Generic placeholder image

Recent Patents on Mechanical Engineering

Editor-in-Chief

ISSN (Print): 2212-7976
ISSN (Online): 1874-477X

Review Article

Recent Advances in Optimization Design and Performance Analysis of Vortex Pumps

Author(s): Yang Wang, Peijian Zhou*, Naijiang Xu, Wenqiang Zhou and Jian Li

Volume 16, Issue 3, 2023

Published on: 31 July, 2023

Page: [165 - 176] Pages: 12

DOI: 10.2174/2212797616666230623111337

Price: $65

Abstract

Background: The vortex pump is a type of sewage pump renowned for its non-clogging performance. As the vortex pump has a special structure type, there are many vortex structures in the volute and impeller flow channel, which reduce the efficiency of the vortex pump. Reducing the energy loss and improving the efficiency of the vortex pump has been one of the main research objectives of designers.

In this paper, the research progress of vortex pumps is summarized from the two aspects of transporting solid medium and low efficiency, which can provide a reference for future research.

Methods: The latest patents and papers on vortex pumps were collected. The solid-liquid flow characteristics from the experimental and numerical perspectives, the influence of geometric parameters on external characteristics, and optimization design methods of the vortex pump were studied.

Results: The particles, fibers, and cloth in the vortex pump will become trapped and blocked in the cavity. And the geometric parameters have an obvious effect on the pump. By using the intelligent optimization algorithm to optimize the impeller parameters, the pump efficiency can be increased by 10.25% under large flow conditions and the effective blade shear stress.

Conclusion: The concentration and diameter of particles could change the performance of the pump. The retention and plugging of the solid medium in the vortex pump are related to flow structure and backflow. Appropriate geometric parameters should be selected when designing a vortex pump. Too large or too small a structure design will lead to poor performance of the vortex pump. This can be combined with intelligent optimization algorithms for pump design, which is a very effective method.

Next »
[1]
Tansel B. New Technologies for Water and Wastewater Treatment: A Survey of Recent Patents. Recent Pat Eng 2008; 1(1): 17-26.
[http://dx.doi.org/10.2174/2211334710801010017]
[2]
Tawfik A, Alalm MG, Awad HM, et al. Solar photo-oxidation of recalcitrant industrial wastewater: a review. Environ Chem Lett 2022; 20(3): 1839-62.
[http://dx.doi.org/10.1007/s10311-022-01390-4]
[3]
Baek NC, Shin UC, Yoon JH. A study on the design and analysis of a heat pump heating system using wastewater as a heat source. Sol Energy 2005; 78(3): 427-40.
[http://dx.doi.org/10.1016/j.solener.2004.07.009]
[4]
Kato H, Fujimoto H, Yamashina K. Operational improvement of main pumps for energy-saving in wastewater treatment plants. Water 2019; 11(12): 2438.
[http://dx.doi.org/10.3390/w11122438]
[5]
He X, Zhang Y, Wang C, et al. Influence of Critical Wall Roughness on the Performance of Double-Channel Sewage Pump. Energies 2020; 13(2): 464.
[http://dx.doi.org/10.3390/en13020464]
[6]
Egorkina N, Petrov A. The method of constructing the cavitation characteristics of a screw centrifugal pump using the methods of hydrodynamic modeling. IOP Conf Series Mater Sci Eng 2019; 492: 012015.
[http://dx.doi.org/10.1088/1757-899X/492/1/012015]
[7]
Quan H, Li RN, Su QM, Han W, Cheng XR, Shen ZJ. Research on energy conversion mechanism of a screw centrifugal pump under the water. IOP Conf Series Mater Sci Eng 2013; 52(3): 032017.
[http://dx.doi.org/10.1088/1757-899X/52/3/032017]
[8]
Chen HX. Measurement of Rotating Flow Field Within Vortex Pump Impeller. Nongye Jixie Xuebao 1996; (4): 50-5.
[9]
Wang B. A XLB type vortex pump. Patent CN202123164305, 2021.
[10]
Tao XS, Xu G. A new structure of vortex impurity pump. Patent CN202223174393, 2022.
[11]
Li W. Vortex Pump as Turbine—A Type Turbine for Energy Generation or Recovery Based on Computational Fluid Dynamics Prediction. J Fluids Eng 2019; 141(10): 101105.
[http://dx.doi.org/10.1115/1.4042754]
[12]
Li JH. Three-dimensional Numerical Simulation of vortex pump. Hohai University 2006.
[13]
Quan H, Fu BH, Li RN, Zhang T, Han W, Li J. Research Stage and Development Tendency of Vortex Pump. Fluid Machinery 2016; 44(09): 36-40.
[14]
Zhao T, Gao XF, Ye XY, Zhang DS, Shi WD, Duan JL, et al. CFD-DEM Simulation and Experimental Study of Two-phase Flow in Vortex Pump. Guangai Paishui Xuebao 2022; 41(11): 50-8.
[15]
Wang YZ, Shi WD, Dong Y, Cheng L, Pan ZY. Present Status and Development Prospect of Vortex pump. Paiguan Jixie Gongcheng Xuebao 2004; (02): 8-11.
[16]
Xia PH, Liu SH, Wu YL. Numerical Simulaiton of Steady Flow in Vortex Pump. J Eng Thermophys 2006; (03): 420-2.
[17]
Zhang M, Fan X, Wang F, Gan J. The Performance Analysis and Motor Design of Electronic Water Pump Based on Pumplinx and Maxwell. Recent Pat Mech Eng 2021; 14(3): 412-22.
[http://dx.doi.org/10.2174/2212797614666210111143707]
[18]
Wang C, Chen X, Ge J, et al. Internal Flow Characteristics of High-Specific-Speed Centrifugal Pumps with Different Number of Impeller Blades under Large Flow Conditions. Machines 2023; 11(2): 138.
[http://dx.doi.org/10.3390/machines11020138]
[19]
An C, Chen Y, Zhu R, Wang X, Yang Y, Shi J. Internal Flow Phenomena of Two-Way Contra-Rotating Axial Flow Pump-Turbine in Pump Mode under Variable Speed. J Appl Fluid Mech 2023; 16(2): 285-97.
[http://dx.doi.org/10.47176/jafm.16.02.1140]
[20]
Zhao WY, Liu TB, Li YS, et al. Flow Mechanism in Vortex Pump. Paiguan Jixie Gongcheng Xuebao 2007; (06): 52-5.
[21]
Aoki M. Studies on the Vortex Pump : 2nd Report, Pump Performance. Bull JSME 1983; 26(213): 394-8.
[http://dx.doi.org/10.1299/jsme1958.26.394]
[22]
Aoki M. Studies on the Vortex Pump : 3rd Report, Estimation of Pump Performance. Bull JSME 1983; 26(216): 1014-9.
[http://dx.doi.org/10.1299/jsme1958.26.1014]
[23]
Wang JL. Experimental study on the performance of Vortex Pump. Paiguan Jixie Gongcheng Xuebao 1989; (03): 8-15.
[24]
Alubokin AA, Gao B, Ning Z, Yan L, Jiang J, Quaye EK. Numerical simulation of complex flow structures and pressure fluctuation at rotating stall conditions within a centrifugal pump. Energy Sci Eng 2022; 10(7): 2146-69.
[http://dx.doi.org/10.1002/ese3.1123]
[25]
Zhang C, Wang WJ, Pei J, et al. Numerical simulation of unsteady flow characteristics in a centrifugal pump during runaway process caused by power failure. Journal of Physics: Conference Series. IOP Publishing 2022; 2217(1): 012047.
[26]
Li Y, Zheng Y, Meng F, Wang M, Li Y. Numerical simulation on the influence of root clearance on the hydraulic performance of axial flow pump device. J Braz Soc Mech Sci Eng 2022; 44(4): 161.
[http://dx.doi.org/10.1007/s40430-022-03409-x]
[27]
Gong R, Wang H, Chen L, Li DY, Zhang HC, Wei XZ. Application of entropy production theory to hydro-turbine hydraulic analysis. Sci China Technol Sci 2013; 56(7): 1636-43.
[http://dx.doi.org/10.1007/s11431-013-5229-y]
[28]
Ren Y, Zu ZC, Wu DH, Zhu ZB, Li XJ. Flow loss characteristics of centrifugal pump based on entropy production. J Harbin Eng Univ 2021; 42(02): 266-72.
[29]
Zhao KY, Liu HL, Du ZM, Tang MG, Hu S, Dong L. Analysis of flow loss characteristic of vortex pump based on entropy production. Paiguan Jixie Gongcheng Xuebao 2021; 39(12): 1284-90.
[30]
Li YS, Wei JF. Numerical Simulation of Interior Flow in Vortex Pump for Liquid solid Two-phase Medium with Small Size Particles. Fluid Machinery 2010; 38(07): 20-3.
[31]
Quan H, Kang L, Guo Y, Cheng J, Yu XY, Quan SZ. Effect of solid concentration on circulation flow and hydralic characteristics in vortex pump. Paiguan Jixie Gongcheng Xuebao 2021; 39(6): 555-61.
[32]
Quan H, Yu XY, Li YN, Song K, Pu HY, Wang WH. Influence of liquid viscosity on internal flow structure in vortex pump. Paiguan Jixie Gongcheng Xuebao 2021; 39(12): 1278-83.
[33]
Xu HM, Zhuang WJ, Tai J, Lin HL. Numerical Simulation Research on Solid-liquid Two-phase on Vortex Pumps. Zhongguo Nongcun Shuili Shuidian 2011; (06): 86-8.
[34]
Qian JH, Yang MG, Cao YS, Gao B, Wang HY. CFD-PBM Coupled Calculation on Liquid-solid Two-phase Flow Field in a Vortex Pump. Fluid Machinery 2014; 42(04): 23-7.
[35]
Zhu GH, Zhang AL, Ba S, Chen Y, Hu ZK. CFD-PBM coupled calculation on salt-out flow field in decanter centrifuge. Chemical Industry and Engineering Progress 2019; 38(09): 3947-55.
[36]
Zhang DW, Yang MG, Gao B, Lu BY. Particle concentration distribution and its effect on performance in a vortex pump. Fluid Mech 2013; 41(05): 15-18+71.
[37]
Huang S, Su X, Qiu G. Transient numerical simulation for solid-liquid flow in a centrifugal pump by DEM-CFD coupling. Eng Appl Comput Fluid Mech 2015; 9(1): 411-8.
[http://dx.doi.org/10.1080/19942060.2015.1048619]
[38]
Huang S, Zou WL, Zhou JJ, He DP, Peng TY. Unsteady numerical simulation on solid-liquid flows and wear in a centrifugal pump based on DPM model. Zhongguo Nongcun Shuili Shuidian 2016; 7: 103-6.
[39]
Deng L, Hu Q, Chen J, Kang Y, Liu S. Particle distribution and motion in six-stage centrifugal pump by means of slurry experiment and CFD-DEM simulation. J Mar Sci Eng 2021; 9(7): 716.
[http://dx.doi.org/10.3390/jmse9070716]
[40]
Tang C, Yang YC, Liu PZ, Kim YJ. Prediction of abrasive and impact wear due to multi-shaped particles in a centrifugal pump via CFD-DEM coupling method. Energies 2021; 14(9): 2391.
[http://dx.doi.org/10.3390/en14092391]
[41]
Shi WD, Shi Y, Gao XF, Zhang DS, Lang T, Zhao T. Simulation and Experiment on Flow Characteristics of Large Particles in Vortex Pump Based on DEM CFD. Nongye Jixie Xuebao 2020; 51(10): 176-85.
[42]
Gao X, Shi W, Shi Y, Chang H, Zhao T. DEM-CFD simulation and experiments on the flow characteristics of particles in vortex pumps. Water 2020; 12(9): 2444.
[http://dx.doi.org/10.3390/w12092444]
[43]
Imasaka Y, Kanno H, Saito S, et al. Clogging mechanisms of vortex pumps: fibrous material motion capture and simulation with a CFD and DEM coupling method. Fluids Engineering Division Summer Meeting.
[http://dx.doi.org/10.1115/FEDSM2018-83503]
[44]
Sha Y, Liu X. Performance test on solid-liquid two-phase flow hydrotransport of vortex pump. Nongye Gongcheng Xuebao (Beijing) 2013; 29(22): 76-82.
[45]
Sha Y, Zhu Y, Wu P, Li QP, Wang Y, Li CL. Hydrotransport Test with Variable Rapeseed Concentration and Flow Field Numerical Simulation of Vortex Pump. Nongye Jixie Xuebao 2019; 50(05): 173-80.
[46]
Su X, Tang Z, Li Y, Zhu Z, Mianowicz K, Balaz P. Research of particle motion in a two-stage slurry transport pump for deep-ocean mining by the CFD-DEM method. Energies 2020; 13(24): 6711.
[http://dx.doi.org/10.3390/en13246711]
[47]
Li H, Lu TQ, Zhan LC. Influence of gap between impeller and tongue on centrifugal pump self-priming performance. Nongye Jixie Xuebao 2017; 48(03): 141-7.
[48]
Tan M, Zhang K, Wu X, Liu H. Experimental study on large particle solid-liquid two-phase flow in a centrifugal pump. Nongye Gongcheng Xuebao (Beijing) 2021; 37: 62-7.
[49]
Yang MG, Gao B, Liu D, Gu HF, Li H. Experimental investigation of salt-out two-phase flow in a vortex pump by PDPA measurements. J Eng Thermophys 2008; 29(2): 237.
[50]
Gao B, Yang M. Research on turbulent velocity fluctuations of salt-out particles in a vortex pump volute. J Eng Thermophys 2010; 31(2): 275-8.
[51]
Zhang QH, Xie ZA, Zhong CC, Kang S. Experimental research on flexible fiber particles in the flow channel of the centrifugal pump impeller. Paiguan Jixie Gongcheng Xuebao 2022; 1-8.
[52]
Gerlach A, Perlitz D, Lykholt-Ustrup F, Jacobsen CB, Thamsen PU.
[53]
Gerlach A, Wulff S, Perlitz D, Lykhold-Ustrup F, Thamsen PU. The optimal vortex pump impeller-an experimental study on clogging behaviour. 12th European Conference on Turbomachinery Fluid dynamics & Thermodynamics.
[http://dx.doi.org/10.29008/ETC2017-122]
[54]
Han X, Kang Y, Li D, Zhao W. Impeller optimized design of the centrifugal pump: A numerical and experimental investigation. Energies 2018; 11(6): 1444.
[http://dx.doi.org/10.3390/en11061444]
[55]
Gerlach A, Thamsen P, Wulff S, Jacobsen C. Design parameters of vortex pumps: A meta-analysis of experimental studies. Energies 2017; 10(1): 58.
[http://dx.doi.org/10.3390/en10010058]
[56]
Ni Y, Gu L, Wang J, Li HB. Influence of blade types on the performance of vortex pump. Fluid Machinery 2021; 49(07): 69-75.
[57]
Quan H, Guo Y, Yang YE, Cai T, Chen XY, Yu XY. Effect of blade type on energy conversion of vortex pump. Nongye Jixie Xuebao 2020; 51(3): 123-9.
[58]
Wang H, Wei QX, Shi FX. Study and Analysis of Influences of Impeller Types on Performances of Vortex Pump. Process Equipment & Piping 2021; 58(01): 48-50.
[59]
Wang XL, Zhu RS, Yu ZJ, Su BW. Influences of high-low blade on performance of vortex pumps. Zhongguo Jixie Gongcheng 2011; 22(17): 2030-3.
[60]
Wang X L, Zhu R S, Yu Z J, Su B W. Experiment and optimization of vortex pump based on CFD technique. CSEE J 2011; 31(6): 445-8.
[61]
Gao XF, Shi WD, Shi Y, Zhang DS, Zhao T, Lang T. A vortex pump impeller with groove structure. Patent CN202020066351.3, 2020.
[62]
Dong L, Guo C, Dai C, et al. A vortex pump impeller with a guide rail fixed blade. Patent CN202010638409, 2020.
[63]
Jiang D L, Lv J X, Lu Dai, Su B W. A numerical simulation of and experimental research on optimum efficiency of vortex pumps. China Rural Water and Hydropower 2012; 4: 92-94+98.
[64]
Zhu RS, Chen JJ, Wang XL, Su BW. Numerical simulation and experimental of influence of hem and high - low blade on performance of vortex pump. Fluid Machiner 2012; 40(01): 1-5.
[65]
Quan H, Cheng J, Guo Y, Kang L, Peng G. Influence of screw centrifugal inducer on internal flow structure of vortex pump. J Fluids Eng 2020; 142(9): 091203.
[http://dx.doi.org/10.1115/1.4047229]
[66]
Machalski A, Skrzypacz J, Szulc P, Błoński D. Experimental and numerical research on influence of winglets arrangement on vortex pump performance. J Phys Conf Ser 2021; 1741(1): 012019.
[http://dx.doi.org/10.1088/1742-6596/1741/1/012019]
[67]
Yang SS, Kong FY, Qu XY, Jiang WM. Influence of blade number on the performance and pressure pulsations in a pump used as a turbine. J Fluids Eng 2012; 134(12): 124503.
[http://dx.doi.org/10.1115/1.4007810]
[68]
Guo C, Lv F, Gao M, Wei W, Cheng S. Investigation on the influence of number of blades on flow-induced noise optimization design of a centrifugal pump. J Mech Sci Technol 2022; 36(10): 5107-16.
[http://dx.doi.org/10.1007/s12206-022-0923-y]
[69]
Sakran HK, Abdul Aziz MS, Abdullah MZ, Khor CY. Effects of blade number on the centrifugal pump performance: A review. Arab J Sci Eng 2022; 47(7): 7945-61.
[http://dx.doi.org/10.1007/s13369-021-06545-z]
[70]
Liu TB. Numerical Simulation of the 3-Dimensiona. Lanzhou University of Technology 2007.
[71]
Guan X F, Xie D R, Zhang X, Sha Y. Study on characteristics and design method of vortex pump. Fluid Machinery 1989; 1989(05): 18-23.
[72]
Matlakala ME, Kallon DVV, Mogapi KE, Mabelane IM, Makgopa DM. Influence of Impeller Diameter on the Performance of Centrifugal pumps. IOP Conf Series Mater Sci Eng 2019; 655(1): 012009.
[http://dx.doi.org/10.1088/1757-899X/655/1/012009]
[73]
Zheng M, Yuan SQ, Chen C. Influence of Structural Parameter of a Vortex Pump on its Performance. Nongye Jixie Xuebao 2000; (02): 46-9.
[74]
Sha Y, Hou L. Effect of impeller location and flow measurement in volute of a vortex pump. Nongye Jixie Xuebao 2010; 41(11): 57-62.
[75]
Zhao K, Tan M, Wu X, Shao C, Liu H. Effect of impeller installation position on unsteady flow characteristics of a vortex pump. Eng Comput 2023; 40(2): 335-47.
[http://dx.doi.org/10.1108/EC-04-2022-0195]
[76]
Sha Y, Yang M, Yuan S, Wang J, Li C, Wen J. Experimental study on performance and design, method of a submarine sewage vortex pump. Agric Mech J 2004; 35: 82-6.
[77]
Li YS. Numerical Simulation of the Flow 3-Dimensional in a Vortex Pump. Lanzhou University of Technology 2008.
[78]
Zhou PJ, Wang FJ, Yao ZF. Impeller volute interaction around tongue region in centrifugal pump under rotating stall condition. Nongye Gongcheng Xuebao (Beijing) 2015; 31(07): 85-90.
[79]
Han F, Chen X, Yang Y, Wang C. Numerical and Experimental Study on the Effect of Rotor–Stator Distance on Rotor–Stator Interaction Strength within Mixed-Flow Centrifugal Pumps. J Mar Sci Eng 2022; 10(8): 1114.
[http://dx.doi.org/10.3390/jmse10081114]
[80]
Shen SS, Xue MR, Zhou H. Analysis on Unsteady Pressure Pulsation of Inside Vortex Pump. Chinese Hydraulics & Pneumatics 2020; (06): 97-102.
[81]
Tan MG, Zhao KY, Wu XF, Liu HL, Ma HC. Effects of volute tongue angles on unsteady flow characteristics in a vortex pump. Nongye Gongcheng Xuebao (Beijing) 2022; 38(10): 47-53.
[82]
Dai C, Guo C, Chen Y, Dong L, Liu H. Analysis of the influence of different bionic structures on the noise reduction performance of the centrifugal pump. Sensors (Basel) 2021; 21(3): 886.
[http://dx.doi.org/10.3390/s21030886] [PMID: 33525608]
[83]
Cui BL, Wang Z, Zhang YB, Han XT. Drag and pressure pulsation reduction of a low-specific-speed centrifugal pump by employing bionic structure. Mod Phys Lett B 2022; 36(7): 2150611.
[http://dx.doi.org/10.1142/S0217984921506119]
[84]
Lin Y, Li X, Zhu Z, Wang X, Lin T, Cao H. An energy consumption improvement method for centrifugal pump based on bionic optimization of blade trailing edge. Energy 2022; 246: 123323.
[http://dx.doi.org/10.1016/j.energy.2022.123323]
[85]
Dong X, Dou HS. Effects of bionic volute tongue bioinspired by leading edge of owl wing and its installation angle on performance of multi-blade centrifugal fan. J Appl Fluid Mech 2021; 14(4): 1031-43.
[86]
Rosario MV, Patek SN. Multilevel analysis of elastic morphology: The mantis shrimp’s spring. J Morphol 2015; 276(9): 1123-35.
[http://dx.doi.org/10.1002/jmor.20398] [PMID: 26195244]
[87]
Fan TX. Research on flow instability of constant pressure vortex pump. Zhejiang University of Technology 2016.
[88]
Gu Y, Zhang W, Mou J, Zheng S, Zhou P, Fan T. Effect of bionic mantis shrimp groove volute on vortex pump pressure pulsation. J Cent South Univ 2018; 25(10): 2399-409.
[http://dx.doi.org/10.1007/s11771-018-3924-3]
[89]
Nourbakhsh A, Safikhani H, Derakhshan S. The comparison of multi-objective particle swarm optimization and NSGA II algorithm: applications in centrifugal pumps. Eng Optim 2011; 43(10): 1095-113.
[http://dx.doi.org/10.1080/0305215X.2010.542811]
[90]
Wu T, Wu D, Ren Y, Song Y, Gu Y, Mou J. Multi-objective optimization on diffuser of multistage centrifugal pump base on ANN-GA. Struct Multidiscipl Optim 2022; 65(6): 182.
[http://dx.doi.org/10.1007/s00158-022-03278-x]
[91]
Zheng Y, Sun AR, Yang CX, Jiang WQ, Zhou CH, Chen YJ. Multi-objective Optimization Design and Test of Axial-flow Pump. Nongye Jixie Xuebao 2017; 48(09): 129-36.
[92]
Yang W, Xiao R. Multiobjective Optimization Design of a Pump–Turbine Impeller Based on an Inverse Design Using a Combination Optimization Strategy. J Fluids Eng 2014; 136(1): 014501.
[http://dx.doi.org/10.1115/1.4025454]
[93]
Zhang Y, Wu J, Zhang Y, Chen L. Design optimization of centrifugal pump using radial basis function metamodels. Adv Mech Eng 2014; 6: 457542.
[http://dx.doi.org/10.1155/2014/457542]
[94]
Jiang DH, Zhou PJ, Wang L, Wu DH, Mou JG. Study on optimization method of two-blade sewage pump impellers based on response surface mode. Shuili Fadian Xeubao 2021; 40(11): 72-82.
[95]
Luo H, Zhou P, Shu L, et al. Energy performance curves prediction of centrifugal pumps based on constrained PSO-SVR model. Energies 2022; 15(9): 3309.
[http://dx.doi.org/10.3390/en15093309]
[96]
Siddique MH, Afzal A, Samad A. Design optimization of the centrifugal pumps via low fidelity models. Math Probl Eng 2018; 2018: 1-14.
[http://dx.doi.org/10.1155/2018/3987594]
[97]
Safikhani H, Khalkhali A, Farajpoor M. Pareto based multi-objective optimization of centrifugal pumps using CFD, neural networks and genetic algorithms. Eng Appl Comput Fluid Mech 2011; 5(1): 37-48.
[http://dx.doi.org/10.1080/19942060.2011.11015351]
[98]
Luo J, Wang Z, Zhao WY. Structural optimization of vortex pumps based on orthogonal law. Journal of the Lanzhou University of Technology 2010; 36(02): 47-51.
[99]
Wang XL, Zhu RS, Su BW, Yu ZJ. Numerical simulation and experiment of latin square design on non-overload vortex pump. Nongye Jixie Xuebao 2012; 43(1): 48-52.
[100]
Ou M X, Lin P, Wang X L, Su B W. Optimized design of the impeller of a non-overload vortex pump based on the orthogonal design method. J Eng Ther Energy Power 2012; 27(05): 591-5.
[101]
Pei J, Yin T, Yuan S, Wang W, Wang J. Cavitation optimization for a centrifugal pump impeller by using orthogonal design of experiment. Chin J Mech Eng 2017; 30(1): 103-9.
[http://dx.doi.org/10.3901/CJME.2016.1024.125]
[102]
Yang Y, Zhou L, Zhou H, et al. Optimal design of slit impeller for low specific speed centrifugal pump based on orthogonal test. J Mar Sci Eng 2021; 9(2): 121.
[http://dx.doi.org/10.3390/jmse9020121]
[103]
Gao X, Shi W, Zhao R, Zhao T, Wang H. Optimization design and internal flow field study of open-design vortex pump. Shock Vib 2021; 2021: 1-11.
[http://dx.doi.org/10.1155/2021/6673200]
[104]
Quan H, Guo Y, Li R, Su Q, Chai Y. Optimization design and experimental study of vortex pump based on orthogonal test. Sci Prog 2020; 103(1)
[http://dx.doi.org/10.1177/0036850419881883] [PMID: 31829893]
[105]
Quan H, Wu Y, Guo Y, Song K, Li Y. Multiobjective hydraulic design and performance analysis of a vortex pump based on orthogonal tests. Shock Vib 2021; 2021: 1-14.
[http://dx.doi.org/10.1155/2021/6687856]
[106]
Meng J. Optimization and hydraulic performance analysis of impeller of vaporized oil pump. Hefei University of Technology 2022.
[107]
Ye DX, Li H, Ma QY, Han QB, Sun XL. Optimal design of vortex pump using approximate model and the non-dominated sorting genetic algorithm. Guangai Paishui Xuebao 2019; 38(7): 76-83.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy