Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Designing a Multi-epitope Vaccine against the SARS-CoV-2 Variant based on an Immunoinformatics Approach

Author(s): Ibrahim Farhani, Ahad Yamchi*, Hamid Madanchi, Vahid Khazaei, Mehdi Behrouzikhah, Hamidreza Abbasi, Mohammad Salehi, Nilufar Moradi and Samira Sanami

Volume 20, Issue 3, 2024

Published on: 07 July, 2023

Page: [274 - 290] Pages: 17

DOI: 10.2174/1573409919666230612125440

Price: $65

Abstract

Background: SARS-CoV-2 is a life-threatening virus in the world. Scientific evidence indicates that this pathogen will emerge again in the future. Although the current vaccines have a pivotal role in the control of this pathogen, the emergence of new variants has a negative impact on their effectiveness.

Objectives: Therefore, it is urgent to consider the protective and safe vaccine against all subcoronavirus species and variants based on the conserved region of the virus. Multi-epitope peptide vaccine (MEV), comprised of immune-dominant epitopes, is designed by immunoinformatic tools and it is a promising strategy against infectious diseases.

Methods: Spike glycoprotein and nucleocapsid proteins from all coronavirus species and variants were aligned and the conserved region was selected. Antigenicity, toxicity, and allergenicity of epitopes were checked by a proper server. To robust the immunity of the multi-epitope vaccine, cholera toxin b (CTB) and three HTL epitopes of tetanus toxin fragment C (TTFrC) were linked at the N-terminal and C-terminal of the construct, respectively. Selected epitopes with MHC molecules and the designed vaccines with Toll-like receptors (TLR-2 and TLR-4) were docked and analyzed. The immunological and physicochemical properties of the designed vaccine were evaluated. The immune responses to the designed vaccine were simulated. Furthermore, molecular dynamic simulations were performed to study the stability and interaction of the MEV-TLRs complexes during simulation time by NAMD (Nanoscale molecular dynamic) software. Finally, the codon of the designed vaccine was optimized according to Saccharomyces boulardii.

Results: The conserved regions of spike glycoprotein and nucleocapsid protein were gathered. Then, safe and antigenic epitopes were selected. The population coverage of the designed vaccine was 74.83%. The instability index indicated that the designed multi-epitope was stable (38.61). The binding affinity of the designed vaccine to TLR2 and TLR4 was -11.4 and -11.1, respectively. The designed vaccine could induce humoral and cellular immunity.

Conclusion: In silico analysis showed that the designed vaccine is a protective multi-epitope vaccine against SARS-CoV-2 variants.

Graphical Abstract

[1]
Samad, A.; Ahammad, F.; Nain, Z.; Alam, R.; Imon, R.R.; Hasan, M.; Rahman, M.S. Designing a multi-epitope vaccine against SARS-CoV-2: An immunoinformatics approach. J. Biomol. Struct. Dyn., 2022, 40(1), 14-30.
[http://dx.doi.org/10.1080/07391102.2020.1792347] [PMID: 32677533]
[2]
Vashishtha, V.M.; Kumar, P. Responding to new challenges: Is there a need to relook and revise our COVID-19 vaccination strategy? Expert Rev. Vaccines, 2022, 21(8), 1015-1018.
[3]
van Doremalen, N.; Lambe, T.; Spencer, A.; Belij-Rammerstorfer, S.; Purushotham, J.N.; Port, J.R.; Avanzato, V.A.; Bushmaker, T.; Flaxman, A.; Ulaszewska, M.; Feldmann, F.; Allen, E.R.; Sharpe, H.; Schulz, J.; Holbrook, M.; Okumura, A.; Meade-White, K.; Pérez-Pérez, L.; Edwards, N.J.; Wright, D.; Bissett, C.; Gilbride, C.; Williamson, B.N.; Rosenke, R.; Long, D.; Ishwarbhai, A.; Kailath, R.; Rose, L.; Morris, S.; Powers, C.; Lovaglio, J.; Hanley, P.W.; Scott, D.; Saturday, G.; de Wit, E.; Gilbert, S.C.; Munster, V.J. ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature, 2020, 586(7830), 578-582.
[http://dx.doi.org/10.1038/s41586-020-2608-y] [PMID: 32731258]
[4]
Thomas, S.J. Moreira, E.D., Jr; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Polack, F.P.; Zerbini, C.; Bailey, R.; Swanson, K.A.; Xu, X.; Roychoudhury, S.; Koury, K.; Bouguermouh, S.; Kalina, W.V.; Cooper, D.; Frenck, R.W., Jr; Hammitt, L.L.; Türeci, Ö.; Nell, H.; Schaefer, A.; Ünal, S.; Yang, Q.; Liberator, P.; Tresnan, D.B.; Mather, S.; Dormitzer, P.R.; Şahin, U.; Gruber, W.C.; Jansen, K.U. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine through 6 months. N. Engl. J. Med., 2021, 385(19), 1761-1773.
[http://dx.doi.org/10.1056/NEJMoa2110345] [PMID: 34525277]
[5]
Baum, U.; Poukka, E.; Leino, T.; Kilpi, T.; Nohynek, H.; Palmu, A.A. High vaccine effectiveness against severe Covid-19 in the elderly in Finland before and after the emergence of Omicron. MedRxiv, 2022.
[6]
Choi, A.; Koch, M.; Wu, K.; Chu, L.; Ma, L.; Hill, A.; Nunna, N.; Huang, W.; Oestreicher, J.; Colpitts, T.; Bennett, H.; Legault, H.; Paila, Y.; Nestorova, B.; Ding, B.; Montefiori, D.; Pajon, R.; Miller, J.M.; Leav, B.; Carfi, A.; McPhee, R.; Edwards, D.K. Safety and immunogenicity of SARS-CoV-2 variant mRNA vaccine boosters in healthy adults: An interim analysis. Nat. Med., 2021, 27(11), 2025-2031.
[http://dx.doi.org/10.1038/s41591-021-01527-y] [PMID: 34526698]
[7]
Mengesha, B.; Asenov, A.G.; Hirsh-Raccah, B.; Amir, O.; Pappo, O.; Asleh, R. Severe acute myocarditis after the third (booster) dose of mRNA COVID-19 vaccination. Vaccines, 2022, 10(4), 575.
[http://dx.doi.org/10.3390/vaccines10040575] [PMID: 35455324]
[8]
Morens, D.M.; Taubenberger, J.K.; Fauci, A.S. Universal coronavirus vaccines-an urgent need. N. Engl. J. Med., 2022, 386(4), 297-299.
[http://dx.doi.org/10.1056/NEJMp2118468] [PMID: 34910863]
[9]
Ranjbar, M.M.; Ebrahimi, M.M.; Shahsavandi, S.; Farhadi, T.; Mirjalili, A.; Tebianian, M.; Motedayen, M.H. Novel applications of immuno-bioinformatics in vaccine and bio-product developments at research institutes. Arch. Razi Inst., 2019, 74(3), 219-233.
[PMID: 31592587]
[10]
Goumari, M.M.; Farhani, I.; Nezafat, N.; Mahmoodi, S. Multi-Epitope Vaccines (MEVs), as a Novel Strategy Against Infectious Diseases. Curr. Proteomics, 2020, 17(5), 354-364.
[http://dx.doi.org/10.2174/1570164617666190919120140]
[11]
Sette, A.; Livingston, B.; McKinney, D.; Appella, E.; Fikes, J.; Sidney, J.; Newman, M.; Chesnut, R. The development of multi-epitope vaccines: epitope identification, vaccine design and clinical evaluation. Biologicals, 2001, 29(3-4), 271-276.
[http://dx.doi.org/10.1006/biol.2001.0297] [PMID: 11851327]
[12]
Farhani, I.; Nezafat, N.; Mahmoodi, S. Designing a novel multi-epitope peptide vaccine against pathogenic Shigella spp. based immunoinformatics approaches. Int. J. Pept. Res. Ther., 2019, 25(2), 541-553.
[http://dx.doi.org/10.1007/s10989-018-9698-5]
[13]
Coffman, R.L.; Sher, A.; Seder, R.A. Vaccine adjuvants: putting innate immunity to work. Immunity, 2010, 33(4), 492-503.
[http://dx.doi.org/10.1016/j.immuni.2010.10.002] [PMID: 21029960]
[14]
Stratmann, T. Cholera toxin subunit B as adjuvant––an accelerator in protective immunity and a break in autoimmunity. Vaccines, 2015, 3(3), 579-596.
[http://dx.doi.org/10.3390/vaccines3030579] [PMID: 26350596]
[15]
Lee, J.J.; Sinha, K.A.; Harrison, J.A.; de Hormaeche, R.D.; Riveau, G.; Pierce, R.J.; Capron, A.; Wilson, R.A.; Khan, C.M.A. Tetanus toxin fragment C expressed in live Salmonella vaccines enhances antibody responses to its fusion partner Schistosoma haematobium glutathione S-transferase. Infect. Immun., 2000, 68(5), 2503-2512.
[http://dx.doi.org/10.1128/IAI.68.5.2503-2512.2000] [PMID: 10768937]
[16]
Lim, Y.T. Vaccine adjuvant materials for cancer immunotherapy and control of infectious disease. Clin. Exp. Vaccine Res., 2015, 4(1), 54-58.
[http://dx.doi.org/10.7774/cevr.2015.4.1.54] [PMID: 25648865]
[17]
Kumar, N.; Sood, D.; Chandra, R. Design and optimization of a subunit vaccine targeting COVID-19 molecular shreds using an immunoinformatics framework. RSC Advances, 2020, 10(59), 35856-35872.
[http://dx.doi.org/10.1039/D0RA06849G] [PMID: 35517103]
[18]
Roos, T.B.; Avila, L.F.C.; Sturbelle, R.T.; Leite, F.L.L.; Fischer, G.; Leite, F.P.L. Saccharomyces boulardii modulates and improves the immune response to Bovine Herpesvirus type 5 Vaccine. Arq. Bras. Med. Vet. Zootec., 2018, 70(2), 375-381.
[http://dx.doi.org/10.1590/1678-4162-9167]
[19]
McFarland, L.V. Systematic review and meta-analysis of Saccharomyces boulardii in adult patients. World J. Gastroenterol., 2010, 16(18), 2202-2222.
[http://dx.doi.org/10.3748/wjg.v16.i18.2202] [PMID: 20458757]
[20]
Hudson, L.E.; Fasken, M.B.; McDermott, C.D.; McBride, S.M.; Kuiper, E.G.; Guiliano, D.B.; Corbett, A.H.; Lamb, T.J. Functional heterologous protein expression by genetically engineered probiotic yeast Saccharomyces boulardii. PLoS One, 2014, 9(11), e112660.
[http://dx.doi.org/10.1371/journal.pone.0112660] [PMID: 25391025]
[21]
Papadopoulos, J.S.; Agarwala, R. COBALT: Constraint-based alignment tool for multiple protein sequences. Bioinformatics, 2007, 23(9), 1073-1079.
[http://dx.doi.org/10.1093/bioinformatics/btm076] [PMID: 17332019]
[22]
Bui, H.H.; Sidney, J.; Dinh, K.; Southwood, S.; Newman, M.J.; Sette, A. Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinformatics, 2006, 7(1), 153.
[http://dx.doi.org/10.1186/1471-2105-7-153] [PMID: 16545123]
[23]
Vita, R.; Overton, J.A.; Greenbaum, J.A.; Ponomarenko, J.; Clark, J.D.; Cantrell, J.R.; Wheeler, D.K.; Gabbard, J.L.; Hix, D.; Sette, A.; Peters, B. The immune epitope database (IEDB) 3.0. Nucleic Acids Res., 2015, 43(D1), D405-D412.
[http://dx.doi.org/10.1093/nar/gku938] [PMID: 25300482]
[24]
Jurtz, V.; Paul, S.; Andreatta, M.; Marcatili, P.; Peters, B.; Nielsen, M. NetMHCpan-4.0: Improved peptide–MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data. J. Immunol., 2017, 199(9), 3360-3368.
[http://dx.doi.org/10.4049/jimmunol.1700893] [PMID: 28978689]
[25]
Dhanda, S.K.; Gupta, S.; Vir, P.; Raghava, G. Prediction of IL4 inducing peptides. Clin. Dev. Immunol., 2013, 2013, 263952.
[http://dx.doi.org/10.1155/2013/263952]
[26]
Kolaskar, A.S.; Tongaonkar, P.C. A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett., 1990, 276(1-2), 172-174.
[http://dx.doi.org/10.1016/0014-5793(90)80535-Q] [PMID: 1702393]
[27]
Ponomarenko, J.; Bui, H.H.; Li, W.; Fusseder, N.; Bourne, P.E.; Sette, A.; Peters, B. ElliPro: A new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics, 2008, 9(1), 514.
[http://dx.doi.org/10.1186/1471-2105-9-514] [PMID: 19055730]
[28]
Doytchinova, I.A.; Flower, D.R. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 2007, 8(1), 4.
[http://dx.doi.org/10.1186/1471-2105-8-4] [PMID: 17207271]
[29]
Dimitrov, I.; Bangov, I.; Flower, D.R.; Doytchinova, I. AllerTOP v.2—a server for in silico prediction of allergens. J. Mol. Model., 2014, 20(6), 2278.
[http://dx.doi.org/10.1007/s00894-014-2278-5] [PMID: 24878803]
[30]
Gupta, S.; Kapoor, P.; Chaudhary, K.; Gautam, A.; Kumar, R.; Raghava, G.P.S.; Raghava, G.P. In silico approach for predicting toxicity of peptides and proteins. PLoS One, 2013, 8(9), e73957.
[http://dx.doi.org/10.1371/journal.pone.0073957] [PMID: 24058508]
[31]
Chen, X.; Zaro, J.L.; Shen, W.C. Fusion protein linkers: Property, design and functionality. Adv. Drug Deliv. Rev., 2013, 65(10), 1357-1369.
[http://dx.doi.org/10.1016/j.addr.2012.09.039] [PMID: 23026637]
[32]
Gasteiger, E.; Hoogland, C.; Gattiker, A.; Wilkins, M. R.; Appel, R. D.; Bairoch, A. Protein identification and analysis tools on the ExPASy server. The proteomics protocols handbook, 2005, 571-607.
[33]
Jones, D.T. Protein secondary structure prediction based on position- specific scoring matrices 1 1Edited by G. Von Heijne. J. Mol. Biol., 1999, 292(2), 195-202.
[http://dx.doi.org/10.1006/jmbi.1999.3091] [PMID: 10493868]
[34]
Yang, J.; Yan, R.; Roy, A.; Xu, D.; Poisson, J.; Zhang, Y. The I-TASSER Suite: protein structure and function prediction. Nat. Methods, 2015, 12(1), 7-8.
[http://dx.doi.org/10.1038/nmeth.3213] [PMID: 25549265]
[35]
Shin, W-H.; Lee, G.R.; Heo, L.; Lee, H.; Seok, C. Prediction of protein structure and interaction by GALAXY protein modeling programs. Bio Design, 2014, 2(1), 1-11.
[36]
Colovos, C.; Yeates, T.O. Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Sci., 1993, 2(9), 1511-1519.
[http://dx.doi.org/10.1002/pro.5560020916] [PMID: 8401235]
[37]
Kringelum, J.V.; Lundegaard, C.; Lund, O.; Nielsen, M. Reliable B cell epitope predictions: Impacts of method development and improved benchmarking. PLOS Comput. Biol., 2012, 8(12), e1002829.
[http://dx.doi.org/10.1371/journal.pcbi.1002829] [PMID: 23300419]
[38]
Yan, Y.; Tao, H.; He, J.; Huang, S.Y. The HDOCK server for integrated protein–protein docking. Nat. Protoc., 2020, 15(5), 1829-1852.
[http://dx.doi.org/10.1038/s41596-020-0312-x] [PMID: 32269383]
[39]
Xue, L.C.; Rodrigues, J.P.; Kastritis, P.L.; Bonvin, A.M.; Vangone, A. PRODIGY: A web server for predicting the binding affinity of protein–protein complexes. Bioinformatics, 2016, 32(23), 3676-3678.
[http://dx.doi.org/10.1093/bioinformatics/btw514] [PMID: 27503228]
[40]
Babendure, J.R.; Babendure, J.L.; Ding, J.H.; Tsien, R.Y. Control of mammalian translation by mRNA structure near caps. RNA, 2006, 12(5), 851-861.
[http://dx.doi.org/10.1261/rna.2309906] [PMID: 16540693]
[41]
Rapin, N.; Lund, O.; Bernaschi, M.; Castiglione, F. Computational immunology meets bioinformatics: The use of prediction tools for molecular binding in the simulation of the immune system. PLoS One, 2010, 5(4), e9862.
[http://dx.doi.org/10.1371/journal.pone.0009862] [PMID: 20419125]
[42]
Phillips, J.C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kalé, L.; Schulten, K. Scalable molecular dynamics with NAMD. J. Comput. Chem., 2005, 26(16), 1781-1802.
[http://dx.doi.org/10.1002/jcc.20289] [PMID: 16222654]
[43]
Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph., 1996, 14(1), 33-38, 27-28.
[http://dx.doi.org/10.1016/0263-7855(96)00018-5] [PMID: 8744570]
[44]
Kaur, S.P.; Gupta, V. COVID-19 Vaccine: A comprehensive status report. Virus Res., 2020, 288, 198114.
[http://dx.doi.org/10.1016/j.virusres.2020.198114] [PMID: 32800805]
[45]
Valencia, D.N. Brief review on COVID-19: The 2020 pandemic caused by SARS-CoV-2. Cureus, 2020, 12(3), e7386.
[http://dx.doi.org/10.7759/cureus.7386] [PMID: 32337113]
[46]
De Brito, R.C.F.; Cardoso, J.M.D.O.; Reis, L.E.S.; Vieira, J.F.; Mathias, F.A.S.; Roatt, B.M.; Aguiar-Soares, R.D.D.O.; Ruiz, J.C.; Resende, D.M.; Reis, A.B. Peptide vaccines for leishmaniasis. Front. Immunol., 2018, 9, 1043.
[http://dx.doi.org/10.3389/fimmu.2018.01043] [PMID: 29868006]
[47]
Mahendran, R.; Jeyabaskar, S.; Michael, D.; Vincent Paul, A.; Sitharaman, G. Computer-aided vaccine designing approach against fish pathogens Edwardsiella tarda and Flavobacterium columnare using bioinformatics softwares. Drug Des. Devel. Ther., 2016, 10, 1703-1714.
[http://dx.doi.org/10.2147/DDDT.S95691] [PMID: 27284239]
[48]
Nagy, A.; Alhatlani, B. An overview of current COVID-19 vaccine platforms. Comput. Struct. Biotechnol. J., 2021, 19, 2508-2517.
[http://dx.doi.org/10.1016/j.csbj.2021.04.061] [PMID: 33936564]
[49]
Yurina, V. Coronavirus epitope prediction from highly conserved region of spike protein. Clin. Exp. Vaccine Res., 2020, 9(2), 169-173.
[http://dx.doi.org/10.7774/cevr.2020.9.2.169] [PMID: 32864374]
[50]
Masmouei, B.; Harorani, M.; Bazrafshan, M-R.; Karimi, Z. COVID-19: hyperinflammatory syndrome and hemoadsorption with CytoSorb. Blood Purif., 2020, 1.
[PMID: 33326959]
[51]
Saadi, M.; Karkhah, A.; Nouri, H.R. Development of a multi-epitope peptide vaccine inducing robust T cell responses against brucellosis using immunoinformatics based approaches. Infect. Genet. Evol., 2017, 51, 227-234.
[http://dx.doi.org/10.1016/j.meegid.2017.04.009] [PMID: 28411163]
[52]
Ayyagari, V.S. T C, V.; K, A.P.; Srirama, K. Design of a multi-epitope-based vaccine targeting M-protein of SARS-CoV2: An immunoinformatics approach. J. Biomol. Struct. Dyn., 2022, 40(7), 2963-2977.
[http://dx.doi.org/10.1080/07391102.2020.1850357] [PMID: 33252008]
[53]
Gurung, A.B.; Bhattacharjee, A.; Ali, M.A. Exploring the physicochemical profile and the binding patterns of selected novel anticancer Himalayan plant derived active compounds with macromolecular targets. Informatics in Medicine Unlocked, 2016, 5, 1-14.
[http://dx.doi.org/10.1016/j.imu.2016.09.004]
[54]
Merchant, H.A. Why COVID vaccines for young children (5–11 years) are not essential at this moment in time? J. Pharm. Policy Pract., 2022, 15(1), 25.
[http://dx.doi.org/10.1186/s40545-022-00424-0] [PMID: 35346387]
[55]
Feng, Y.; Qiu, M.; Zou, S.; Li, Y.; Luo, K.; Chen, R.; Sun, Y.; Wang, K.; Zhuang, X.; Zhang, S. Multi-epitope vaccine design using an immunoinformatics approach for 2019 novel coronavirus in China (SARS-CoV-2). bioRxiv, 2020.
[56]
Merchant, H. Myocarditis followed by CoViD-19 vaccines: A cause for concern or a reversible minor effect. BMJ, 2021, 373(1244)
[57]
Baker, P.J. Advantages of an oral vaccine to control the COVID-19 pandemic. Am. J. Med., 2022, 135(2), 133-134.
[http://dx.doi.org/10.1016/j.amjmed.2021.08.037] [PMID: 34562412]
[58]
Bagherpour, G.; Ghasemi, H.; Zand, B.; Zarei, N.; Roohvand, F.; Ardakani, E.M.; Azizi, M.; Khalaj, V. Oral administration of recombinant Saccharomyces boulardii expressing ovalbumin-CPE fusion protein induces antibody response in mice. Front. Microbiol., 2018, 9, 723.
[http://dx.doi.org/10.3389/fmicb.2018.00723] [PMID: 29706942]
[59]
Wang, S.; Liu, H.; Zhang, X.; Qian, F. Intranasal and oral vaccination with protein-based antigens: Advantages, challenges and formulation strategies. Protein Cell, 2015, 6(7), 480-503.
[http://dx.doi.org/10.1007/s13238-015-0164-2] [PMID: 25944045]
[60]
Gloudemans, A.K.; Plantinga, M.; Guilliams, M.; Willart, M.A.; Ozir-Fazalalikhan, A.; van der Ham, A.; Boon, L.; Harris, N.L.; Hammad, H.; Hoogsteden, H.C.; Yazdanbakhsh, M.; Hendriks, R.W.; Lambrecht, B.N.; Smits, H.H. The mucosal adjuvant cholera toxin B instructs non-mucosal dendritic cells to promote IgA production via retinoic acid and TGF-β. PLoS One, 2013, 8(3), e59822.
[http://dx.doi.org/10.1371/journal.pone.0059822] [PMID: 23527272]
[61]
Di Natale, C.; La Manna, S.; De Benedictis, I.; Brandi, P.; Marasco, D. Perspectives in peptide-based vaccination strategies for syndrome coronavirus 2 pandemic. Front. Pharmacol., 2020, 11, 578382.
[http://dx.doi.org/10.3389/fphar.2020.578382] [PMID: 33343349]
[62]
Hewitt, J.S.; Karuppannan, A.K.; Tan, S.; Gauger, P.; Halbur, P.G.; Gerber, P.F.; De Groot, A.S.; Moise, L.; Opriessnig, T. A prime-boost concept using a T-cell epitope-driven DNA vaccine followed by a whole virus vaccine effectively protected pigs in the pandemic H1N1 pig challenge model. Vaccine, 2019, 37(31), 4302-4309.
[http://dx.doi.org/10.1016/j.vaccine.2019.06.044] [PMID: 31248687]
[63]
Liu, M.A. DNA vaccines: A review. J. Intern. Med., 2003, 253(4), 402-410.
[http://dx.doi.org/10.1046/j.1365-2796.2003.01140.x] [PMID: 12653868]
[64]
Li, W.; Joshi, M.; Singhania, S.; Ramsey, K.; Murthy, A. Peptide vaccine: Progress and challenges. Vaccines, 2014, 2(3), 515-536.
[http://dx.doi.org/10.3390/vaccines2030515] [PMID: 26344743]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy