Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Letter Article

Design of Podophyllotoxin-based Hybrid Compounds as Potential Anticancer Agents

Author(s): Hezhen Wang, Xun Sun, Chunyong Wei, Jing Wang* and Lei Zhang*

Volume 21, Issue 11, 2024

Published on: 24 August, 2023

Page: [1895 - 1903] Pages: 9

DOI: 10.2174/1570180820666230606161639

Price: $65

Abstract

Background: Cancer has been regarded as the leading cause of death worldwide. Identifying new anti-neoplastics with high potency and low toxicity is urgent.

Objective: Podophyllotoxin-based hybrid compounds were synthesized by esterification and characterized using NMR and HR-MS. In vitro cytotoxicity and molecular mechanism studies were performed.

Methods: Podophyllotoxin was hybridized with three selected known natural compounds via esterification to develop candidates with increased biological activity or decreased toxicity. The CCK-8 assay, cell cycle analysis, AO/EB staining, immunofluorescent analysis, and molecular modeling were used for investigation.

Results: Compound B4 displayed potent anticancer effect on HepG2 and HSC-2 cell lines, with IC50 values of 0.809 ± 0.183 and 0.267 ± 0.038 μM, respectively. Furthermore, B4 exhibited less antiproliferative activity in 293T cells with an IC50 value of 2.303 ± 0.216 μM. In addition, B4 demonstrated strong induction of S phase arrest and apoptosis, as well as demolished the microtubules in HSC-2 cells. Molecular docking study revealed that B4 could bind into the colchicine site of β-tubulin, as well as the interface of the α/β-tubulin dimer.

Conclusion: Hybrid B4 exhibited potential anticancer activity, and further investigations can help in identifying novel lead molecules.

Next »
[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[2]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer, 2021, 149(4), 778-789.
[http://dx.doi.org/10.1002/ijc.33588] [PMID: 33818764]
[3]
Cao, W.; Chen, H.D.; Yu, Y.W.; Li, N.; Chen, W.Q. Changing profiles of cancer burden worldwide and in China: A secondary analysis of the global cancer statistics 2020. Chin. Med. J. (Engl.), 2021, 134(7), 783-791.
[http://dx.doi.org/10.1097/CM9.0000000000001474] [PMID: 33734139]
[4]
Dallavalle, S.; Dobričić, V.; Lazzarato, L.; Gazzano, E.; Machuqueiro, M.; Pajeva, I.; Tsakovska, I.; Zidar, N.; Fruttero, R. Improvement of conventional anti-cancer drugs as new tools against multidrug resistant tumors. Drug Resist. Updat., 2020, 50, 100682.
[http://dx.doi.org/10.1016/j.drup.2020.100682] [PMID: 32087558]
[5]
Liang, X.; Wu, P.; Yang, Q.; Xie, Y.; He, C.; Yin, L.; Yin, Z.; Yue, G.; Zou, Y.; Li, L.; Song, X.; Lv, C.; Zhang, W.; Jing, B. An update of new small-molecule anticancer drugs approved from 2015 to 2020. Eur. J. Med. Chem., 2021, 220, 113473.
[http://dx.doi.org/10.1016/j.ejmech.2021.113473] [PMID: 33906047]
[6]
Ciarimboli, G. Anticancer platinum drugs update. Biomolecules, 2021, 11(11), 1637.
[http://dx.doi.org/10.3390/biom11111637] [PMID: 34827636]
[7]
Rodrigues, T.; Reker, D.; Schneider, P.; Schneider, G. Counting on natural products for drug design. Nat. Chem., 2016, 8(6), 531-541.
[http://dx.doi.org/10.1038/nchem.2479] [PMID: 27219696]
[8]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod., 2020, 83(3), 770-803.
[http://dx.doi.org/10.1021/acs.jnatprod.9b01285] [PMID: 32162523]
[9]
Paoli, P. Enzymatic inhibitors from natural sources: A huge collection of new potential drugs. Biomolecules, 2021, 11(2), 133.
[http://dx.doi.org/10.3390/biom11020133] [PMID: 33498517]
[10]
Liu, Y.Q.; Tian, J.; Qian, K.; Zhao, X.B.; Morris-Natschke, S.L.; Yang, L.; Nan, X.; Tian, X.; Lee, K.H. Recent progress on C-4-modified podophyllotoxin analogs as potent antitumor agents. Med. Res. Rev., 2015, 35(1), 1-62.
[http://dx.doi.org/10.1002/med.21319] [PMID: 24827545]
[11]
Stanton, R.A.; Gernert, K.M.; Nettles, J.H.; Aneja, R. Drugs that target dynamic microtubules: A new molecular perspective. Med. Res. Rev., 2011, 31(3), 443-481.
[http://dx.doi.org/10.1002/med.20242] [PMID: 21381049]
[12]
You, Y. Podophyllotoxin derivatives: Current synthetic approaches for new anticancer agents. Curr. Pharm. Des., 2005, 11(13), 1695-1717.
[http://dx.doi.org/10.2174/1381612053764724] [PMID: 15892669]
[13]
Xiao, J.; Gao, M.; Sun, Z.; Diao, Q.; Wang, P.; Gao, F. Recent advances of podophyllotoxin/epipodophyllotoxin hybrids in anticancer activity, mode of action, and structure-activity relationship: An update (2010–2020). Eur. J. Med. Chem., 2020, 208, 112830.
[http://dx.doi.org/10.1016/j.ejmech.2020.112830] [PMID: 32992133]
[14]
Shen, S.; Tong, Y.; Luo, Y.; Huang, L.; Gao, W. Biosynthesis, total synthesis, and pharmacological activities of aryltetralin-type lignan podophyllotoxin and its derivatives. Nat. Prod. Rep., 2022, 39(9), 1856-1875.
[http://dx.doi.org/10.1039/D2NP00028H] [PMID: 35913409]
[15]
Zhang, X.; Yang, T.; Jin, X.; Lin, K.; Dai, X.; Gao, T.; Huang, G.; Fan, M.; Ma, L.; Liu, Z.; Cao, J. Synthesis and biological evaluation of cytotoxic activity of novel podophyllotoxin derivatives incorporating piperazinyl-cinnamic amide moieties. Bioorg. Chem., 2022, 123, 105761.
[http://dx.doi.org/10.1016/j.bioorg.2022.105761] [PMID: 35358823]
[16]
Cai, D.; Lou, S.Y.; Huo, S.; Yang, Y.Q.; Gao, F.; Pi, W.M.; Chen, K.D.; Wang, C.; Yang, X.Y.; Jiao, J.Y.; Xu, B.; Wang, P.L.; Lei, H.M. Synthesis and biological activity evaluation of podophyllotoxin-linked bile acid derivatives as potential anti-liver cancer agents. Bioorg. Chem., 2022, 128, 106066.
[http://dx.doi.org/10.1016/j.bioorg.2022.106066] [PMID: 35964500]
[17]
Bouchard, M.; Tremblay, T.; Paré-Lacroix, M.P.; Gagné-Boulet, M.; Fortin, S.; Giguère, D. Synthetic development of sugar amino acid oligomers towards novel podophyllotoxin analogues. Bioorg. Med. Chem., 2021, 52, 116501.
[http://dx.doi.org/10.1016/j.bmc.2021.116501] [PMID: 34837817]
[18]
Sun, W.; Sun, F.; Meng, J.; Cao, X.; Zhao, S.; Wang, C.; Li, L.; Jiang, P. Design, semi-synthesis and bioactivity evaluation of novel podophyllotoxin derivatives as potent anti-tumor agents. Bioorg. Chem., 2022, 126, 105906.
[http://dx.doi.org/10.1016/j.bioorg.2022.105906] [PMID: 35661529]
[19]
Bailly, C. Contemporary challenges in the design of topoisomerase II inhibitors for cancer chemotherapy. Chem. Rev., 2012, 112(7), 3611-3640.
[http://dx.doi.org/10.1021/cr200325f] [PMID: 22397403]
[20]
Fan, H.Y.; Zhu, Z.L.; Xian, H.C.; Wang, H.F.; Chen, B.J.; Tang, Y.J. Insight into the molecular mechanism of podophyllotoxin derivatives as anticancer drugs. Front. Cell Dev. Biol., 2021, 9, 709075.
[http://dx.doi.org/10.3389/fcell.2021.709075] [PMID: 34447752]
[21]
Wu, C.C.; Li, T.K.; Farh, L.; Lin, L.Y.; Lin, T.S.; Yu, Y.J.; Yen, T.J. Structural basis of type II topoisomerase inhibition by the anticancer drug etoposide. Science, 2011, 333(6041), 459-462.
[http://dx.doi.org/10.1126/science.1204117] [PMID: 21778401]
[22]
Kamal, A.; Ali Hussaini, S.M.; Rahim, A.; Riyaz, S. Podophyllotoxin derivatives: A patent review (2012 – 2014). Expert Opin. Ther. Pat., 2015, 25(9), 1025-1034.
[http://dx.doi.org/10.1517/13543776.2015.1051727] [PMID: 26027947]
[23]
Sun, K.; Sun, Z.; Zhao, F.; Shan, G.; Meng, Q. Recent advances in research of colchicine binding site inhibitors and their interaction modes with tubulin. Future Med. Chem., 2021, 13(9), 839-858.
[http://dx.doi.org/10.4155/fmc-2020-0376] [PMID: 33821673]
[24]
Liu, X.; Zhang, L.L.; Xu, X.H.; Hui, L.; Zhang, J.B.; Chen, S.W. Synthesis and anticancer activity of dichloroplatinum(II) complexes of podophyllotoxin. Bioorg. Med. Chem. Lett., 2013, 23(13), 3780-3784.
[http://dx.doi.org/10.1016/j.bmcl.2013.04.089] [PMID: 23711918]
[25]
Zhao, W.; Cong, Y.; Li, H.M.; Li, S.; Shen, Y.; Qi, Q.; Zhang, Y.; Li, Y.Z.; Tang, Y.J. Challenges and potential for improving the druggability of podophyllotoxin-derived drugs in cancer chemotherapy. Nat. Prod. Rep., 2021, 38(3), 470-488.
[http://dx.doi.org/10.1039/D0NP00041H] [PMID: 32895676]
[26]
Lai, K.H.; Lu, M.C.; Du, Y.C.; El-Shazly, M.; Wu, T.Y.; Hsu, Y.M. Cytotoxic Lanostanoids from Poria cocos. J. Nat. Prod., 2016, 79(11), 2805-2813.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00575] [PMID: 27808511]
[27]
Gu, Y.; Qi, C.; Sun, X.; Ma, X.; Zhang, H.; Hu, L.; Yuan, J.; Yu, Q. Arctigenin preferentially induces tumor cell death under glucose deprivation by inhibiting cellular energy metabolism. Biochem. Pharmacol., 2012, 84(4), 468-476.
[http://dx.doi.org/10.1016/j.bcp.2012.06.002] [PMID: 22687625]
[28]
Cao, Y.N.; Zheng, L.L.; Wang, D.; Liang, X.X.; Gao, F.; Zhou, X.L. Recent advances in microtubule-stabilizing agents. Eur. J. Med. Chem., 2018, 143, 806-828.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.062] [PMID: 29223097]
[29]
Wei, C.; Wang, H.; Sun, X.; Bai, Z.; Wang, J.; Bai, G.; Yao, Q.; Xu, Y. Pharmacological profiles and therapeutic applications of pachymic acid (Review). Exp. Ther. Med., 2022, 24(3), 547.
[http://dx.doi.org/10.3892/etm.2022.11484] [PMID: 35978941]
[30]
Norouzi, S.; Iranshahy, M.; Iranshahi, M.; Shakeri, A. Cytotoxic sesquiterpene lactones and lignans from Cousinia turkmenorum Bornm (Asteraceae). Nat. Prod. Res., 2022, 36(23), 6096-6100.
[http://dx.doi.org/10.1080/14786419.2022.2045984] [PMID: 35227157]
[31]
Guo, K.; Ma, X.; Li, J.; Zhang, C.; Wu, L. Recent advances in combretastatin A-4 codrugs for cancer therapy. Eur. J. Med. Chem., 2022, 241, 114660.
[http://dx.doi.org/10.1016/j.ejmech.2022.114660] [PMID: 35964428]
[32]
Kucuksayan, E.; Ozben, T. Hybrid compounds as multitarget directed anticancer agents. Curr. Top. Med. Chem., 2017, 17(8), 907-918.
[http://dx.doi.org/10.2174/1568026616666160927155515] [PMID: 27697050]
[33]
Meunier, B. Hybrid molecules with a dual mode of action: dream or reality? Acc. Chem. Res., 2008, 41(1), 69-77.
[http://dx.doi.org/10.1021/ar7000843] [PMID: 17665872]
[34]
Sampath Kumar, H.M.; Herrmann, L.; Tsogoeva, S.B. Structural hybridization as a facile approach to new drug candidates. Bioorg. Med. Chem. Lett., 2020, 30(23), 127514.
[http://dx.doi.org/10.1016/j.bmcl.2020.127514] [PMID: 32860980]
[35]
Zhang, L.; Liu, L.; Zheng, C.; Wang, Y.; Nie, X.; Shi, D.; Chen, Y.; Wei, G.; Wang, J. Synthesis and biological evaluation of novel podophyllotoxin-NSAIDs conjugates as multifunctional anti-MDR agents against resistant human hepatocellular carcinoma Bel-7402/5-FU cells. Eur. J. Med. Chem., 2017, 131, 81-91.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.011] [PMID: 28301815]
[36]
Wang, J.; Long, L.; Chen, Y.; Xu, Y.; Zhang, L. Design, synthesis and antineoplastic activity of novel hybrids of podophyllotoxin and indirubin against human leukaemia cancer cells as multifunctional anti-MDR agents. Bioorg. Med. Chem. Lett., 2018, 28(10), 1817-1824.
[http://dx.doi.org/10.1016/j.bmcl.2018.04.019] [PMID: 29678463]
[37]
Yang, C.; Xie, Q.; Zeng, X.; Tao, N.; Xu, Y.; Chen, Y.; Wang, J.; Zhang, L. Novel hybrids of podophyllotoxin and formononetin inhibit the growth, migration and invasion of lung cancer cells. Bioorg. Chem., 2019, 85, 445-454.
[http://dx.doi.org/10.1016/j.bioorg.2019.02.019] [PMID: 30776555]
[38]
Wang, H.; Sun, X.; Wei, C.; Wang, J.; Xu, Y.; Bai, G.; Yao, Q.; Zhang, L. Synthesis and bioactivity evaluation of pachymic acid derivatives as potential cytotoxic agents. Med. Chem. Res., 2023, 32(2), 342-354.
[http://dx.doi.org/10.1007/s00044-022-03009-3] [PMID: 36593868]
[39]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2009, 31(2), NA.
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576]
[40]
Haider, K.; Rahaman, S.; Yar, M.S.; Kamal, A. Tubulin inhibitors as novel anticancer agents: An overview on patents (2013-2018). Expert Opin. Ther. Pat., 2019, 29(8), 623-641.
[http://dx.doi.org/10.1080/13543776.2019.1648433] [PMID: 31353978]
[41]
Xia, L.Y.; Zhang, Y.L.; Yang, R.; Wang, Z.C.; Lu, Y.D.; Wang, B.Z.; Zhu, H.L. Tubulin inhibitors binding to colchicine-site: A review from 2015 to 2019. Curr. Med. Chem., 2020, 27(40), 6787-6814.
[http://dx.doi.org/10.2174/0929867326666191003154051] [PMID: 31580244]
[42]
Paidakula, S.; Nerella, S.; Kankala, S.; Kankala, R.K. Recent trends in tubulin-binding combretastatin a-4 analogs for anticancer drug development. Curr. Med. Chem., 2022, 29(21), 3748-3773.
[http://dx.doi.org/10.2174/0929867328666211202101641] [PMID: 34856892]

© 2024 Bentham Science Publishers | Privacy Policy