Generic placeholder image

Recent Patents on Biotechnology

Editor-in-Chief

ISSN (Print): 1872-2083
ISSN (Online): 2212-4012

Review Article

Role of Algal-derived Bioactive Compounds in Human Health

Author(s): Gyanendra Tripathi, Priyanka Dubey, Suhail Ahmad, Alvina Farooqui* and Vishal Mishra*

Volume 18, Issue 3, 2024

Published on: 19 July, 2023

Page: [190 - 209] Pages: 20

DOI: 10.2174/1872208317666230623141740

Price: $65

Abstract

Algae is emerging as a bioresource with high biological potential. Various algal strains have been used in traditional medicines and human diets worldwide. They are a rich source of bioactive compounds like ascorbic acid, riboflavin, pantothenate, biotin, folic acid, nicotinic acid, phycocyanins, gamma-linolenic acid (GLA), adrenic acid (ARA), docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), etc. Beta-carotene, astaxanthin, and phycobiliproteins are different classes of pigments that are found in algae. They possess antioxidant, anti-inflammatory and anticancer properties. The sulfur-coated polysaccharides in algae have been used as an anticancer, antibacterial, and antiviral agent. Scientists have exploited algal-derived bioactive compounds for developing lead molecules against several diseases. Due to the surge in research on bioactive molecules from algae, industries have started showing interest in patenting for the large-scale production of bioactive compounds having applications in sectors like pharmaceuticals, food, and beverage. In the food industry, algae are used as a thickening, gelling, and stabilizing agent. Due to their gelling and thickening characteristics, the most valuable algae products are macroalgal polysaccharides such as agar, alginates, and carrageenan. The high protein, lipid, and nutrient content in microalgae makes it a superfood for aquaculture. The present review aims at describing various non-energy-based applications of algae in pharmaceuticals, food and beverage, cosmetics, and nutraceuticals. This review attempts to analyze information on algal-derived drugs that have shown better potential and reached clinical trials.

Graphical Abstract

[1]
Khalil S, Mahnashi MH, Hussain M, et al. Exploration and determination of algal role as Bioindicator to evaluate water quality – Probing fresh water algae. Saudi J Biol Sci 2021; 28(10): 5728-37.
[http://dx.doi.org/10.1016/j.sjbs.2021.06.004] [PMID: 34588884]
[2]
Metting FB. Biodiversity and application of microalgae. J Ind Microbiol 1996; 17: 477-89.
[3]
Jena U, Das KC. Comparative evaluation of thermochemical liquefaction and pyrolysis for bio-oil production from microalgae. Energy Fuels 2011; 25(11): 5472-82.
[http://dx.doi.org/10.1021/ef201373m]
[4]
Marrez DA, Naguib MM, Sultan YY, Higazy AM. Antimicrobial and anticancer activities of Scenedesmus obliquus metabolites. Heliyon 2019; 5(3): e01404.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01404] [PMID: 30976685]
[5]
El-Adl MF, Deyab MA, El-Shanawany RS, Abu Ahmed SE. Fatty acids of Cladophora glomerata and Chaetomorpha vieillardii (Cladophoraceae) of different niches inhibit the pathogenic microbial growth. Aquat Bot 2022; 176: 103461.
[http://dx.doi.org/10.1016/j.aquabot.2021.103461]
[6]
Nigam PS, Singh A. Production of liquid biofuels from renewable resources. Pror Energy Combust Sci 2011; 37(1): 52-68.
[http://dx.doi.org/10.1016/j.pecs.2010.01.003]
[7]
Mahfooz S, Shamim A, Husain A, Farooqui A. Physicochemical characterisation and ecotoxicological assessment of nano-silver using two cyanobacteria Nostoc muscorum and Plectonema boryanum. Int J Environ Sci Technol 2019; 16(8): 4407-18.
[http://dx.doi.org/10.1007/s13762-018-1923-4]
[8]
Custódio L, Soares F, Pereira H, et al. Fatty acid composition and biological activities of Isochrysis galbana T-ISO, Tetraselmis sp. and Scenedesmus sp.: Possible application in the pharmaceutical and functional food industries. J Appl Phycol 2014; 26(1): 151-61.
[http://dx.doi.org/10.1007/s10811-013-0098-0]
[9]
Desbois AP, Mearns-Spragg A, Smith VJ. A fatty acid from the diatom Phaeodactylum tricornutum is antibacterial against diverse bacteria including multi-resistant Staphylococcus aureus (MRSA). Mar Biotechnol 2009; 11(1): 45-52.
[http://dx.doi.org/10.1007/s10126-008-9118-5] [PMID: 18575935]
[10]
El-Shaibany A, AL-Habori M, Al-Maqtari T, Al-Mahbashi H. The Yemeni brown algae Dictyota dichotoma exhibit high in vitro anticancer activity independent of its antioxidant capability. BioMed Res Int 2020; 2020: 1-9.
[http://dx.doi.org/10.1155/2020/2425693] [PMID: 32149090]
[11]
Bhosale P. Environmental and cultural stimulants in the production of carotenoids from microorganisms. Appl Microbiol Biotechnol 2004; 63(4): 351-61.
[http://dx.doi.org/10.1007/s00253-003-1441-1] [PMID: 14566431]
[12]
Manning SR, Nobles DR. Impact of global warming on water toxicity: Cyanotoxins. Curr Opin Food Sci 2017; 18: 14-20.
[http://dx.doi.org/10.1016/j.cofs.2017.09.013]
[13]
Hu J, Nagarajan D, Zhang Q, Chang JS, Lee DJ. Heterotrophic cultivation of microalgae for pigment production: A review. Biotechnol Adv 2018; 36(1): 54-67.
[http://dx.doi.org/10.1016/j.biotechadv.2017.09.009] [PMID: 28947090]
[14]
Vaz BS, Moreira JB, Morais MG, Costa JAV. Microalgae as a new source of bioactive compounds in food supplements. Curr Opin Food Sci 2016; 7: 73-7.
[http://dx.doi.org/10.1016/j.cofs.2015.12.006]
[15]
Peng J, Yuan JP, Wu CF, Wang JH. Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: MWEetabolism and bioactivities relevant to human health. Mar Drugs 2011; 9(10): 1806-28.
[http://dx.doi.org/10.3390/md9101806] [PMID: 22072997]
[16]
Wackenroder H. Ueber das Oleum radicis Dauci aetherum, das Carotin, den Carotenzucker und den officinellen succus Dauci; so wie auch über das Mannit, welches in dem Möhrensafte durch eine besondere Art der Gährung gebildet wird. Geigers Magazin der Pharmazie 1831; 33: 144-72.
[17]
Ho KKHY, Redan BW. Impact of thermal processing on the nutrients, phytochemicals, and metal contaminants in edible algae. Crit Rev Food Sci Nutr 2022; 62(2): 508-26.
[http://dx.doi.org/10.1080/10408398.2020.1821598] [PMID: 32962399]
[18]
Yabuzaki J. Carotenoids database: Structures, chemical fingerprints and distribution among organisms. Database 2017; 2017(1): 2017.
[http://dx.doi.org/10.1093/database/bax004] [PMID: 28365725]
[19]
Sharma P, Roy M, Roy B. Assessment of lycopene derived fresh and processed tomato products on human diet in eliminating health diseases. Assessment 2021; 33(17): 165-72.
[20]
Xu Y, Harvey PJ. Carotenoid Production by Dunaliella salina under Red Light. Antioxidants 2019; 8(5): 123.
[http://dx.doi.org/10.3390/antiox8050123] [PMID: 31067695]
[21]
Meléndez-Martínez AJ, Britton G, Vicario IM, Heredia FJ. Relationship between the colour and the chemical structure of carotenoid pigments. Food Chem 2007; 101(3): 1145-50.
[http://dx.doi.org/10.1016/j.foodchem.2006.03.015]
[22]
Son M, Hart SM, Schlau-Cohen GS. Investigating carotenoid photophysics in photosynthesis with 2D electronic spectroscopy. Trends Chem 2021; 3(9): 733-46.
[http://dx.doi.org/10.1016/j.trechm.2021.05.008]
[23]
Zuluaga M, Gueguen V, Pavon-Djavid G, Letourneur D. Carotenoids from microalgae to block oxidative stress. Bioimpacts 2017; 7(1): 1-3.
[http://dx.doi.org/10.15171/bi.2017.01] [PMID: 28546947]
[24]
Cho KS, Shin M, Kim S, Lee SB. Recent advances in studies on the therapeutic potential of dietary carotenoids in neurodegenerative diseases. Oxid Med Cell Longev 2018; 2018: 4120458.
[http://dx.doi.org/10.1155/2018/4120458]
[25]
Sathasivam R, Ki JS. A review of the biological activities of microalgal carotenoids and their potential use in healthcare and cosmetic industries. Mar Drugs 2018; 16(1): 26.
[http://dx.doi.org/10.3390/md16010026] [PMID: 29329235]
[26]
Sluijs I, Cadier E, Beulens JWJ, van der A DL, Spijkerman AMW, van der Schouw YT. Dietary intake of carotenoids and risk of type 2 diabetes. Nutr Metab Cardiovasc Dis 2015; 25(4): 376-81.
[http://dx.doi.org/10.1016/j.numecd.2014.12.008] [PMID: 25716098]
[27]
Griffiths K, Aggarwal B, Singh R, Buttar H, Wilson D, De Meester F. Food antioxidants and their anti-inflammatory properties: A potential role in cardiovascular diseases and cancer prevention. Diseases 2016; 4(4): 28.
[http://dx.doi.org/10.3390/diseases4030028] [PMID: 28933408]
[28]
Ye ZW, Jiang JG, Wu GH. Biosynthesis and regulation of carotenoids in Dunaliella: Progresses and prospects. Biotechnol Adv 2008; 26(4): 352-60.
[http://dx.doi.org/10.1016/j.biotechadv.2008.03.004] [PMID: 18486405]
[29]
Hosseini Tafreshi A, Shariati M. Dunaliella biotechnology: Methods and applications. J Appl Microbiol 2009; 107(1): 14-35.
[http://dx.doi.org/10.1111/j.1365-2672.2009.04153.x] [PMID: 19245408]
[30]
Zuluaga M, Gueguen V, Letourneur D, Pavon-Djavid G. Astaxanthin-antioxidant impact on excessive Reactive Oxygen Species generation induced by ischemia and reperfusion injury. Chem Biol Interact 2018; 279: 145-58.
[http://dx.doi.org/10.1016/j.cbi.2017.11.012] [PMID: 29179950]
[31]
Li YX, Wijesekara I, Li Y, Kim SK. Phlorotannins as bioactive agents from brown algae. Process Biochem 2011; 46(12): 2219-24.
[http://dx.doi.org/10.1016/j.procbio.2011.09.015]
[32]
Shaikh R, Rizvi A, Pandit S, Desai N, Patil R. Microalgae: Classification, bioactives, medicinal properties, industrial applications, and future prospectives. An Integration of Phycorarticle-title>emediation Processes in Wastewater Treatment. Elsevier: Amsterdam, Netherlands 2022; pp. 451-83.
[33]
Saini DK, Pabbi S, Shukla P. Cyanobacterial pigments: Perspectives and biotechnological approaches. Food Chem Toxicol 2018; 120: 616-24.
[http://dx.doi.org/10.1016/j.fct.2018.08.002] [PMID: 30077705]
[34]
Paniagua-Michel J. Microalgal nutraceuticals. Handbook of Marine Microalgae. Academic Press: Cambridge Massachusetts, 2015; pp. 255-67.
[http://dx.doi.org/10.1016/B978-0-12-800776-1.00016-9]
[35]
Borowitzka MA. Microalgal Metabolism and their Utilisation. Marine Macro-and Microalgae. FL, USA: CRC Press 2018; pp. 43-55.
[36]
Khoo KS, Lee SY, Ooi CW, et al. Recent advances in biorefinery of astaxanthin from Haematococcus pluvialis. Bioresour Technol 2019; 288: 121606.
[http://dx.doi.org/10.1016/j.biortech.2019.121606] [PMID: 31178260]
[37]
Alzahrani M. Proteins and their Enzymatic hydrolysates from the marine diatom nitzschia laevis and screening for their in vitro antioxidant, antihypertension, anti-inflammatory and antimicrobial activities 2012.
[38]
Koru E. Earth Food Spirulina (Arthrospira): Production and Quality Standarts. Food Additive. London: IntechOpen Limited 2012.
[39]
Pangestuti R, Kim SK. Biological activities and health benefit effects of natural pigments derived from marine algae. J Funct Foods 2011; 3(4): 255-66.
[http://dx.doi.org/10.1016/j.jff.2011.07.001]
[40]
Paliwal C, Mitra M, Bhayani K, et al. Abiotic stresses as tools for metabolites in microalgae. Bioresour Technol 2017; 244(Pt 2): 1216-26.
[http://dx.doi.org/10.1016/j.biortech.2017.05.058] [PMID: 28552566]
[41]
Bryant DA, Guglielmi G, de Marsac NT, Castets AM, Cohen-Bazire G. The structure of cyanobacterial phycobilisomes: A model. Arch Microbiol 1979; 123(2): 113-27.
[http://dx.doi.org/10.1007/BF00446810]
[42]
Gong M, Bassi A. Carotenoids from microalgae: A review of recent developments. Biotechnol Adv 2016; 34(8): 1396-412.
[http://dx.doi.org/10.1016/j.biotechadv.2016.10.005] [PMID: 27816618]
[43]
Glazer AN. Phycobiliproteins — a family of valuable, widely used fluorophores. J Appl Phycol 1994; 6(2): 105-12.
[http://dx.doi.org/10.1007/BF02186064]
[44]
Zheng L, Zheng Z, Li X, et al. Structural insight into the mechanism of energy transfer in cyanobacterial phycobilisomes. Nat Commun 2021; 12(1): 5497.
[http://dx.doi.org/10.1038/s41467-021-25813-y] [PMID: 34535665]
[45]
Yoshikawa N, Belay A. Single-laboratory validation of a method for the determination of c-phycocyanin and allophycocyanin in Spirulina (Arthrospira) supplements and raw materials by spectrophotometry. J AOAC Int 2008; 91(3): 524-9.
[http://dx.doi.org/10.1093/jaoac/91.3.524] [PMID: 18567296]
[46]
Marx A, Adir N. Allophycocyanin and phycocyanin crystal structures reveal facets of phycobilisome assembly. Biochim Biophys Acta Bioenerg 2013; 1827(3): 311-8.
[http://dx.doi.org/10.1016/j.bbabio.2012.11.006] [PMID: 23201474]
[47]
Chichester KD. Capillary electrophoresis with laser induced fluorescence as a tool for whole cell and marine microbial protein analysis 2008.
[48]
Xie J, Chen S, Wen Z. Effects of light intensity on the production of phycoerythrin and polyunsaturated fatty acid by microalga Rhodomonas salina. Algal Res 2021; 58: 102397.
[http://dx.doi.org/10.1016/j.algal.2021.102397]
[49]
Lee MC, Yeh HY, Jhang FJ, Lee PT, Lin YK, Nan FH. Enhancing growth, phycoerythrin production, and pigment composition in the red alga Colaconema sp. Through optimal environmental conditions in an indoor system. Bioresour Technol 2021; 333: 125199.
[http://dx.doi.org/10.1016/j.biortech.2021.125199] [PMID: 33930673]
[50]
Minato T, Teramoto T, Adachi N, et al. Non-conventional octameric structure of C-phycocyanin. Commun Biol 2021; 4(1): 1238.
[http://dx.doi.org/10.1038/s42003-021-02767-x] [PMID: 34716405]
[51]
Kannaujiya VK, Kumar D, Singh V, Sinha RP. Advances in phycobiliproteins research: Innovations and commercialization. Natural bioactive compounds: Technological advancements. UK: Academic Press 2020; pp. 57-81.
[http://dx.doi.org/10.1016/B978-0-12-820655-3.00004-5]
[52]
Romay C, González R, Ledón N, Remirez D, Rimbau V. C-phycocyanin: A biliprotein with antioxidant, anti-inflammatory and neuroprotective effects. Curr Protein Pept Sci 2003; 4(3): 207-16.
[http://dx.doi.org/10.2174/1389203033487216] [PMID: 12769719]
[53]
Harp BP, Barrows JN. US regulation of color additives in foods. Colour Additives for Foods and Beverages. Singapore: Woodhead Publishing Series 2015; pp. 75-88.
[http://dx.doi.org/10.1016/B978-1-78242-011-8.00004-0]
[54]
Chini Zittelli G, Mugnai G, Milia M, et al. Effects of blue, orange and white lights on growth, chlorophyll fluorescence, and phycocyanin production of Arthrospira platensis cultures. Algal Res 2022; 61: 102583.
[http://dx.doi.org/10.1016/j.algal.2021.102583]
[55]
Smith DG, Young EG. The combined amino acids in several species of marine algae. J Biol Chem 1955; 217(2): 845-53.
[http://dx.doi.org/10.1016/S0021-9258(18)65949-6] [PMID: 13271445]
[56]
Yamgar PV, Dhamak VM. Therapeutics role of spirulina platensis in disease prevention and treatment. IP Int J Comprehen Adv Pharmacol 2022; 7(1): 30-9.
[http://dx.doi.org/10.18231/j.ijcaap.2022.006]
[57]
Sirajunnisa AR, Surendhiran D, Kozani PS, et al. An overview on the role of microalgal metabolites and pigments in apoptosis induction against copious diseases. Algal Res 2021; 60: 102556.
[http://dx.doi.org/10.1016/j.algal.2021.102556]
[58]
Sukhinov DV, Gorin KV, Romanov AO, Gotovtsev PM, Sergeeva YE. Increased C-phycocyanin extract purity by flocculation of Arthrospira platensis with chitosan. Algal Res 2021; 58: 102393.
[http://dx.doi.org/10.1016/j.algal.2021.102393]
[59]
Arad SM, Rapoport L, Moshkovich A, et al. Superior biolubricant from a species of red microalga. Langmuir 2006; 22(17): 7313-7.
[http://dx.doi.org/10.1021/la060600x] [PMID: 16893231]
[60]
Gourdon D, Lin Q, Oroudjev E, et al. Adhesion and stable low friction provided by a subnanometer-thick monolayer of a natural polysaccharide. Langmuir 2008; 24(4): 1534-40.
[http://dx.doi.org/10.1021/la702259c] [PMID: 18044936]
[61]
Richmond A. Biological principles of mass cultivation. Handbook of Microalgal Culture: Biotechnology and Applied Phycology. UK: Blackwell Publishing 2007; pp. 125-77.
[62]
Wong KH, Cheung PCK. Nutritional evaluation of some subtropical red and green seaweeds. Food Chem 2000; 71(4): 475-82.
[http://dx.doi.org/10.1016/S0308-8146(00)00175-8]
[63]
Burtin P. Nutritional value of seaweeds. Elec J Env Agricult Food Chem 2003; 2(4): 498-503.
[64]
Pratt R, Daniels TC, Eiler JJ, et al. Chlorellin, an antibacterial substance from Chlorella. Science 1944; 99(2574): 351-2.
[http://dx.doi.org/10.1126/science.99.2574.351] [PMID: 17750208]
[65]
Delattre C, Fenoradosoa TA, Michaud P. Galactans: An overview of their most important sourcing and applications as natural polysaccharides. Braz Arch Biol Technol 2011; 54(6): 1075-92.
[http://dx.doi.org/10.1590/S1516-89132011000600002]
[66]
Ahmadi A, Zorofchian Moghadamtousi S, Abubakar S, Zandi K. Antiviral potential of algae polysaccharides isolated from marine sources: A review. Biomed Res Int 2015; 2015: 825203.
[http://dx.doi.org/10.1155/2015/825203]
[67]
Pongsak R, Parichat P. Contents and antibacterial activity of flavonoids extracted from leaves of Psidium guajava. J Med Plants Res 2010; 4(5): 393-6.
[68]
Gomaa HH, Elshoubaky GA. Antiviral activity of sulfated Polysaccharides carrageenan from some marine seaweeds. Int J Curr Pharm Rev Res 2016; 7(1): 34.
[69]
Novetsky AP, Keller MJ, Gradissimo A, et al. In vitro inhibition of human papillomavirus following use of a carrageenan-containing vaginal gel. Gynecol Oncol 2016; 143(2): 313-8.
[http://dx.doi.org/10.1016/j.ygyno.2016.09.003] [PMID: 27625046]
[70]
Zheng LX, Chen XQ, Cheong KL. Current trends in marine algae polysaccharides: The digestive tract, microbial catabolism, and prebiotic potential. Int J Biol Macromol 2020; 151: 344-54.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.168] [PMID: 32084473]
[71]
Karan T, Erenler R. Fatty acid constituents and anticancer activity of Cladophora fracta (OF Müller ex Vahl) Kützing. Trop J Pharm Res 2019; 17(10): 1977-82.
[http://dx.doi.org/10.4314/tjpr.v17i10.12]
[72]
Tredici MR, Biondi N, Ponis E, Rodolfi L, Zittelli GC. Advances in microalgal culture for aquaculture feed and other uses. New technologies in aquaculture. Woodhead Publishing 2009; pp. 610-76.
[http://dx.doi.org/10.1533/9781845696474.3.610]
[73]
Sitther V, Wyatt L, Jones C, Yalcin Y. Bioactive compounds and pigments from cyanobacteria: Applications in the pharmaceutical industry. Expanding horizon of cyanobacterial biology developments in microbiology. Academic Press 2022; pp. 65-90.
[74]
Arafa A, Abdel-Ghani A, El-Dahmy S, Abdelaziz S, El-Ayouty Y, El-Sayed A. Purification and characterization of anabaena flos-aquae phenylalanine ammonia-lyase as a novel approach for myristicin biotransformation. J Microbiol Biotechnol 2020; 30(4): 622-32.
[http://dx.doi.org/10.4014/jmb.1908.08009]
[75]
Gillies RJ, Didier N, Denton M. Determination of cell number in monolayer cultures. Analytical Biochemistry 1986; 159(1): 109-13.
[PMID: 33388901]
[76]
Haq SH, Al-Ruwaished G, Al-Mutlaq MA, et al. Antioxidant, anticancer activity and phytochemical analysis of green algae, Chaetomorpha collected from the Arabian Gulf. Sci Rep 2019; 9(1): 18906.
[http://dx.doi.org/10.1038/s41598-019-55309-1] [PMID: 31827196]
[77]
Herrero M, Jaime L, Martín-Álvarez PJ, Cifuentes A, Ibáñez E. Optimization of the extraction of antioxidants from Dunaliella salina microalga by pressurized liquids. J Agric Food Chem 2006; 54(15): 5597-603.
[http://dx.doi.org/10.1021/jf060546q] [PMID: 16848551]
[78]
Widyaningrum D, Prianto AD. Chlorella as a source of functional food ingredients: Short review. IOP Conference Series: Earth and Environmental Science. In: 4th International Conference on Eco Engineering Development 2020 10-11 November 2020,. Banten, Indonesia.; 2021; p. 794: 012148.
[79]
Sudalayandi K, Kumar A, Sessler R, et al. Determination of fatty acids and proteins from the fresh water alga Chlamydomonas reinhardtii CC 2137 and its antagonism against aquatic bacteria. Pak J Bot 2012; 44(6): 2139-44.
[80]
Xue C, Hu Y, Saito H, et al. Molecular species composition of glycolipids from Sprirulina platensis. Food Chem 2002; 77(1): 9-13.
[http://dx.doi.org/10.1016/S0308-8146(01)00315-6]
[81]
Santoyo S, Rodríguez-Meizoso I, Cifuentes A, et al. Green processes based on the extraction with pressurized fluids to obtain potent antimicrobials from Haematococcus pluvialis microalgae. Lebensm Wiss Technol 2009; 42(7): 1213-8.
[http://dx.doi.org/10.1016/j.lwt.2009.01.012]
[82]
Gao D, Zhang Y. Comparative antibacterial activities of crude polysaccharides and flavonoids from Zingiber officinale and its extraction. Asian Trad Med 2010; 5(6): 235-8.
[83]
Klejdus B, Lojková L, Plaza M, Šnóblová M, Štěrbová D. Hyphenated technique for the extraction and determination of isoflavones in algae: Ultrasound-assisted supercritical fluid extraction followed by fast chromatography with tan-dem mass spectrometry. J Chromatogr A 2010; 1217(51): 7956-65.
[http://dx.doi.org/10.1016/j.chroma.2010.07.020] [PMID: 20701916]
[84]
Amaro HM, Guedes AC, Malcata FX. Antimicrobial activities of microalgae: An invited review. Science against microbial pathogens: Communicating current research and technological advances. Formatex Microbiology book series. 2011; 2: pp. 1272-84.
[85]
Junter GA, Karakasyan C. Polysaccharides against viruses: immunostimulatory properties and the delivery of antiviral vaccines and drugs. Critical Reviews ™ Therapeut Drug Carrier Sys 2020; 37(1): 8-64.
[86]
Bhagavathy S, Sumathi P. Protective role of β-carotene from Chlorococcum humicola against reactive oxygen species and lipid peroxidation in Benzo (a) Pyrene induced toxicity. J Pharma Res 2010; 1(2): 21-35.
[87]
Osmałek T, Froelich A, Jadach B, et al. Recent advances in polymer-based vaginal drug delivery systems. Pharmaceutics 2021; 13(6): 884.
[http://dx.doi.org/10.3390/pharmaceutics13060884] [PMID: 34203714]
[88]
Pagarete A, Ramos AS, Puntervoll P, Allen MJ, Verdelho V. Antiviral potential of algal metabolites—a comprehensive review. Mar Drugs 2021; 19(2): 94.
[http://dx.doi.org/10.3390/md19020094] [PMID: 33562153]
[89]
Whitehead SJ, McLean C, Chaikummao S, et al. Acceptability of carraguard vaginal microbicide gel among HIV-infected women in Chiang Rai, Thailand. PLoS One 2011; 6(9): e14831.
[http://dx.doi.org/10.1371/journal.pone.0014831] [PMID: 21915249]
[90]
Han P, Li J, Zhong H, et al. Anti-oxidation properties and therapeutic potentials of spirulina. Algal Res 2021; 55: 102240.
[http://dx.doi.org/10.1016/j.algal.2021.102240]
[91]
Shih SR, Tsai KN, Li YS, Chueh CC, Chan EC. Inhibition of enterovirus 71-induced apoptosis by allophycocyanin iso-lated from a blue-green alga Spirulina platensis. J Med Virol 2003; 70(1): 119-25.
[http://dx.doi.org/10.1002/jmv.10363] [PMID: 12629652]
[92]
Wang W, Wang SX, Guan HS. The antiviral activities and mechanisms of marine polysaccharides: An overview. Mar Drugs 2012; 10(12): 2795-816.
[http://dx.doi.org/10.3390/md10122795] [PMID: 23235364]
[93]
de Jesus RM, de Morais A, de Morais R. Marine polysaccharides from algae with potential biomedical applications. Mar Drugs 2015; 13(5): 2967-3028.
[http://dx.doi.org/10.3390/md13052967] [PMID: 25988519]
[94]
Bhattacharya S, Shivaprakash MK. Evaluation of three Spirulina species grown under similar conditions for their growth and biochemicals. J Sci Food Agric 2005; 85(2): 333-6.
[http://dx.doi.org/10.1002/jsfa.1998]
[95]
Yang H, Zeng M, Dong S, Liu Z, Li R. Anti-proliferative activity of phlorotannin extracts from brown algae Laminaria japonica Aresch. Chin J Oceanology Limnol 2010; 28(1): 122-30.
[http://dx.doi.org/10.1007/s00343-010-9054-x]
[96]
Beesoo R, Neergheen-Bhujun V, Bhagooli R, Bahorun T. Apoptosis inducing lead compounds isolated from marine organisms of potential relevance in cancer treatment. Mutat Res 2014; 768: 84-97.
[http://dx.doi.org/10.1016/j.mrfmmm.2014.03.005] [PMID: 24685981]
[97]
O’Doherty JV, Dillon S, Figat S, Callan JJ, Sweeney T. The effects of lactose inclusion and seaweed extract derived from Laminaria spp. on performance, digestibility of diet components and microbial populations in newly weaned pigs. Anim Feed Sci Technol 2010; 157(3-4): 173-80.
[http://dx.doi.org/10.1016/j.anifeedsci.2010.03.004]
[98]
Rattanachaikunsopon P, Phumkhachorn P. Assessment of factors influencing antimicrobial activity of carvacrol and cymene against Vibrio cholerae in food. J Biosci Bioeng 2010; 110(5): 614-9.
[http://dx.doi.org/10.1016/j.jbiosc.2010.06.010] [PMID: 20638331]
[99]
Friedland B, Keller MJ, Creasy G, et al. New Ro chelle, NY: Mary Ann Liebert, inc. 2018; 34: p. Griffithsin administered vaginally for 14 days is well-tolerated, with Anti-HIV activity up to 8 hours post dose in the first-in-human trial. Aids Research And Human Retroviruses. New Rochelle, NY: Mary Ann Liebert, inc. 2018; 34: p. 187.
[100]
Sonnery-Cottet B, Thaunat M, Fayard JM. Combined ACL and Anterolateral reconstruction is not associated with a higher risk of adverse outcomes: Preliminary results from the SANTI randomized controlled trial. Orthop J Sports Med 2010; 8(5): 2325967120918490.
[101]
Mobin S, Alam F. Some promising microalgal species for commercial applications: A review. Energy Procedia 2017; 110: 510-7.
[http://dx.doi.org/10.1016/j.egypro.2017.03.177]
[102]
Kaur P. Microalgae as nutraceutical for achieving sustainable food solution in future. Microbial biotechnology: Basic research and applications. Singapore: Springer 2020; pp. 91-125.
[103]
Algatechnologies, Ltd. 2012. Available From: www.algatech.com
[104]
Aubrey Organics, Inc. 1967. Available From: www. Aubreyorganics.com
[105]
Hallmann A. Algal transgenics and biotechnology. Transgenic Plant J 2007; 1(1): 81-98.
[106]
Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. J Biosci Bioeng 2006; 101(2): 87-96.
[http://dx.doi.org/10.1263/jbb.101.87] [PMID: 16569602]
[107]
Bhattacharjee M. Pharmaceutically valuable bioactive compounds of algae. Asian J Pharm Clin Res 2016; 9(6): 43-7.
[http://dx.doi.org/10.22159/ajpcr.2016.v9i6.14507]
[108]
Minatell JA, Hill WS, Rudi E, Moerck RE. Composition and method to alleviate joint pain using algae based oils. US9238043, 2016.
[109]
Stephen AM, Phillips GO. Food polysaccharides and their applications 2nd ed. Boca Raton: CRC Press 2016 752.
[http://dx.doi.org/10.1201/9781420015164]
[110]
Maity T, Saxena A, Raju PS. Use of hydrocolloids as cryoprotectant for frozen foods. Crit Rev Food Sci Nutr 2018; 58(3): 420-35.
[PMID: 27171566]
[111]
Cardozo KHM, Guaratini T, Barros MP, et al. Metabolites from algae with economical impact. Comp Biochem Physiol C Toxicol Pharmacol 2007; 146(1-2): 60-78.
[http://dx.doi.org/10.1016/j.cbpc.2006.05.007] [PMID: 16901759]
[112]
Ververis C, Georghiou K, Danielidis D, et al. Cellulose, hemicelluloses, lignin and ash content of some organic materials and their suitability for use as paper pulp supplements. Bioresour Technol 2007; 98(2): 296-301.
[http://dx.doi.org/10.1016/j.biortech.2006.01.007] [PMID: 16524722]
[113]
Cernadas H, Flórez-Fernández N, González-Muñoz MJ, Domínguez H, Torres MD. Retrieving of high-value biomole-cules from edible Himanthalia elongata brown seaweed using hydrothermal processing. Food Bioprod Process 2019; 117: 275-86.
[http://dx.doi.org/10.1016/j.fbp.2019.07.015]
[114]
Azarakhsh N, Osman A, Ghazali HM, Tan CP, Mohd Adzahan N. Lemongrass essential oil incorporated into alginate-based edible coating for shelf-life extension and quality retention of fresh-cut pineapple. Postharvest Biol Technol 2014; 88: 1-7.
[http://dx.doi.org/10.1016/j.postharvbio.2013.09.004]
[115]
Jiang T, Feng L, Wang Y. Effect of alginate/nano-Ag coating on microbial and physicochemical characteristics of shii-take mushroom (Lentinus edodes) during cold storage. Food Chem 2013; 141(2): 954-60.
[http://dx.doi.org/10.1016/j.foodchem.2013.03.093] [PMID: 23790873]
[116]
Draget KI, Skjåk-Bræk G, Stokke BT. Similarities and differences between alginic acid gels and ionically crosslinked alginate gels. Food Hydrocoll 2006; 20(2-3): 170-5.
[http://dx.doi.org/10.1016/j.foodhyd.2004.03.009]
[117]
Sharma S, Sanpui P, Chattopadhyay A, Ghosh SS. Fabrication of antibacterial silver nanoparticle—sodium alginate–chitosan composite films. RSC Advances 2012; 2(13): 5837-43.
[http://dx.doi.org/10.1039/c2ra00006g]
[118]
Senturk Parreidt T, Müller K, Schmid M. Alginate-based edible films and coatings for food packaging applications. Foods 2018; 7(10): 170.
[http://dx.doi.org/10.3390/foods7100170] [PMID: 30336642]
[119]
Ezati P, Riahi Z, Rhim JW. Carrageenan-based functional films integrated with CuO-doped titanium nanotubes for active food-packaging applications. ACS Sustain Chem & Eng 2021; 9(28): 9300-7.
[http://dx.doi.org/10.1021/acssuschemeng.1c01957]
[120]
Liu F, Hou P, Zhang H, Tang Q, Xue C, Li RW. Food‐grade carrageenans and their implications in health and disease. Compr Rev Food Sci Food Saf 2021; 20(4): 3918-36.
[http://dx.doi.org/10.1111/1541-4337.12790] [PMID: 34146449]
[121]
Koyande AK, Chew KW, Rambabu K, Tao Y, Chu DT, Show PL. Microalgae: A potential alternative to health supplementation for humans. Food Sci and Human Wellness 2019; 8(1): 16-24.
[http://dx.doi.org/10.1016/j.fshw.2019.03.001]
[122]
Tabassum N, Khan MA. Modified atmosphere packaging of fresh-cut papaya using alginate based edible coating: Quality evaluation and shelf life study. Sci Hortic 2020; 259: 108853.
[http://dx.doi.org/10.1016/j.scienta.2019.108853]
[123]
Nagappan S, Das P, Abdul QM, et al. Potential of microalgae as a sustainable feed ingredient for aquaculture. J Biotechnol 2021; 341: 1-20.
[http://dx.doi.org/10.1016/j.jbiotec.2021.09.003] [PMID: 34534593]
[124]
Venkataraman GS, Neelakantan S. Effect of the cellular constituents of the nitrogen-fixing blue-green alga, Cylin-drospermum muscicola, on the root growth of rice plants. J Gen Appl Microbiol 1967; 13(1): 53-61.
[http://dx.doi.org/10.2323/jgam.13.53]
[125]
Muller-Feuga A, Le Guédes R, Pruvost J. Benefits and limitations of modeling for optimization of Porphyridium cru-entum cultures in an annular photobioreactor. J Biotechnol 2003; 103(2): 153-63.
[http://dx.doi.org/10.1016/S0168-1656(03)00100-7] [PMID: 12814874]
[126]
Castro-Varela P, Sáez K, Gómez PI. Effect of urea on growth and biochemical composition of Porphyridium purpureum (Rhodophyta) and scaling-up under non-optimal outdoor conditions. Phycologia 2021; 60(6): 572-81.
[http://dx.doi.org/10.1080/00318884.2021.1953305]
[127]
Kim D, Kang SM. Red algae-derived carrageenan coatings for marine antifouling applications. Biomacromolecules 2020; 21(12): 5086-92.
[http://dx.doi.org/10.1021/acs.biomac.0c01248] [PMID: 33201682]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy