015, 203, 00986445.2015.1104502..
[http://dx.doi.org/10.1080/00986445.2015.1104502]
[19]
Alvar, E.N.; Rezaei, M.; Alvar, H.N. Synthesis of mesoporous nanocrystalline MgAl2O4 spinel via surfactant assisted precipitation route. Powder Technol., 2010, 198(2), 275-278.
[http://dx.doi.org/10.1016/j.powtec.2009.11.019]
[20]
Motokura, K.; Nishimura, D.; Mori, K.; Mizugaki, T.; Ebitani, K.; Kaneda, K. A ruthenium-grafted hydrotalcite as a multifunctional cata-lyst for direct α-alkylation of nitriles with primary alcohols. J. Am. Chem. Soc., 2004, 126(18), 5662-5663.
[http://dx.doi.org/10.1021/ja049181l] [PMID: 15125647]
[21]
Safari, J.; Akbari, Z.; Naseh, S. Nanocrystalline MgAl 2 O 4 as an efficient catalyst for one-pot synthesis of multisubstituted imidazoles under solvent-free conditions. J. Saudi Chem. Soc., 2016, 20, S250-S255.
[http://dx.doi.org/10.1016/j.jscs.2012.10.012]
[22]
Kim, H.; Eissa, A.A-S.; Kim, S.B.; Lee, H.; Kim, W.; Seo, D.J.; Lee, K.; Yoon, W.L. One-pot synthesis of a highly mesoporous Ni/MgAl 2 O 4 spinel catalyst for efficient steam methane reforming: influence of inert annealing. Catal. Sci. Technol., 2021, 11(13), 4447-4458.
[http://dx.doi.org/10.1039/D1CY00485A]
[23]
Li, W.C.; Comotti, M.; Lu, A.H.; Schüth, F. Nanocast mesoporous MgAl 2 O 4 spinel monoliths as support for highly active gold CO oxidation catalyst. Chem. Commun., 2006, 16(16), 1772-1774.
[http://dx.doi.org/10.1039/B601109H] [PMID: 16609800]
[24]
Tahier, T.; Mohiuddin, E.; Key, D.; Mdleleni, M.M. In-depth investigation of the effect of MgAl2O4 and SiO2 support on sulfur promot-ed nickel catalysts for the dehydrogenation of propane. Catal. Today, 2021, 377, 176-186.
[http://dx.doi.org/10.1016/j.cattod.2020.12.028]
[25]
de Miguel, S.R.; Vilella, I.M.J.; Zgolicz, P.; Bocanegra, S.A. Bimetallic catalysts supported on novel spherical MgAl2O4-coated supports for dehydrogenation processes. Appl. Catal. A Gen., 2018, 567, 36-44.
[http://dx.doi.org/10.1016/j.apcata.2018.09.005]
[26]
Kehres, J.; Jakobsen, J.G.; Andreasen, J.W.; Wagner, J.B.; Liu, H.; Molenbroek, A.; Sehested, J.; Chorkendorff, I.; Vegge, T. Dynamical properties of a Ru/MgAl 2 O 4 catalyst during reduction and dry methane reforming. J. Phys. Chem. C, 2012, 116(40), 21407-21415.
[http://dx.doi.org/10.1021/jp3069656]
[27]
Mianai, R.S.; Ghasemzadeh, M.A.; Monfared, M.R.Z. Green fabrication of cobalt nps using aqueous extract of antioxidant rich zingiber and their catalytic applications for the synthesis of pyrano[2,3-c]pyrazoles. Comb. Chem. High Throughput Screen., 2019, 22(1), 18-26.
[http://dx.doi.org/10.2174/1386207322666190307160354] [PMID: 30848196]
[28]
Rather, R.A. Siddiqui, S.; Khan, W.A.; Siddiqui, Z.N. La/Ce mixed metal oxide supported MWCNTs as a heterogeneous catalytic system for the synthesis of chromeno pyran derivatives and assessment of green metrics. Molecular Catalysis, 2020, 490, 110975.
[http://dx.doi.org/10.1016/j.mcat.2020.110975]
[29]
Aher, D.S.; Khillare, K.R.; Chavan, L.D.; Shankarwar, S.G. Quaternary vanado‐molybdotungstophosphoric acid [H 5 PW 6 Mo 4 V 2 O 40] over natural montmorillonite as a heterogeneous catalyst for the synthesis 4 H ‐pyran and polyhydroquinoline derivatives. ChemistrySelect, 2020, 5(25), 7320-7331.
[http://dx.doi.org/10.1002/slct.202001065]
[30]
Bhattacharyya, P.; Pradhan, K.; Paul, S.; Das, A.R. Nano crystalline ZnO catalyzed one pot multicomponent reaction for an easy access of fully decorated 4H-pyran scaffolds and its rearrangement to 2-pyridone nucleus in aqueous media. Tetrahedron Lett., 2012, 53(35), 4687-4691.
[http://dx.doi.org/10.1016/j.tetlet.2012.06.086]
[31]
Pham, D.D.; Vo-Thanh, G.; Le, T.N. Efficient and green synthesis of 4 H -pyran derivatives under ultrasound irradiation in the presence of K 2 CO 3 supported on acidic montmorillonite. Synth. Commun., 2017, 47(18), 1684-1691.
[http://dx.doi.org/10.1080/00397911.2017.1342844]
[32]
de Souza Siqueira, M.; da Silva-Filho, L.C. NbCl5-promoted the synthesis of 4H-pyrans through multicomponent reaction. Tetrahedron Lett., 2016, 57(46), 5050-5052.
[http://dx.doi.org/10.1016/j.tetlet.2016.10.008]
[33]
Gupta, R.; Layek, S.; Pathak, D.D. Synthesis and characterization of guanine-functionalized mesoporous silica [SBA-16-G]: a metal-free and recyclable heterogeneous solid base catalyst for synthesis of pyran-annulated heterocyclic compounds. Res. Chem. Intermed., 2019, 45(3), 1619-1637.
[http://dx.doi.org/10.1007/s11164-018-3693-5]
[34]
Khan, T.; Siddiqui, Z.N. Perchloric acid modified-cellulose: a versatile, novel and biodegradable heterogeneous solid acid catalyst for single-pot synthesis of novel bis-pyran annulated heterocyclic scaffolds under solvent-free conditions. New J. Chem., 2014, 38(10), 4847-4858.
[http://dx.doi.org/10.1039/C4NJ00529E]
[35]
Safaei-Ghomi, J.; Nazemzadeh, S.H.; Shahbazi-Alavi, H. Novel magnetic nanoparticles-supported inorganic-organic hybrids based on POSS as an efficient nanomagnetic catalyst for the synthesis of pyran derivatives. Catal. Commun., 2016, 86, 14-18.
[http://dx.doi.org/10.1016/j.catcom.2016.07.022]
[36]
Dib, M.; Ouchetto, H.; Akhramez, S.; Fadili, H.; Essoumhi, A.; Ouchetto, K.; Hafid, A.; Sajieddine, M.; Khouili, M. Preparation of Mg/Al-LDH nanomaterials and its application in the condensation of 3-amino-1-phenyl-2-pyrazolin-5-one with aromatic aldehyde. Mater. Today Proc., 2020, 22, 104-107.
[http://dx.doi.org/10.1016/j.matpr.2019.08.106]
[37]
Dib, M.; Bennani, M.N.; Ouchetto, H.; Ouchetto, K.; Hafid, A.; Khouili, M. Effect of exchanged MgAl-hydrotalcite with carbonate on increases of acid neutralizing capacity: A good candidate as an antacid. Curr. Nanomater., 2022, 7(1), 49-56.
[http://dx.doi.org/10.2174/2405461506666210526145531]
[38]
Amini, E.; Rezaei, M.; Nematollahi, B. Synthesis of mesoporous magnesium aluminate (MgAl2O4) nanopowder with high surface area with a novel and simple sol–gel method. J. Porous Mater., 2015, 22(2), 481-485.
[http://dx.doi.org/10.1007/s10934-015-9917-9]
[39]
Dib, M.; Moutcine, A.; Ouchetto, H.; Ouchetto, K.; Chtaini, A.; Hafid, A.; Khouili, M. Novel synthesis of α-Fe2O3@Mg/Al-CO3-LDH nanocomposite for rapid electrochemical detection of p-nitrophenol. Inorg. Chem. Commun., 2021, 131, 108788.
[http://dx.doi.org/10.1016/j.inoche.2021.108788]
[40]
El khanchaoui, A.; Sajieddine, M.; Ounacer, M.; Fnidiki, A.; Richomme, F.; Juraszek, J.; Mansori, M.; Dib, M.; Essoumhi, A. Structural, morphological, and magnetic studies of spinel ferrites derived from layered double hydroxides. Appl. Phys., A Mater. Sci. Process., 2022, 128(5), 406.
[http://dx.doi.org/10.1007/s00339-022-05547-4]
[41]
Yang, L.; Meng, Q.; Lu, N.; He, G.; Li, J. Combustion synthesis and spark plasma sintering of MgAl2O4-graphene composites. Ceram. Int., 2019, 45(6), 7635-7640.
[http://dx.doi.org/10.1016/j.ceramint.2019.01.060]
[42]
Dib, M.; Ounacer, M.; Kacem, M.; Sajieddine, M.; Ouchetto, H.; Ouchetto, K.; Essoumhi, A.; Hafid, A.; Khouili, M. Synthesis of iron-based nanoparticles assembled with layered double hydroxides: structural and magnetic properties study. Mater. Res. Innov., 2022, 26(2), 76-83.
[http://dx.doi.org/10.1080/14328917.2021.1902090]
[43]
Chilukoti, S.; Thangavel, T. Enhanced adsorption of Congo red on microwave synthesized layered Zn-Al double hydroxides and its adsorption behaviour using mixture of dyes from aqueous solution. Inorg. Chem. Commun., 2019, 100, 107-117.
[http://dx.doi.org/10.1016/j.inoche.2018.12.027]
[44]
(a) Dib, M.; Moutcine, A.; Ouchetto, H.; Chtaini, A.; Hafid, A.; Khouili, M. New efficient modified carbon paste electrode by Fe2O3@Ni/Al-LDH magnetic nanocomposite for the electrochemical detection of mercury. Inorg. Chem. Commun., 2021, 131, 108624.
[http://dx.doi.org/10.1016/j.inoche.2021.108624];
(b) Honarmand, M.; Tzani, A.; Detsi, A. Synthesis of novel multi-OH functionalized ionic liquid and its application as dual catalyst-solvent for the one-pot synthesis 4H-pyrans. J. Mol. Liq., 2019, 290, 111358.
[http://dx.doi.org/10.1016/j.molliq.2019.111358]
[45]
Chowhan, B.; Gupta, M.; Sharma, N. Designing of ultrafine PdNPs immobilized pyridinic‐ N doped carbon and evaluation of its catalytic potential for konevenagel condensation, synthesis of 4 H‐ pyran derivatives and nitroreduction. ChemistrySelect, 2019, 4(43), 12689-12700.
[http://dx.doi.org/10.1002/slct.201903071]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy