Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Metabolism Pathways of Major Therapeutics for Treating Monkeypox Mono- and Co-infection with Human Immunodeficient Virus or SARS-CoV-2

Author(s): Daisy Yan and Bingfang Yan*

Volume 24, Issue 4, 2023

Published on: 19 June, 2023

Page: [240 - 249] Pages: 10

DOI: 10.2174/1389200224666230607124102

Price: $65

Abstract

Monkeypox is a zoonotic viral disease and remains endemic in tropical regions of Central and West Africa. Since May of 2022, cases of monkeypox have soared and spread worldwide. Confirmed cases have shown no travel history to the endemic regions as seen in the past. The World Health Organization declared monkeypox a global public health emergency in July 2022, and the United States government followed suit one month later. The current outbreak, in contrast to traditional epidemics, has high coinfection rates, particularly with HIV (human immunodeficiency virus), and to a lesser extent with SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), the pathogen of COVID-19. No drugs have been approved specifically for monkeypox. However, there are therapeutic agents authorized to treat monkeypox under the Investigational New Drug protocol, including brincidofovir, cidofovir, and tecovirimat. In contrast to limited options for monkeypox treatment, there are available drugs specifically for HIV or SARS-CoV-2 infection. Interestingly, these HIV and COVID-19 medicines share metabolism pathways with those authorized to treat monkeypox, particularly of hydrolysis, phosphorylation, and active membrane transport. This review discusses how these pathways shared by these medicines should be considered to gain therapeutic synergy and maximize safety for treating monkeypox coinfections.

Graphical Abstract

[1]
Antunes, F.; Cordeiro, R.; Virgolino, A. Monkeypox: From a neglected tropical disease to a public health threat. Infect. Dis. Rep., 2022, 14(5), 772-783.
[http://dx.doi.org/10.3390/idr14050079] [PMID: 36286200]
[2]
Huggett, J.F.; French, D.; O’Sullivan, D.M.; Moran-Gilad, J.; Zumla, A. Monkeypox: Another test for PCR. Euro Surveill., 2022, 27(32), 2200497.
[http://dx.doi.org/10.2807/1560-7917.ES.2022.27.32.2200497] [PMID: 35959687]
[4]
Nuzzo, J.B.; Borio, L.L.; Gostin, L.O. The WHO declaration of monkeypox as a global public health emergency. JAMA, 2022, 328(7), 615-617.
[http://dx.doi.org/10.1001/jama.2022.12513] [PMID: 35895041]
[6]
Choi, J. Most patients hospitalized for monkeypox were HIVpositive in CDC report. Health Care (Don Mills), 2022.
[7]
O’Shea, J.; Filardo, T.D.; Morris, S.B.; Weiser, J.; Petersen, B.; Brooks, J.T. Interim guidance for prevention and treatment of monkeypox in persons with HIV Infection — United States, August 2022. MMWR Morb. Mortal. Wkly. Rep., 2022, 71(32), 1023-1028.
[http://dx.doi.org/10.15585/mmwr.mm7132e4] [PMID: 35951495]
[8]
Thornhill, J.P.; Barkati, S.; Walmsley, S.; Rockstroh, J.; Antinori, A.; Harrison, L.B.; Palich, R.; Nori, A.; Reeves, I.; Habibi, M.S.; Apea, V.; Boesecke, C.; Vandekerckhove, L.; Yakubovsky, M.; Sendagorta, E.; Blanco, J.L.; Florence, E.; Moschese, D.; Maltez, F.M.; Goorhuis, A.; Pourcher, V.; Migaud, P.; Noe, S.; Pintado, C.; Maggi, F.; Hansen, A.B.E.; Hoffmann, C.; Lezama, J.I.; Mussini, C.; Cattelan, A.; Makofane, K.; Tan, D.; Nozza, S.; Nemeth, J.; Klein, M.B.; Orkin, C.M. Monkeypox virus infection in humans across 16 Countries — April–June 2022. N. Engl. J. Med., 2022, 387(8), 679-691.
[http://dx.doi.org/10.1056/NEJMoa2207323] [PMID: 35866746]
[9]
Huang, S.T.; Wu, Y.H.; Lin, H.H.; Yang, J.Y.; Hsieh, P.Y.; Chiang, S.J.; Wang, S.P.; Chan, Y.H.; Lin, L.F.; Chen, Y.J.; Tsai, H.C.; Chen, Y.S.; Lee, S.S. The first imported case of monkeypox in Taiwan. J. Formos. Med. Assoc., 2022, 26, S0929-S6646.
[PMID: 36175217]
[10]
Nolasco, S; Vitale, F; Geremia, A; Tramuto, F; Maida, CM; Sciuto, A; Coco, C; Manuele, R; Frasca, E; Frasca, M; Magliocco, S; Gennaro, A; Tumino, E; Maresca, M; Montineri, A First case of monkeypox virus, SARS-CoV-2 and HIV co-infection. J. Infect., 2023, 86(1), e21-e23.
[http://dx.doi.org/10.1016/j.jinf.2022.08.014]
[11]
Vives, A.; Vantman, D.; Rocco, M.; Alonso-Tarres, C.; Castañe, E.R.; Cosentino, M. Coinfection of Monkeypox, COVID-19 and Syphilis in a PrEP using MSM: A case report from Barcelona. Res. Square, 2022.
[http://dx.doi.org/10.21203/rs.3.rs-1960471/v1]
[12]
Ahmad, S.; Pasha Km, M.; Raza, K.; Rafeeq, M.M.; Habib, A.H.; Eswaran, M.; Yadav, M.K. Reporting dinaciclib and theodrenaline as a multitargeted inhibitor against SARS-CoV-2: An in-silico study. J. Biomol. Struct. Dyn., 2022, 22, 1-11.
[PMID: 35451934]
[13]
Jeyaraman, M.; Selvaraj, P.; Halesh, M.B.; Jeyaraman, N.; Nallakumarasamy, A.; Gupta, M.; Maffulli, N.; Gupta, A. Monkeypox: An emerging global public health emergency. Life (Basel), 2022, 12(10), 1590.
[http://dx.doi.org/10.3390/life12101590] [PMID: 36295025]
[14]
Lallogo, T.D.; Djigma, F.W.; Sorgho, P.A.; Martinson, J.J.; Compaore, T.R.; Traore, L.; Bado, P.; Bazie, B.V.E.J.T.; Amegnona, L.J.; Kagone, T.S.; Ouedraogo, R.A.; Ilboudo, D.P.; Obiri-Yeboah, D.; Yonli, A.T.; Simpore, J. KIR2DL5B and HLA DRB1*12 alleles seems to be associated with protection against HIV‐1 in serodiscordant couples in Burkina Faso. J. Med. Virol., 2022, 94(9), 4425-4432.
[http://dx.doi.org/10.1002/jmv.27821] [PMID: 35501290]
[15]
Meyer, H.; Ehmann, R.; Smith, G.L. Smallpox in the post-eradication era. Viruses, 2020, 12(2), 138.
[http://dx.doi.org/10.3390/v12020138] [PMID: 31991671]
[16]
Treatment information for healthcare professionals https://www.cdc.gov/poxvirus/monkeypox/clinicians/treatment.html
[17]
Rizk, J.G.; Lippi, G.; Henry, B.M.; Forthal, D.N.; Rizk, Y. Prevention and treatment of monkeypox. Drugs, 2022, 82(9), 957-963.
[http://dx.doi.org/10.1007/s40265-022-01742-y] [PMID: 35763248]
[18]
Berhanu, A.; Prigge, J.T.; Silvera, P.M.; Honeychurch, K.M.; Hruby, D.E.; Grosenbach, D.W. Treatment with the smallpox antiviral tecovirimat (ST-246) alone or in combination with ACAM2000 vaccination is effective as a postsymptomatic therapy for monkeypox virus infection. Antimicrob. Agents Chemother., 2015, 59(7), 4296-4300.
[http://dx.doi.org/10.1128/AAC.00208-15] [PMID: 25896687]
[19]
Webb, E.; Rigby, I.; Michelen, M.; Dagens, A.; Cheng, V.; Rojek, A.M.; Dahmash, D.; Khader, S.; Gedela, K.; Norton, A.; Cevik, M.; Cai, E.; Harriss, E.; Lipworth, S.; Nartowski, R.; Groves, H.; Hart, P.; Blumberg, L.; Fletcher, T.; Jacob, S.T.; Sigfrid, L.; Horby, P.W. Availability, scope and quality of monkeypox clinical management guidelines globally: A systematic review. BMJ Glob. Health, 2022, 7(8), e009838.
[http://dx.doi.org/10.1136/bmjgh-2022-009838] [PMID: 35973747]
[20]
Mitjà, O; Ogoina, D; Titanji, BK; Galvan, C; Muyembe, JJ; Marks, M; Orkin, CM Monkeypox. Lancet, 2022, 401, 1-15.
[http://dx.doi.org/10.1016/S0140-6736(22)02075-X]
[21]
Elsayed, S.; Bondy, L.; Hanage, W.P. Monkeypox virus infections in humans. Clin. Microbiol. Rev., 2022, 35(4), e00092-22.
[http://dx.doi.org/10.1128/cmr.00092-22] [PMID: 36374082]
[22]
Sharma, K.; Akre, S.; Chakole, S.; Wanjari, M.B. Monkeypox: An emerging disease. Cureus, 2022, 14(9), e29393.
[PMID: 36304368]
[23]
Likos, A.M.; Sammons, S.A.; Olson, V.A.; Frace, A.M.; Li, Y.; Olsen-Rasmussen, M.; Davidson, W.; Galloway, R.; Khristova, M.L.; Reynolds, M.G.; Zhao, H.; Carroll, D.S.; Curns, A.; Formenty, P.; Esposito, J.J.; Regnery, R.L.; Damon, I.K. A tale of two clades: monkeypox viruses. J. Gen. Virol., 2005, 86(10), 2661-2672.
[http://dx.doi.org/10.1099/vir.0.81215-0] [PMID: 16186219]
[24]
Bunge, E.M.; Hoet, B.; Chen, L.; Lienert, F.; Weidenthaler, H.; Baer, L.R.; Steffen, R. The changing epidemiology of human monkeypox—A potential threat? A systematic review. PLoS Negl. Trop. Dis., 2022, 16(2), e0010141.
[http://dx.doi.org/10.1371/journal.pntd.0010141] [PMID: 35148313]
[25]
Murugesu, J.A. Monkeypox threat could worsen. New Sci., 2022, 256(3408), 8.
[http://dx.doi.org/10.1016/S0262-4079(22)01835-8] [PMID: 36276923]
[26]
McCollum, A.M.; Damon, I.K. Human monkeypox. Clin. Infect. Dis., 2014, 58(2), 260-267.
[http://dx.doi.org/10.1093/cid/cit703] [PMID: 24158414]
[27]
Khodakevich, L.; Jezek, Z.; Messinger, D. Monkeypox virus: ecology and public health significance. Bull. World Health Organ., 1988, 66(6), 747-752.
[PMID: 2853010]
[28]
Leung, J.; McCollum, A.M.; Radford, K.; Hughes, C.; Lopez, A.S.; Guagliardo, S.A.J.; Nguete, B.; Likafi, T.; Kabamba, J.; Malekani, J.; Shongo Lushima, R.; Pukuta, E.; Karhemere, S.; Muyembe Tamfum, J.J.; Reynolds, M.G.; Wemakoy Okitolonda, E.; Schmid, D.S.; Marin, M. Varicella in tshuapa province, democratic republic of congo, 2009–2014. Trop. Med. Int. Health, 2019, 24(7), tmi.13243.
[http://dx.doi.org/10.1111/tmi.13243] [PMID: 31062445]
[29]
Dou, Y.M.; Yuan, H.; Tian, H.W. Monkeypox virus: past and present. World J. Pediatr., 2022, 10, 1-7.
[PMID: 36214966]
[30]
Gomez-Lucia, E. Monkeypox: Some keys to understand this emerging disease. Animals, 2022, 12(17), 2190.
[http://dx.doi.org/10.3390/ani12172190] [PMID: 36077910]
[31]
Durski, K.N.; McCollum, A.M.; Nakazawa, Y.; Petersen, B.W.; Reynolds, M.G.; Briand, S.; Djingarey, M.H.; Olson, V.; Damon, I.K.; Khalakdina, A. Emergence of monkeypox — West and Central Africa, 1970–2017. MMWR Morb. Mortal. Wkly. Rep., 2018, 67(10), 306-310.
[http://dx.doi.org/10.15585/mmwr.mm6710a5] [PMID: 29543790]
[32]
Mailhe, M; Beaumont, AL; Thy, M; Le Pluart, D; Perrineau, S; Houhou-Fidouh, N; Deconinck, L; Bertin, C; Ferré, VM; Cortier, M; De La Porte Des Vaux, C; Phung, BC; Mollo, B; Cresta, M; Bouscarat, F; Choquet, C; Descamps, D; Ghosn, J; Lescure, FX; Yazdanpanah, Y; Joly, V; Peiffer-Smadja, N Clinical characteristics of ambulatory and hospitalized patients with monkeypox virus infection: an observational cohort study. Clin. Microbiol. Infect., 2023, 29(2), 269-271.
[33]
Technical Advisory Group on Human Monkeypox: report of a WHO meeting, Geneva, Switzerland, 11-12 January 1999 1999.http://www.who.int/gpsc/events/2008/afro_pledge_event/en/
[34]
Reed, K.D.; Melski, J.W.; Graham, M.B.; Regnery, R.L.; Sotir, M.J.; Wegner, M.V.; Kazmierczak, J.J.; Stratman, E.J.; Li, Y.; Fairley, J.A.; Swain, G.R.; Olson, V.A.; Sargent, E.K.; Kehl, S.C.; Frace, M.A.; Kline, R.; Foldy, S.L.; Davis, J.P.; Damon, I.K. The detection of monkeypox in humans in the Western Hemisphere. N. Engl. J. Med., 2004, 350(4), 342-350.
[http://dx.doi.org/10.1056/NEJMoa032299] [PMID: 14736926]
[35]
Huhn, G.D.; Bauer, A.M.; Yorita, K.; Graham, M.B.; Sejvar, J.; Likos, A.; Damon, I.K.; Reynolds, M.G.; Kuehnert, M.J. Clinical characteristics of human monkeypox, and risk factors for severe disease. Clin. Infect. Dis., 2005, 41(12), 1742-1751.
[http://dx.doi.org/10.1086/498115] [PMID: 16288398]
[36]
Ogoina, D.; Iroezindu, M.; James, H.I.; Oladokun, R.; Yinka-Ogunleye, A.; Wakama, P.; Otike-odibi, B.; Usman, L.M.; Obazee, E.; Aruna, O.; Ihekweazu, C. Clinical course and outcome of human monkeypox in Nigeria. Clin. Infect. Dis., 2020, 71(8), e210-e214.
[http://dx.doi.org/10.1093/cid/ciaa143] [PMID: 32052029]
[37]
Hoffmann, C.; Jessen, H.; Wyen, C.; Grunwald, S.; Noe, S.; Teichmann, J.; Krauss, A.S.; Kolarikal, H.; Scholten, S.; Schuler, C.; Bickel, M.; Roll, C.; Kreckel, P.; Köppe, S.; Straub, M.; Klausen, G.; Lenz, J.; Esser, S.; Jensen, B.; Rausch, M.; Unger, S.; Pauli, R.; Härter, G.; Müller, M.; Masuhr, A.; Schäfer, G.; Seybold, U.; Schellberg, S.; Schneider, J.; Monin, M.B.; Wolf, E.; Spinner, C.D.; Boesecke, C. Clinical characteristics of monkeypox virus infections among men with and without HIV: A large outbreak cohort in Germany. HIV Med., 2022. Epub ahead of print
[http://dx.doi.org/10.1111/hiv.13378] [PMID: 36059149]
[38]
Kuehn, B.M. Interim guidance for monkeypox among patients with HIV. JAMA, 2022, 328(12), 1173-1174.
[http://dx.doi.org/10.1001/jama.2022.14727] [PMID: 36166007]
[39]
Millman, A.J.; Denson, D.J.; Allen, M.L.; Malone, J.A.; Daskalakis, D.C.; Durrence, D.; Rustin, R.C.; Toomey, K.E.; Dabbs, T.; Dobard-Gary, F., III; Harton, P.E.; Hoffacker, L.; Lewis, H.; Lovett, S.; Crowder, D.; Vision, A.; Johnson, B.; Monroe, C.; O’Sullivan, L.; Valenciano, S.; Holland, D.P.; O’Neal, J.; Arona, A.; Freeman, D.; Sulka, A. A Health equity approach for implementation of JYNNEOS vaccination at large, community-based LGBTQIA+ Events — Georgia, August 27–September 5, 2022. MMWR Morb. Mortal. Wkly. Rep., 2022, 71(43), 1382-1883.
[http://dx.doi.org/10.15585/mmwr.mm7143e4] [PMID: 36301799]
[40]
Miller, M.J.; Cash-Goldwasser, S.; Marx, G.E.; Schrodt, C.A.; Kimball, A.; Padgett, K.; Noe, R.S.; McCormick, D.W.; Wong, J.M.; Labuda, S.M.; Borah, B.F.; Zulu, I.; Asif, A.; Kaur, G.; McNicholl, J.M.; Kourtis, A.; Tadros, A.; Reagan-Steiner, S.; Ritter, J.M.; Yu, Y.; Yu, P.; Clinton, R.; Parker, C.; Click, E.S.; Salzer, J.S.; McCollum, A.M.; Petersen, B.; Minhaj, F.S.; Brown, E.; Fischer, M.P.; Atmar, R.L.; DiNardo, A.R.; Xu, Y.; Brown, C.; Goodman, J.C.; Holloman, A.; Gallardo, J.; Siatecka, H.; Huffman, G.; Powell, J.; Alapat, P.; Sarkar, P.; Hanania, N.A.; Bruck, O.; Brass, S.D.; Mehta, A.; Dretler, A.W.; Feldpausch, A.; Pavlick, J.; Spencer, H.; Ghinai, I.; Black, S.R.; Hernandez-Guarin, L.N.; Won, S.Y.; Shankaran, S.; Simms, A.T.; Alarcón, J.; O’Shea, J.G.; Brooks, J.T.; McQuiston, J.; Honein, M.A.; O’Connor, S.M.; Chatham-Stephens, K.; O’Laughlin, K.; Rao, A.K.; Raizes, E.; Gold, J.A.W.; Morris, S.B.; Duessel, S.; Danaie, D.; Hickman, A.; Griffith, B.; Sanneh, H.; Hutchins, H.; Phyathep, C.; Carpenter, A.; Shelus, V.; Petras, J.; Hennessee, I.; Davis, M.; McArdle, C.; Dawson, P.; Gutelius, B.; Bisgard, K.; Wong, K.; Galang, R.R.; Perkins, K.M.; Filardo, T.D.; Davidson, W.; Hutson, C.; Lowe, D.; Zucker, J.E.; Wheeler, D.A.; He, L.; Jain, A.K.; Semeniuk, O.; Chatterji, D.; McClure, M.; Li, L.X.; Mata, J.; Beselman, S.; Cross, S.L.; Menzies, B.; Keller, M.; York, N.; Chaturvedi, V.; York, N.; Thet, A.; Carroll, R.; Hebert, C.; Patel, G.; Gandhi, V.; Abrams-Downey, A.; Nawab, M.; Landon, E.; Lee, G.; Kaplan-Lewis, E.; Miranda, C.; Carmack, A.E.; Traver, E.C.; Lazarte, S.; Perl, T.M.; Chow, J.; Kitchell, E.; Nijhawan, A.; Habib, O.; Bernus, A.; Andujar, G.; Davar, K.; Holtom, P.; Wald-Dickler, N.; Lorio, M.A.; Gaviria, J.; Chu, V.; Wolfe, C.R.; McKellar, M.S.; Farran, S.; Diaz Wong, R.A.; Schliep, T.; Shaw, R.; Tebas, P.; Richterman, A.; Aurelius, M.; Peterson, L.; Trible, R.; Rehman, T.; Sabzwari, R.; Hines, E., Jr; Birkey, T.; King, J.; Farabi, A.; Jenny-Avital, E.; Touleyrou, L.; Sandhu, A.; Newman, G.; Bhamidipati, D.; Bhamidipati, D.; Vigil, K.; Caro, M.; Banowski, K.; Chinyadza, T.W.; Rosenzweig, J.; Jones, M.S.; Camargo, J.F.; Marsh, K.J.; Liu, E.W.; Guerrero-Wooley, R.; Pottinger, P. Severe monkeypox in hospitalized patients — United States, August 10–October 10, 2022. MMWR Morb. Mortal. Wkly. Rep., 2022, 71(44), 1412-1417.
[http://dx.doi.org/10.15585/mmwr.mm7144e1] [PMID: 36327164]
[41]
Clinical considerations for treatment and prophylaxis of mpox infection in people who are immunocompromised 2023.https://www.cdc.gov/poxvirus/monkeypox/clinicians/people-with-HIV.html
[42]
Khani, E.; Afsharirad, B.; Entezari-Maleki, T. Monkeypox treatment: Current evidence and future perspectives. J. Med. Virol., 2023, 95(1), e28229.
[http://dx.doi.org/10.1002/jmv.28229] [PMID: 36253931]
[43]
Stern, A.; Alonso, C.D.; Garcia-Vidal, C.; Cardozo, C.; Slavin, M.; Yong, M.K.; Ho, S.A.; Mehta Steinke, S.; Avery, R.K.; Koehler, P.; Scheid, C.; Cornely, O.A.; Maertens, J.; Abi Aad, Y.; Epstein, D.J.; Papanicolaou, G.A.; Neofytos, D. Safety and efficacy of intravenously administered cidofovir in adult haematopoietic cell transplant recipients: A retrospective multicentre cohort study. J. Antimicrob. Chemother., 2021, 76(11), 3020-3028.
[http://dx.doi.org/10.1093/jac/dkab259] [PMID: 34324678]
[44]
Baker, R.O.; Bray, M.; Huggins, J.W. Potential antiviral therapeutics for smallpox, monkeypox and other orthopoxvirus infections. Antiviral Res., 2003, 57(1-2), 13-23.
[http://dx.doi.org/10.1016/S0166-3542(02)00196-1] [PMID: 12615299]
[45]
Fabrizio, C.; Bruno, G.; Cristiano, L.; Buccoliero, G.B. Cidofovir for treating complicated monkeypox in a man with acquired immune deficiency syndrome. Infection, 2023, 51(2), 519-522.
[http://dx.doi.org/10.1007/s15010-022-01949-x] [PMID: 36355271]
[46]
Dodge, M.J.; MacNeil, K.M.; Tessier, T.M.; Weinberg, J.B.; Mymryk, J.S. Emerging antiviral therapeutics for human adenovirus infection: Recent developments and novel strategies. Antiviral Res., 2021, 188, 105034.
[http://dx.doi.org/10.1016/j.antiviral.2021.105034] [PMID: 33577808]
[47]
Alcamo, A.M.; Wolf, M.S.; Alessi, L.J.; Chong, H.J.; Green, M.; Williams, J.V.; Simon, D.W. Successful use of cidofovir in an immuno-competent child with severe adenoviral sepsis. Pediatrics, 2020, 145(1), e20191632.
[http://dx.doi.org/10.1542/peds.2019-1632] [PMID: 31826930]
[48]
Cidofovir generic name and formulations 2023. Available from: https://www.empr.com/drug/cidofovir/
[50]
El Helou, G.; Razonable, R.R. Safety considerations with current and emerging antiviral therapies for cytomegalovirus infection in transplantation. Expert Opin. Drug Saf., 2019, 18(11), 1017-1030.
[http://dx.doi.org/10.1080/14740338.2019.1662787] [PMID: 31478398]
[51]
Lea, A.P.; Bryson, H.M. Cidofovir. Drugs, 1996, 52(2), 225-230.
[http://dx.doi.org/10.2165/00003495-199652020-00006] [PMID: 8841740]
[52]
Chamberlain, J.M.; Sortino, K.; Sethna, P.; Bae, A.; Lanier, R.; Bambara, R.A.; Dewhurst, S. Cidofovir diphosphate inhibits adenovirus 5 dna polymerase via both nonobligate chain termination and direct inhibition, and polymerase mutations confer cidofovir resistance on intact virus. Antimicrob. Agents Chemother., 2018, 63(1), e01925-e18.
[PMID: 30397065]
[53]
Bua, G.; Conti, I.; Manaresi, E.; Sethna, P.; Foster, S.; Bonvicini, F.; Gallinella, G. Antiviral activity of brincidofovir on parvovirus B19. Antiviral Res., 2019, 162, 22-29.
[54]
Adler, H.; Gould, S.; Hine, P.; Snell, L.B.; Wong, W.; Houlihan, C.F.; Osborne, J.C.; Rampling, T.; Beadsworth, M.B.J.; Duncan, C.J.A.; Dunning, J.; Fletcher, T.E.; Hunter, E.R.; Jacobs, M.; Khoo, S.H.; Newsholme, W.; Porter, D.; Porter, R.J.; Ratcliffe, L.; Schmid, M.L.; Semple, M.G.; Tunbridge, A.J.; Wingfield, T.; Price, N.M.; Abouyannis, M.; Al-Balushi, A.; Aston, S.; Ball, R.; Beeching, N.J.; Blanchard, T.J.; Carlin, F.; Davies, G.; Gillespie, A.; Hicks, S.R.; Hoyle, M-C.; Ilozue, C.; Mair, L.; Marshall, S.; Neary, A.; Nsutebu, E.; Parker, S.; Ryan, H.; Turtle, L.; Smith, C.; van Aartsen, J.; Walker, N.F.; Woolley, S.; Chawla, A.; Hart, I.; Smielewska, A.; Joekes, E.; Benson, C.; Brindley, C.; Das, U.; Eyton-Chong, C.K.; Gnanalingham, C.; Halfhide, C.; Larru, B.; Mayell, S.; McBride, J.; Oliver, C.; Paul, P.; Riordan, A.; Sridhar, L.; Storey, M.; Abdul, A.; Abrahamsen, J.; Athan, B.; Bhagani, S.; Brown, C.S.; Carpenter, O.; Cropley, I.; Frost, K.; Hopkins, S.; Joyce, J.; Lamb, L.; Lyons, A.; Mahungu, T.; Mepham, S.; Mukwaira, E.; Rodger, A.; Taylor, C.; Warren, S.; Williams, A.; Levitt, D.; Allen, D.; Dix-on, J.; Evans, A.; McNicholas, P.; Payne, B.; Price, D.A.; Schwab, U.; Sykes, A.; Taha, Y.; Ward, M.; Emonts, M.; Owens, S.; Botgros, A.; Douthwaite, S.T.; Goodman, A.; Luintel, A.; MacMahon, E.; Nebbia, G.; O’Hara, G.; Parsons, J.; Sen, A.; Stevenson, D.; Sullivan, T.; Taj, U.; van Nipsen tot Pannerden, C.; Winslow, H.; Zatyka, E.; Alozie-Otuka, E.; Beviz, C.; Ceesay, Y.; Gargee, L.; Kabia, M.; Mitchell, H.; Perkins, S.; Sasson, M.; Sehmbey, K.; Tabios, F.; Wigglesworth, N.; Aarons, E.J.; Brooks, T.; Dryden, M.; Furneaux, J.; Gibney, B.; Small, J.; Truelove, E.; Warrell, C.E.; Firth, R.; Hobson, G.; Johnson, C.; Dewynter, A.; Nixon, S.; Spence, O.; Bugert, J.J.; Hruby, D.E. Clinical features and management of human monkeypox: a retrospective observational study in the UK. Lancet Infect. Dis., 2022, 22(8), 1153-1162.
[http://dx.doi.org/10.1016/S1473-3099(22)00228-6] [PMID: 35623380]
[55]
Tecovirimat 2022. Available from: https://elsevier.health/en-US/preview/tecovirimat=
[56]
Yang, G.; Pevear, D.C.; Davies, M.H.; Collett, M.S.; Bailey, T.; Rippen, S.; Barone, L.; Burns, C.; Rhodes, G.; Tohan, S.; Huggins, J.W.; Baker, R.O.; Buller, R.L.M.; Touchette, E.; Waller, K.; Schriewer, J.; Neyts, J.; DeClercq, E.; Jones, K.; Hruby, D.; Jordan, R. An orally bioavailable antipoxvirus compound (ST-246) inhibits extracellular virus formation and protects mice from lethal orthopoxvirus Challenge. J. Virol., 2005, 79(20), 13139-13149.
[http://dx.doi.org/10.1128/JVI.79.20.13139-13149.2005] [PMID: 16189015]
[57]
Quenelle, D.C.; Buller, R.M.L.; Parker, S.; Keith, K.A.; Hruby, D.E.; Jordan, R.; Kern, E.R. Efficacy of delayed treatment with ST-246 given orally against systemic orthopoxvirus infections in mice. Antimicrob. Agents Chemother., 2007, 51(2), 689-695.
[http://dx.doi.org/10.1128/AAC.00879-06] [PMID: 17116683]
[58]
Jordan, R.; Goff, A.; Frimm, A.; Corrado, M.L.; Hensley, L.E.; Byrd, C.M.; Mucker, E.; Shamblin, J.; Bolken, T.C.; Wlazlowski, C.; Johnson, W.; Chapman, J.; Twenhafel, N.; Tyavanagimatt, S.; Amantana, A.; Chinsangaram, J.; Hruby, D.E.; Huggins, J. ST-246 antiviral efficacy in a nonhuman primate monkeypox model: determination of the minimal effective dose and human dose justification. Antimicrob. Agents Chemother., 2009, 53(5), 1817-1822.
[http://dx.doi.org/10.1128/AAC.01596-08] [PMID: 19223621]
[59]
Mucker, E.M.; Goff, A.J.; Shamblin, J.D.; Grosenbach, D.W.; Damon, I.K.; Mehal, J.M.; Holman, R.C.; Carroll, D.; Gallardo, N.; Olson, V.A.; Clemmons, C.J.; Hudson, P.; Hruby, D.E. Efficacy of tecovirimat (ST-246) in nonhuman primates infected with variola virus (Smallpox). Antimicrob. Agents Chemother., 2013, 57(12), 6246-6253.
[http://dx.doi.org/10.1128/AAC.00977-13] [PMID: 24100494]
[60]
Russo, A.T.; Berhanu, A.; Bigger, C.B.; Prigge, J.; Silvera, P.M.; Grosenbach, D.W.; Hruby, D. Co-administration of tecovirimat and ACAM2000™ in non-human primates: Effect of tecovirimat treatment on ACAM2000 immunogenicity and efficacy versus lethal monkeypox virus challenge. Vaccine, 2020, 38(3), 644-654.
[http://dx.doi.org/10.1016/j.vaccine.2019.10.049] [PMID: 31677948]
[61]
Grosenbach, D.W.; Honeychurch, K.; Rose, E.A.; Chinsangaram, J.; Frimm, A.; Maiti, B.; Lovejoy, C.; Meara, I.; Long, P.; Hruby, D.E. Oral Tecovirimat for the treatment of smallpox. N. Engl. J. Med., 2018, 379(1), 44-53.
[http://dx.doi.org/10.1056/NEJMoa1705688] [PMID: 29972742]
[62]
Laudisoit, A.; Tepage, F.; Colebunders, R. Oral Tecovirimat for the treatment of smallpox. N. Engl. J. Med., 2018, 379(21), 2084-2085.
[http://dx.doi.org/10.1056/NEJMc1811044] [PMID: 30462945]
[64]
Russo, A.T.; Grosenbach, D.W.; Chinsangaram, J.; Honeychurch, K.M.; Long, P.G.; Lovejoy, C.; Maiti, B.; Meara, I.; Hruby, D.E. An overview of tecovirimat for smallpox treatment and expanded anti-orthopoxvirus applications. Expert Rev. Anti Infect. Ther., 2021, 19(3), 331-344.
[http://dx.doi.org/10.1080/14787210.2020.1819791] [PMID: 32882158]
[65]
Highlights of prescribing information 2018. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/214518s000lbl.pdf
[66]
Shen, Y.; Shi, Z.; Yan, B. Carboxylesterases: Pharmacological inhibition, regulated expression and transcriptional involvement of nuclear receptors and other transcription factors. Nucl. Receptor Res., 2019, 6, 101435.
[http://dx.doi.org/10.32527/2019/101435]
[67]
[69]
Bianco, M.C.A.D.; Inacio Leite, D.; Silva Castelo Branco, F.; Boechat, N.; Uliassi, E.; Bolognesi, M.L.; Bastos, M.M. The use of Zidovudine pharmacophore in multi-target-directed ligands for AIDS therapy. Molecules, 2022, 27(23), 8502.
[http://dx.doi.org/10.3390/molecules27238502] [PMID: 36500608]
[70]
[71]
Ayele, A.G.; Enyew, E.F.; Kifle, Z.D. Roles of existing drug and drug targets for COVID-19 management. Metabolism Open, 2021, 11, 100103.
[http://dx.doi.org/10.1016/j.metop.2021.100103] [PMID: 34222852]
[72]
Zhou, Y.W.; Xie, Y.; Tang, L.S.; Pu, D.; Zhu, Y.J.; Liu, J.Y.; Ma, X.L. Therapeutic targets and interventional strategies in COVID-19: mechanisms and clinical studies. Signal Transduct. Target. Ther., 2021, 6(1), 317.
[http://dx.doi.org/10.1038/s41392-021-00733-x] [PMID: 34446699]
[73]
Shen, Y.; Eades, W.; Yan, B. The COVID‐19 medicine remdesivir is therapeutically activated by carboxylesterase‐1, and excessive hydrolysis increases cytotoxicity. Hepatol. Commun., 2021, 5(9), 1622-1623.
[http://dx.doi.org/10.1002/hep4.1736] [PMID: 34510834]
[74]
Shen, Y.; Eades, W.; Yan, B. Remdesivir potently inhibits carboxylesterase‐2 through covalent modifications: Signifying strong drug‐drug interactions. Fundam. Clin. Pharmacol., 2021, 35(2), 432-434.
[http://dx.doi.org/10.1111/fcp.12643] [PMID: 33369768]
[75]
Shen, Y.; Eades, W.; Liu, W.; Yan, B. The COVID-19 oral drug molnupiravir is a ces2 substrate: Potential drug-drug interactions and impact of ces2 genetic polymorphism in vitro. Drug Metab. Dispos., 2022, 50(9), 1151-1160.
[http://dx.doi.org/10.1124/dmd.122.000918] [PMID: 35790245]
[76]
Liu, W.; Yu, S.; Yan, B. Effect of alcohol exposure on the efficacy and safety of tenofovir alafenamide fumarate, a major medicine against human immunodeficiency virus. Biochem. Pharmacol., 2022, 204, 115224.
[http://dx.doi.org/10.1016/j.bcp.2022.115224] [PMID: 36007574]
[77]
Ito, S.; Hirota, T.; Yanai, M.; Muto, M.; Watanabe, E.; Taya, Y.; Ieiri, I. Effects of genetic polymorphisms of cathepsin A on metabolism of Tenofovir Alafenamide. Genes, 2021, 12(12), 2026.
[http://dx.doi.org/10.3390/genes12122026] [PMID: 34946974]
[78]
Li, R.; Liclican, A.; Xu, Y.; Pitts, J.; Niu, C.; Zhang, J.; Kim, C.; Zhao, X.; Soohoo, D.; Babusis, D.; Yue, Q.; Ma, B.; Murray, B.P.; Subramanian, R.; Xie, X.; Zou, J.; Bilello, J.P.; Li, L.; Schultz, B.E.; Sakowicz, R.; Smith, B.J.; Shi, P.Y.; Murakami, E.; Feng, J.Y. Key metabolic enzymes involved in remdesivir activation in human lung cells. Antimicrob. Agents Chemother., 2021, 65(9), e00602-21.
[http://dx.doi.org/10.1128/AAC.00602-21] [PMID: 34125594]
[79]
Yan, B.; Eades, W.; Liu, W.; Shen, Y.; Shi, Z. Covalent CES2 inhibitors protect against reduced formation of intestinal organoids by the anticancer drug irinotecan. Curr. Drug Metab., 2022, 23(12), 1000-1010. Epub ahead of print
[http://dx.doi.org/10.2174/1389200224666221212143904] [PMID: 36515038]
[80]
Yan, D.; Ra, O.H.; Yan, B. The nucleoside antiviral prodrug remdesivir in treating COVID-19 and beyond with interspecies significance. Animal Diseases, 2021, 1(1), 15.
[http://dx.doi.org/10.1186/s44149-021-00017-5] [PMID: 34778881]
[81]
Yan, D.; Yan, B. Viral target and metabolism‐based rationale for combined use of recently authorized small molecule COVID‐19 medicines: Molnupiravir, nirmatrelvir, and remdesivir. Fundam. Clin. Pharmacol., 2023, 2023, fcp.12889.. Epub ahead of print
[http://dx.doi.org/10.1111/fcp.12889] [PMID: 36931725]
[82]
Singh, R.S.P.; Walker, G.S.; Kadar, E.P.; Cox, L.M.; Eng, H.; Sharma, R.; Bergman, A.J.; Van Eyck, L.; Hackman, F.; Toussi, S.S.; Kalgutkar, A.S.; Obach, R.S. Metabolism and excretion of nirmatrelvir in humans using quantitative fluorine nuclear magnetic resonance spectroscopy: A novel approach for accelerating drug development. Clin. Pharmacol. Ther., 2022, 112(6), 1201-1206.
[http://dx.doi.org/10.1002/cpt.2683] [PMID: 35678736]
[83]
Mirza, A.Z. Advancement in the development of heterocyclic nucleosides for the treatment of cancer - A review. Nucleosides Nucleotides Nucleic Acids, 2019, 38(11), 836-857.
[http://dx.doi.org/10.1080/15257770.2019.1615623] [PMID: 31135268]
[84]
Dantsu, Y.; Zhang, Y.; Zhang, W. Advances in therapeutic] L-nucleosides and L-nucleic acids with unusual handedness. Genes, 2021, 13(1), 46.
[http://dx.doi.org/10.3390/genes13010046] [PMID: 35052385]
[85]
Ramesh, D.; Vijayakumar, B.G.; Kannan, T. Advances in nucleoside and nucleotide analogues in tackling human immunodeficiency virus and hepatitis virus infections. Chem. Med. Chem., 2021, 16(9), 1403-1419.
[http://dx.doi.org/10.1002/cmdc.202000849] [PMID: 33427377]
[86]
Jornada, D.; dos Santos Fernandes, G.; Chiba, D.; de Melo, T.; dos Santos, J.; Chung, M. The prodrug approach: A successful tool for improving drug solubility. Molecules, 2015, 21(1), 42.
[http://dx.doi.org/10.3390/molecules21010042] [PMID: 26729077]
[87]
Cihlar, T.; Chen, M.S. Identification of enzymes catalyzing two-step phosphorylation of cidofovir and the effect of cytomegalovirus infection on their activities in host cells. Mol. Pharmacol., 1996, 50(6), 1502-1510.
[PMID: 8967971]
[88]
Lade, J.M.; To, E.E.; Hendrix, C.W.; Bumpus, N.N. Discovery of genetic variants of the kinases that activate tenofovir in a compartment-specific manner. EBioMedicine, 2015, 2(9), 1145-1152.
[http://dx.doi.org/10.1016/j.ebiom.2015.07.008] [PMID: 26501112]
[89]
Iannuzzi, S.; von Kleist, M. Mathematical modelling of the molecular mechanisms of interaction of tenofovir with emtricitabine against HIV. Viruses, 2021, 13(7), 1354.
[http://dx.doi.org/10.3390/v13071354] [PMID: 34372560]
[90]
Lash, L.H.; Lee, C.A.; Wilker, C.; Shah, V. Transporter-dependent cytotoxicity of antiviral drugs in primary cultures of human proximal tubular cells. Toxicology, 2018, 404-405, 10-24.
[http://dx.doi.org/10.1016/j.tox.2018.05.002] [PMID: 29738843]
[91]
Kumar, D.; Trivedi, N. Disease-drug and drug-drug interaction in COVID-19: Risk and assessment. Biomed. Pharmacother., 2021, 139, 111642.
[http://dx.doi.org/10.1016/j.biopha.2021.111642] [PMID: 33940506]
[92]
Nwabufo, C.K.; Bendayan, R. Pharmacokinetic considerations to optimize clinical outcomes for COVID-19 drugs. Trends Pharmacol. Sci., 2022, 43(12), 1041-1054.
[http://dx.doi.org/10.1016/j.tips.2022.09.005] [PMID: 36374805]
[93]
Giacomini, K.M.; Yee, S.W.; Koleske, M.L.; Zou, L.; Matsson, P.; Chen, E.C.; Kroetz, D.L.; Miller, M.A.; Gozalpour, E.; Chu, X. New and emerging research on solute carrier and ATP binding cassette transporters in drug discovery and development: Outlook from the international transporter consortium. Clin. Pharmacol. Ther., 2022, 112(3), 540-561.
[http://dx.doi.org/10.1002/cpt.2627] [PMID: 35488474]
[94]
Cihlar, T.; Ho, E.S.; Lin, D.C.; Mulato, A.S. Human renal organic anion transporter 1 (hOAT1) and its role in the nephrotoxicity of antiviral nucleotide analogs. Nucleosides Nucleotides Nucleic Acids, 2001, 20(4-7), 641-648.
[http://dx.doi.org/10.1081/NCN-100002341] [PMID: 11563082]
[95]
Tippin, T.K.; Morrison, M.E.; Brundage, T.M.; Momméja-Marin, H. Brincidofovir is not a substrate for the human organic anion transporter 1: A mechanistic explanation for the lack of nephrotoxicity observed in clinical studies. Ther. Drug Monit., 2016, 38(6), 777-786.
[http://dx.doi.org/10.1097/FTD.0000000000000353] [PMID: 27851688]
[96]
Chan, L.; Asriel, B.; Eaton, E.F.; Wyatt, C.M. Potential kidney toxicity from the antiviral drug tenofovir. Curr. Opin. Nephrol. Hypertens., 2018, 27(2), 102-112.
[http://dx.doi.org/10.1097/MNH.0000000000000392] [PMID: 29278542]
[97]
Obiebi, I.P.; Nwannadi, E.A. Tenofovir-induced renal tubular dysfunction among human immunodeficiency virus patients on antiretroviral therapy in Nigeria: Prospects for early detection of presymptomatic nephrotoxicity. Kidney Res. Clin. Pract., 2018, 37(3), 230-238.
[http://dx.doi.org/10.23876/j.krcp.2018.37.3.230] [PMID: 30254847]
[98]
Weiss, J.; Rose, J.; Storch, C.H.; Ketabi-Kiyanvash, N.; Sauer, A.; Haefeli, W.E.; Efferth, T. Modulation of human BCRP (ABCG2) activity by anti-HIV drugs. J. Antimicrob. Chemother., 2006, 59(2), 238-245.
[http://dx.doi.org/10.1093/jac/dkl474] [PMID: 17202245]
[99]
Moss, D.M.; Neary, M.; Owen, A. The role of drug transporters in the kidney: lessons from tenofovir. Front. Pharmacol., 2014, 5, 248.
[http://dx.doi.org/10.3389/fphar.2014.00248] [PMID: 25426075]
[100]
Zondo, N.M.; Sobia, P.; Sivro, A.; Ngcapu, S.; Ramsuran, V.; Archary, D. Pharmacogenomics of drug transporters for antiretroviral long-acting pre-exposure prophylaxis for HIV. Front. Genet., 2022, 13, 940661.
[http://dx.doi.org/10.3389/fgene.2022.940661] [PMID: 36246609]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy