Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Study of Active Phytochemicals and Mechanisms of Cnidii Fructus in Treating Osteoporosis Based on HPLC-Q-TOF-MS/MS and Network Pharmacology

Author(s): Yincong Xu, Shuai Zhang, Shinong Yuan, Yanlei Su, Yuqian Jia, Yajing Zhang* and Xuhong Duan*

Volume 27, Issue 2, 2024

Published on: 11 July, 2023

Page: [317 - 334] Pages: 18

DOI: 10.2174/1386207326666230622163202

Price: $65

Abstract

Introduction: This study aimed to clarify the anti-osteoporosis mechanism of Cnidii Fructus (CF) via network pharmacology and experimental verification.

Methods: HPLC fingerprints combined with HPLC-Q-TOF-MS/MS analysis confirmed common components (CCS) of CF. Then, network pharmacology was used to investigate the anti-OP mechanism of CF, including potential anti-OP phytochemicals, potential targets, and related signalling pathway. Molecular docking analysis was carried on investigating the protein-ligand interactions. Finally, in vitro experiments were performed to verify anti-OP mechanism of CF.

Results: In this study, 17 compounds from CF were identified by HPLC-Q-TOF-MS/MS and HPLC fingerprints and then were further screened key compounds and potential targets by PPI analysis, ingredient-target network and hub network. The key compounds were SCZ10 (Diosmin), SCZ16 (Pabulenol), SCZ6 (Osthenol), SCZ8 (Bergaptol) and SCZ4 (Xanthotoxol). The potential targets were SRC, MAPK1, PIK3CA, AKT1 and HSP90AA1. Molecular docking further analysis indicated that the five key compounds have a good binding affinity with related proteins. CCK8 assays, TRAP staining experiments, and ALP activity assays concluded that osthenol and bergaptol inhibited osteoclast formation and promoted osteoblast bone formation to improve osteoporosis.

Conclusion: Based on network pharmacology and in vitro experiments analysis, this study revealed that CF possessed an anti-OP effect, and its potential therapeutic effect may be involved with osthenol and bergaptol from CF.

Graphical Abstract

[1]
Eastell, R.; O’Neill, T.W.; Hofbauer, L.C.; Langdahl, B.; Reid, I.R.; Gold, D.T.; Cummings, S.R. Postmenopausal osteoporosis. Nat. Rev. Dis. Primers, 2016, 2(1), 16069-16084.
[http://dx.doi.org/10.1038/nrdp.2016.69] [PMID: 27681935]
[2]
Ebeling, P.R.; Nguyen, H.H.; Aleksova, J.; Vincent, A.J.; Wong, P.; Milat, F. Secondary osteoporosis. Endocr. Rev., 2022, 43(2), 240-313.
[http://dx.doi.org/10.1210/endrev/bnab028] [PMID: 34476488]
[3]
Li, G.; Thabane, L.; Papaioannou, A.; Ioannidis, G.; Levine, M.A.H.; Adachi, J.D. An overview of osteoporosis and frailty in the elderly. BMC Musculoskelet. Disord., 2017, 18(1), 46.
[http://dx.doi.org/10.1186/s12891-017-1403-x]
[4]
Pols, H.A.P.; Felsenberg, D.; Hanley, D.A.; Štepán, J.; Muñoz-Torres, M.; Wilkin, T.J.; Qin-sheng, G.; Galich, A.M.; Vandormael, K.; Yates, A.J.; Stych, B. Multinational, placebo-controlled, randomized trial of the effects of alendronate on bone density and fracture risk in postmenopausal women with low bone mass: results of the FOSIT study. Osteoporos. Int., 1999, 9(5), 461-468.
[http://dx.doi.org/10.1007/PL00004171] [PMID: 10550467]
[5]
Reginster, J.Y.; Deroisy, R.; Dougados, M.; Jupsin, I.; Colette, J.; Roux, C. Prevention of early postmenopausal bone loss by strontium ranelate: The randomized, two-year, double-masked, dose-ranging, placebo-controlled PREVOS trial. Osteoporos. Int., 2002, 13(12), 925-931.
[http://dx.doi.org/10.1007/s001980200129] [PMID: 12459934]
[6]
Cranney, A.; Guyatt, G.; Griffith, L.; Wells, G.; Tugwell, P.; Rosen, C.; Wells, G.; Adachi, J.; Waldegger, L.; Guyatt, G. Meta-analyses of therapies for postmenopausal osteoporosis. IX: Summary of meta-analyses of therapies for postmenopausal osteoporosis. Endocr. Rev., 2002, 23(4), 570-578.
[http://dx.doi.org/10.1210/er.2001-9002] [PMID: 12202472]
[7]
Shao, M.; Ye, C.; Bayliss, G.; Zhuang, S. New insights into the effects of individual chinese herbal medicines on chronic kidney disease. Front. Pharmacol., 2021, 12, 774414.
[http://dx.doi.org/10.3389/fphar.2021.774414] [PMID: 34803715]
[8]
Chinese Pharmacopoeia. Available from: http://wp.chp.org.cn/front/chpint/en/ (Accessed on: 20 March 2022).
[9]
Kitajima, J.; Ishikawa, T.; Aoki, Y. Glucides of Cnidium monnieri fruit. Phytochemistry, 2001, 58(4), 641-644.
[http://dx.doi.org/10.1016/S0031-9422(01)00238-2] [PMID: 11576615]
[10]
Zhao, J.; Zhou, M.; Liu, Y.; Zhang, G.; Luo, Y. Chromones and coumarins from the dried fructus of Cnidium monnieri. Fitoterapia, 2011, 82(5), 767-771.
[http://dx.doi.org/10.1016/j.fitote.2011.03.008] [PMID: 21504784]
[11]
Sun, Y.; Yang, A.W.H.; Lenon, G.B. Phytochemistry, ethnopharmacology, pharmacokinetics and toxicology of cnidium monnieri (L.). Cusson. Int. J. Mol. Sci., 2020, 21(3), 1006-1057.
[http://dx.doi.org/10.3390/ijms21031006] [PMID: 32028721]
[12]
Zhang, Q.; Qin, L.; He, W.; Van Puyvelde, L.; Maes, D.; Adams, A.; Zheng, H.; De Kimpe, N. Coumarins from cnidium monnieri and their antiosteoporotic activity. Planta Med., 2007, 73(1), 13-19.
[http://dx.doi.org/10.1055/s-2006-951724] [PMID: 17315308]
[13]
Chen, G.; Xu, Q.; Dai, M.; Liu, X. Bergapten suppresses RANKL-induced osteoclastogenesis and ovariectomy-induced osteoporosis via suppression of NF-κB and JNK signaling pathways. Biochem. Biophys. Res. Commun., 2019, 509(2), 329-334.
[http://dx.doi.org/10.1016/j.bbrc.2018.12.112]
[14]
Jia, Y-Q.; Wang, J-J.; Yuan, S-N.; Hou, F-J.; Liu, Z.; Duan, X-H.; Li, C-H. Study on HPLC fingerprint chromatogram and quantitation method of seven coumarins in Cnidium monnieri decoction pieces. Yaowu Fenxi Zazhi, 2022, 42, 84-93.
[15]
Chang, Y.; Zhang, D.; Yang, G.; Zheng, Y.; Guo, L. Screening of anti-lipase components of Artemisia argyi leaves based on spectrum-effect relationships and HPLC-MS/MS. Front. Pharmacol., 2021, 12675396.
[http://dx.doi.org/10.3389/fphar.2021.675396] [PMID: 34025435]
[16]
Khan, S.A.; Lee, T.K.W. Network-pharmacology-based study on active phytochemicals and molecular mechanism of Cnidium monnieri in treating hepatocellular carcinoma. Int. J. Mol. Sci., 2022, 23(10), 5400-5419.
[http://dx.doi.org/10.3390/ijms23105400] [PMID: 35628212]
[17]
Lu, J.; Yan, J.; Yan, J.; Zhang, L.; Chen, M.; Chen, Q.; Cheng, L.; Li, P. Network pharmacology based research into the effect and mechanism of Xijiao Dihuang decoction against sepsis. Biomed. Pharmacother., 2020, 122109777.
[http://dx.doi.org/10.1016/j.biopha.2019.109777] [PMID: 31918261]
[18]
Gao, R.; Zhang, X-B.; Sun, J.Y.; Tang, X.H.; Li, J.L.; Zhou, X.; Shen, T. Pharmacological mechanism of Ganlu Powder in the treatment of NASH based on network pharmacology and molecular docking. Dis. Markers, 2022, 2022, 7251450.
[19]
Zeng, L.; Yang, K.; Liu, H.; Zhang, G. A network pharmacology approach to investigate the pharmacological effects of Guizhi Fuling Wan on uterine fibroids. Exp. Ther. Med., 2017, 14(5), 4697-4710.
[http://dx.doi.org/10.3892/etm.2017.5170] [PMID: 29201170]
[20]
Chen, L.L.; Chu, S.S.; Zhang, L.; Xie, J.; Dai, M.; Wu, X.; Peng, H-S. Tissue-specific metabolite profiling on the different parts of bolting and unbolting peucedanum praeruptorum dunn (Qianhu) by laser microdissection combined with UPLC-Q/TOF–MS and HPLC–DAD. Molecules, 2019, 24(7), 1439-1456.
[http://dx.doi.org/10.3390/molecules24071439] [PMID: 30979075]
[21]
Xu, L.L.; Xu, J.J.; Zhong, K.R.; Shang, Z.P.; Wang, F.; Wang, R.F.; Zhang, L.; Zhang, J.Y.; Liu, B. Analysis of non-volatile chemical constituents of menthae haplocalycis herba by ultra-high performance liquid chromatography-high resolution mass spectrometry. Molecules, 2017, 22(10), 1756-1773.
[http://dx.doi.org/10.3390/molecules22101756] [PMID: 29048378]
[22]
Cai, H.; Xu, Y.; Xie, L.; Duan, Y.; Zhou, J.; Liu, J.; Niu, M.; Zhang, Y.; Shen, L.; Pei, K.; Cao, G. Investigation on spectrum-effect correlation between constituents absorbed into blood and bioactivities of baizhu shaoyao san before and after processing on ulcerative colitis rats by UHPLC/Q-TOF-MS/MS coupled with gray correlation analysis. Molecules, 2019, 24(5), 940-966.
[http://dx.doi.org/10.3390/molecules24050940] [PMID: 30866532]
[23]
Zhou, S.D.; Xu, X.; Lin, Y.F.; Xia, H.Y.; Huang, L.; Dong, M.S. On-line screening and identification of free radical scavenging compounds in Angelica dahurica fermented with Eurotium cristatum using an HPLC-PDA-Triple-TOF-MS/MS-ABTS system. Food Chem., 2019, 272, 670-678.
[http://dx.doi.org/10.1016/j.foodchem.2018.07.173] [PMID: 30309597]
[24]
Ma, X.; Wu, Y.; Li, Y.; Huang, Y.; Liu, Y.; Luo, P.; Zhang, Z. Rapid discrimination of Notopterygium incisum and Notopterygium franchetii based on characteristic compound profiles detected by UHPLC‐QTOF‐MS/MS coupled with multivariate analysis. Phytochem. Anal., 2020, 31(3), 355-365.
[http://dx.doi.org/10.1002/pca.2902] [PMID: 31908072]
[25]
Gao, F.; Hu, Y.; Ye, X.; Li, J.; Chen, Z.; Fan, G. Optimal extraction and fingerprint analysis of Cnidii fructus by accelerated solvent extraction and high performance liquid chromatographic analysis with photodiode array and mass spectrometry detections. Food Chem., 2013, 141(3), 1962-1971.
[http://dx.doi.org/10.1016/j.foodchem.2013.05.013] [PMID: 23870916]
[26]
Ciren, D-Z.; Deng, M-Z.; Zhu, G-H.; Yuan, E.; Zhang, X-B-T.; Yan, Z-H. Analysis of chemical constituents of coumarins in Heraeleum millefolium by UPLC-Q-TOF-MS. Tradit. Chin. Drug Res. Clini. Pharmacol., 2022, 33, 105-114.
[27]
Shi, X.; Liu, M.; Zhang, M.; Zhang, K.; Liu, S.; Qiao, S.; Shi, R.; Jiang, X.; Wang, Q. Identification of in vitro and in vivo metabolites of isoimperatorin using liquid chromatography/mass spectrometry. Food Chem., 2013, 141(1), 357-365.
[http://dx.doi.org/10.1016/j.foodchem.2013.02.068] [PMID: 23768368]
[28]
Zhao, X.J.; Guo, P.M.; Pang, W.H.; Zhang, Y.H.; Zhao, Q.Y.; Jiao, B.N.; Kilmartin, P.A. A rapid UHPLC-QqQ-MS/MS method for the simultaneous qualitation and quantitation of coumarins, furocoumarins, flavonoids, phenolic acids in pummelo fruits. Food Chem., 2020, 325, 126835.1-126835.8.
[29]
Tsiokanos, E.; Tsafantakis, N.; Termentzi, A.; Aligiannis, N.; Skaltsounis, L. A.; Fokialakis, N. Phytochemical characteristics of bergamot oranges from the Ionian islands of Greece: A multi-analytical approach with emphasis in the distribution of neohesperidose flavanones. Food Chem.,, 2021, 343, 128400.1-128400.10.
[http://dx.doi.org/10.1016/j.foodchem.2020.128400]
[30]
Cho, P.; Choi, S.M.; Kim, Y.; Lee, D.H.; Noh, Y.; Kim, S.; Kim, J.H.; Lee, T.; Lee, S. Characterization of osthenol metabolism in vivo and its pharmacokinetics. Xenobiotica, 2020, 50(7), 839-846.
[http://dx.doi.org/10.1080/00498254.2019.1705427] [PMID: 31847686]
[31]
Li, B.; Zhang, X.; Wang, J.; Zhang, L.; Gao, B.; Shi, S.; Wang, X.; Li, J.; Tu, P. Simultaneous characterisation of fifty coumarins from the roots of Angelica dahurica by off-line two-dimensional high-performance liquid chromatography coupled with electrospray ionisation tandem mass spectrometry. Phytochem. Anal., 2014, 25(3), 229-240.
[http://dx.doi.org/10.1002/pca.2496] [PMID: 24481589]
[32]
Jia, M.; Li, Y.; Zhai, X.; Yang, Y.; Li, C.; Zhang, Q.; Qin, L. Qualitative analysis and quality evaluation of Cnidium monnieri Using UHPLC-ESI-Q-TOF/MS. Chin. Herb. Med., 2016, 8(4), 323-330.
[http://dx.doi.org/10.1016/S1674-6384(16)60058-8]
[33]
Li, Y.Q.; Yang, C.; Jia, K.X.; Wang, J.X.; Wang, J.X.; Ming, R.R.; Xu, T.T.; Su, X.H.; Jing, Y.; Miao, Y.D.; Liu, C.F.; Lin, N. Fengshi Qutong capsule ameliorates bone destruction of experimental rheumatoid arthritis by inhibiting osteoclastogenesis. J. Ethnopharmacol., 2022, 282, 114602.
[http://dx.doi.org/10.1016/j.jep.2021.114602]
[34]
Wu, Y.; Gao, L.J.; Fan, Y.S.; Chen, Y.; Li, Q. Network Pharmacology-Based Analysis on the Action Mechanism of Oleanolic Acid to Alleviate Osteoporosis. ACS Omega, 2021, 6(42), 28410-28420.
[http://dx.doi.org/10.1021/acsomega.1c04825] [PMID: 34723038]
[35]
Yin, G.; Zheng, Q.; Yan, C.; Berk, B.C. GIT1 is a scaffold for ERK1/2 activation in focal adhesions. J. Biol. Chem., 2005, 280(30), 27705-27712.
[http://dx.doi.org/10.1074/jbc.M502271200] [PMID: 15923189]
[36]
Katz, S.; Boland, R.; Santillán, G. Modulation of ERK 1/2 and p38 MAPK signaling pathways by ATP in osteoblasts: Involvement of mechanical stress-activated calcium influx, PKC and Src activation. Int. J. Biochem. Cell Biol., 2006, 38(12), 2082-2091.
[http://dx.doi.org/10.1016/j.biocel.2006.05.018] [PMID: 16893669]
[37]
Pan, J.M.; Wu, L.G.; Cai, J.W.; Wu, L.T.; Liang, M. Dexamethasone suppresses osteogenesis of osteoblast via the PI3K/Akt signaling pathway in vitro and in vivo. J. Recept. Signal Transduct. Res., 2019, 39(1), 80-86.
[http://dx.doi.org/10.1080/10799893.2019.1625061] [PMID: 31210570]
[38]
Wang, H.; Zhou, Y.; Jia, H.; Hu, A.; Liu, R.; Zeng, X. Nanoparticles targeting delivery Antagomir-483-5p to bone marrow mesenchymal stem cells treat osteoporosis by increasing bone formation. Curr. Stem Cell Res. Ther., 2023, 18(1), 115-126.
[http://dx.doi.org/10.2174/1574888X17666220426120850] [PMID: 35473519]
[39]
Hommann, M.; Kämmerer, D.; Lehmann, G.; Kornberg, A.; Küpper, B.; Daffner, W.; Wolf, G.; Settmacher, U. Prevention of early loss of bone mineral density after liver transplantation by prostaglandin E1. Transplant. Proc., 2007, 39(2), 540-543.
[http://dx.doi.org/10.1016/j.transproceed.2006.12.016] [PMID: 17362777]
[40]
Du, J.; Yang, J.; He, Z.; Cui, J.; Yang, Y.; Xu, M.; Qu, X.; Zhao, N.; Yan, M.; Li, H.; Yu, Z. Osteoblast and osteoclast activity affect bone remodeling upon regulation by mechanical loading-induced leukemia inhibitory factor expression in osteocytes. Front. Mol. Biosci., 2020, 75, 85056.
[http://dx.doi.org/10.3389/fmolb.2020.585056] [PMID: 33324677]
[41]
Zhai, Y.; Li, Y.; Wang, Y.; Cui, J.; Feng, K.; Kong, X.; Chen, L. Psoralidin, a prenylated coumestan, as a novel anti-osteoporosis candidate to enhance bone formation of osteoblasts and decrease bone resorption of osteoclasts. Eur. J. Pharmacol., 2017, 801, 62-71.
[http://dx.doi.org/10.1016/j.ejphar.2017.03.001] [PMID: 28283388]
[42]
Han, S.Y.; Kim, Y.K. Berberine suppresses RANKL-induced osteoclast differentiation by inhibiting c-Fos and NFATc1 expression. Am. J. Chin. Med., 2019, 47(2), 439-455.
[http://dx.doi.org/10.1142/S0192415X19500228] [PMID: 30827151]
[43]
Zeng, X.; He, L.; Wang, S.; Wang, K.; Zhang, Y.; Tao, L.; Li, X.; Liu, S. Aconine inhibits RANKL-induced osteoclast differentiation in RAW264.7 cells by suppressing NF-κB and NFATc1 activation and DC-STAMP expression. Acta Pharmacol. Sin., 2016, 37(2), 255-263.
[http://dx.doi.org/10.1038/aps.2015.85] [PMID: 26592521]
[44]
Nakamura, M.; Aoyama, N.; Yamaguchi, S.; Sasano, Y. Expression of tartrate-resistant acid phosphatase and cathepsin K during osteoclast differentiation in developing mouse mandibles. Biomed. Res., 2021, 42(1), 13-21.
[http://dx.doi.org/10.2220/biomedres.42.13] [PMID: 33563875]
[45]
Cheng, B.F.; Feng, X.; Gao, Y.X.; Jian, S.Q.; Liu, S.R.; Wang, M.; Xie, Y.F.; Wang, L.; Feng, Z.W.; Yang, H.J. Neural cell adhesion molecule regulates osteoblastic differentiation through Wnt/β-catenin and PI3K-Akt signaling pathways in MC3T3-E1 cells. Front. Endocrinol., 2021, 12, 657953.
[http://dx.doi.org/10.3389/fendo.2021.657953] [PMID: 34054729]
[46]
Li, W.; Zhang, S.; Liu, J.; Liu, Y.; Liang, Q. Vitamin K2 stimulates Mc3T3 E1 osteoblast differentiation and mineralization through autophagy induction. Mol. Med. Rep., 2019, 19(5), 3676-3684.
[http://dx.doi.org/10.3892/mmr.2019.10040] [PMID: 30896842]
[47]
Guo, Y.; Zheng, S-Y.; Yong, M.; Dai, Q.S.; Fan, J.; Huan, G.C. Effect of wenshen tongluo zhitong decoction on bone mineral density and serum biochemical indices in ovarectomized rats. Shandong J. Trand. Chin., 2017, 36, 1055-1074.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy