Generic placeholder image

Current Neurovascular Research

Editor-in-Chief

ISSN (Print): 1567-2026
ISSN (Online): 1875-5739

Research Article

Combined Role of Inflammatory Biomarkers and Red Blood Cell Distribution Width in Predicting In-hospital Outcomes of Acute Ischemic Stroke Patients Undergoing Thrombolysis

Author(s): Yi Wang, Yafang Zhu, Xiaohong Wang, Chongke Zhong, Yan Qin, Yongrong Sun, Yongjun Cao, Xia Zhang* and Dongqin Chen*

Volume 20, Issue 2, 2023

Published on: 14 June, 2023

Page: [207 - 217] Pages: 11

DOI: 10.2174/1567202620666230606120439

Price: $65

Abstract

Background: To investigate the combined effect of red blood cell distribution width (RDW) and inflammatory biomarkers on in-hospital outcomes of acute ischemic stroke(AIS) patients with thrombolysis.

Methods: 417 AIS patients with thrombolysis were included. The participants were divided into four groups according to the cut-off of white blood cell (WBC) or C reactive protein (CRP) and RDW: LWLR, LWHR, HWLR, and HWHR; or LCLR, LCHR, HCLR, and HCHR (L-low, Hhigh, W-WBC, C-CRP, R-RDW). Logistic regression models were used to calculate the odds ratios (ORs) and 95% confidence intervals (CIs) of in-hospital pneumonia and functional outcome across the four subgroups.

Results: Patients with higher RDW and inflammatory biomarkers levels have the highest risk of in-hospital outcomes. Compared with patients in the LWLR group, the ORs (95% CIs) of those in the HWHR group were 12.16 (4.21-35.14) and 9.31 (3.19-27.17) for in-hospital pneumonia and functional outcome. The ORs (95% CIs) of those in the HCHR group were 6.93 (2.70-17.78) and 3.38 (1.10-10.39) for in-hospital pneumonia and functional outcome, compared with patients in the LCLR group. Simultaneously adding RDW and WBC or CRP to the basic model with established risk factors significantly improved risk discrimination and reclassification for pneumonia and functional outcome (all p <0.05).

Conclusions: Combined RDW and inflammatory biomarkers within 4.5 hours had a better predictive power for in-hospital outcomes of AIS patients with thrombolysis.

[1]
Berge E, Whiteley W, Audebert H, et al. European Stroke Organisation (ESO) guidelines on intravenous thrombolysis for acute ischaemic stroke. Eur Stroke J 2021; 6(1): I-LXII.
[http://dx.doi.org/10.1177/2396987321989865] [PMID: 33817340]
[2]
Powers WJ, Rabinstein AA, Ackerson T, et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: A guideline for healthcare professionals from the american heart association/american stroke association. stroke 2019; 50(12): e344-418.
[http://dx.doi.org/10.1161/STR.0000000000000211] [PMID: 31662037]
[3]
Furlan JC, Vergouwen MDI, Fang J, Silver FL. White blood cell count is an independent predictor of outcomes after acute ischaemic stroke. Eur J Neurol 2014; 21(2): 215-22.
[http://dx.doi.org/10.1111/ene.12233] [PMID: 23848934]
[4]
Christensen H, Boysen G. C-reactive protein and white blood cell count increases in the first 24 hours after acute stroke. Cerebrovasc Dis 2004; 18(3): 214-9.
[http://dx.doi.org/10.1159/000079944] [PMID: 15273437]
[5]
Feng GH, Li HP, Li QL, Fu Y, Huang RB. Red blood cell distribution width and ischaemic stroke. Stroke Vasc Neurol 2017; 2(3): 172-5.
[http://dx.doi.org/10.1136/svn-2017-000071] [PMID: 28989807]
[6]
Matsuo R, Ago T, Hata J, et al. Plasma C-reactive protein and clinical outcomes after acute ischemic stroke: A prospective observational study. PLoS One 2016; 11(6): e0156790.
[http://dx.doi.org/10.1371/journal.pone.0156790] [PMID: 27258004]
[7]
Qu X, Shi J, Cao Y, Zhang M, Xu J. Prognostic value of white blood cell counts and C-reactive protein in acute ischemic stroke patients after intravenous thrombolysis. Curr Neurovasc Res 2018; 15(1): 10-7.
[http://dx.doi.org/10.2174/1567202615666180326101524] [PMID: 29577860]
[8]
Derbisz J, Nowak K, Wnuk M, et al. Prognostic significance of stroke-associated infection and other readily available parameters in acute ischemic stroke treated by intravenous thrombolysis. J Stroke Cerebrovasc Dis 2021; 30(2): 105525.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2020.105525] [PMID: 33338755]
[9]
Daland GA, Heath CW, Minot GR. Differentiation of pernicious anemia and certain other macrocytic anemias by the distribution of red blood cell diameters. Blood 1946; 1(1): 67-75.
[http://dx.doi.org/10.1182/blood.V1.1.67.67] [PMID: 21013548]
[10]
Lippi G, Plebani M. Red blood cell distribution width (RDW) and human pathology. One size fits all. Clin Chem Lab Med 2014; 52(9): 1247-9.
[http://dx.doi.org/10.1515/cclm-2014-0585] [PMID: 24945432]
[11]
Lappegård J, Ellingsen TS, Skjelbakken T, et al. Red cell distribution width is associated with future risk of incident stroke. Thromb Haemost 2016; 115(1): 126-34.
[http://dx.doi.org/10.1160/TH15-03-0234] [PMID: 26290352]
[12]
Saliba W, Barnett-Griness O, Elias M, Rennert G. The association between red cell distribution width and stroke in patients with atrial fibrillation. Am J Med 2015; 128(2): 192.e11-8.
[http://dx.doi.org/10.1016/j.amjmed.2014.09.020] [PMID: 25447618]
[13]
Turcato G, Cappellari M, Follador L, et al. Red blood cell distribution width is an independent predictor of outcome in patients undergoing thrombolysis for ischemic stroke. Semin Thromb Hemost 2016; 43(1): 030-5.
[http://dx.doi.org/10.1055/s-0036-1592165] [PMID: 27813042]
[14]
Wohner N, Sótonyi P, Machovich R, et al. Lytic resistance of fibrin containing red blood cells. Arterioscler Thromb Vasc Biol 2011; 31(10): 2306-13.
[http://dx.doi.org/10.1161/ATVBAHA.111.229088] [PMID: 21737785]
[15]
Mannucci PM. Red cells playing as activated platelets in thalassemia intermedia. J Thromb Haemost 2010; 8(10): 2149-51.
[http://dx.doi.org/10.1111/j.1538-7836.2010.04030.x] [PMID: 20727069]
[16]
Hao Y, Ding J, Hong R, et al. Increased interleukin-18 level contributes to the development and severity of ischemic stroke. Aging 2019; 11(18): 7457-72.
[http://dx.doi.org/10.18632/aging.102253] [PMID: 31525735]
[17]
Lippi G, Targher G, Montagnana M, Salvagno GL, Zoppini G, Guidi GC. Relation between red blood cell distribution width and inflammatory biomarkers in a large cohort of unselected outpatients. Arch Pathol Lab Med 2009; 133(4): 628-32.
[http://dx.doi.org/10.5858/133.4.628] [PMID: 19391664]
[18]
Özcan F, Turak O, Durak A, et al. Red cell distribution width and inflammation in patients with non-dipper hypertension. Blood Press 2013; 22(2): 80-5.
[http://dx.doi.org/10.3109/08037051.2012.707336] [PMID: 22835009]
[19]
Lappé JM, Horne BD, Shah SH, et al. Red cell distribution width, C-reactive protein, the complete blood count, and mortality in patients with coronary disease and a normal comparison population. Clin Chim Acta 2011; 412(23-24): 2094-9.
[http://dx.doi.org/10.1016/j.cca.2011.07.018] [PMID: 21821014]
[20]
Bamford J, Sandercock P, Dennis M, Warlow C, Burn J. Classification and natural history of clinically identifiable subtypes of cerebral infarction. Lancet 1991; 337(8756): 1521-6.
[http://dx.doi.org/10.1016/0140-6736(91)93206-O] [PMID: 1675378]
[21]
Chalos V, van der Ende NAM, Lingsma HF, et al. National institutes of health stroke scale. Stroke 2020; 51(1): 282-90.
[http://dx.doi.org/10.1161/STROKEAHA.119.026791] [PMID: 31795895]
[22]
Smith CJ, Kishore AK, Vail A, et al. Diagnosis of stroke-associated pneumonia. Stroke 2015; 46(8): 2335-40.
[http://dx.doi.org/10.1161/STROKEAHA.115.009617] [PMID: 26111886]
[23]
Salvagno GL, Sanchis-Gomar F, Picanza A, Lippi G. Red blood cell distribution width: A simple parameter with multiple clinical applications. Crit Rev Clin Lab Sci 2015; 52(2): 86-105.
[http://dx.doi.org/10.3109/10408363.2014.992064] [PMID: 25535770]
[24]
Ani C, Ovbiagele B. Elevated red blood cell distribution width predicts mortality in persons with known stroke. J Neurol Sci 2009; 277(1-2): 103-8.
[http://dx.doi.org/10.1016/j.jns.2008.10.024] [PMID: 19028393]
[25]
Kim DY, Hong DY, Kim SY, et al. Prognostic value of red blood cell distribution width in predicting 3-month functional outcome of patients undergoing thrombolysis treatment for acute ischemic stroke. Medicine 2021; 100(37): e27255.
[http://dx.doi.org/10.1097/MD.0000000000027255] [PMID: 34664873]
[26]
Jia H, Li H, Zhang Y, Li C, Hu Y, Xia C. Association between red blood cell distribution width (RDW) and carotid artery atherosclerosis (CAS) in patients with primary ischemic stroke. Arch Gerontol Geriatr 2015; 61(1): 72-5.
[http://dx.doi.org/10.1016/j.archger.2015.04.005] [PMID: 25957866]
[27]
Söderholm M, Borné Y, Hedblad B, Persson M, Engström G. Red cell distribution width in relation to incidence of stroke and carotid atherosclerosis: A population-based cohort study. PLoS One 2015; 10(5): e0124957.
[http://dx.doi.org/10.1371/journal.pone.0124957] [PMID: 25950717]
[28]
Pinho J, Marques SA, Freitas E, et al. Red cell distribution width as a predictor of 1-year survival in ischemic stroke patients treated with intravenous thrombolysis. Thromb Res 2018; 164: 4-8.
[http://dx.doi.org/10.1016/j.thromres.2018.02.002] [PMID: 29438871]
[29]
Ge Y, Liu C, Rana M, et al. Elevated red blood cell distribution width combined white blood cell in peripheral blood routine have a better sensitivity than CURB-65 scores in predicting ICU admission and mortality in adult community-acquired pneumonia patients. Clin Lab 2019; 65(03/2019)
[http://dx.doi.org/10.7754/Clin.Lab.2018.180828] [PMID: 30868855]
[30]
Malhotra K, Goyal N, Chang JJ, et al. Differential leukocyte counts on admission predict outcomes in patients with acute ischaemic stroke treated with intravenous thrombolysis. Eur J Neurol 2018; 25(12): 1417-24.
[http://dx.doi.org/10.1111/ene.13741] [PMID: 29953701]
[31]
Rocco A, Ringleb PA, Grittner U, Nolte CH, Schneider A, Nagel S. Follow-up C-reactive protein level is more strongly associated with outcome in stroke patients than admission levels. Neurol Sci 2015; 36(12): 2235-41.
[http://dx.doi.org/10.1007/s10072-015-2342-7] [PMID: 26208640]
[32]
Shi J, Peng H, You S, et al. Increase in neutrophils after recombinant tissue plasminogen activator thrombolysis predicts poor functional outcome of ischaemic stroke: A longitudinal study. Eur J Neurol 2018; 25(4): 687-e45.
[http://dx.doi.org/10.1111/ene.13575] [PMID: 29341345]
[33]
Lionte C, Bologa C, Sorodoc V, et al. Biomarkers of Inflammation and inflammation-related indexes upon emergency department admission are predictive for the risk of intensive care unit hospitalization and mortality in acute poisoning: A 6-year prospective observational study. Dis Markers 2021; 2021: 1-13.
[http://dx.doi.org/10.1155/2021/4696156] [PMID: 34457088]
[34]
Elbeyli A, Kurtul BE. Systemic immune-inflammation index, neutrophil-to-lymphocyte ratio, and platelet-to-lymphocyte ratio levels are associated with keratoconus. Indian J Ophthalmol 2021; 69(7): 1725-9.
[http://dx.doi.org/10.4103/ijo.IJO_3011_20] [PMID: 34146015]
[35]
Rondanelli M, Perna S, Alalwan TA, et al. A structural equation model to assess the pathways of body adiposity and inflammation status on dysmetabolic biomarkers via red cell distribution width and mean corpuscular volume: A cross-sectional study in overweight and obese subjects. Lipids Health Dis 2020; 19(1): 154.
[http://dx.doi.org/10.1186/s12944-020-01308-5] [PMID: 32590977]
[36]
Allen LA, Felker GM, Mehra MR, et al. Validation and potential mechanisms of red cell distribution width as a prognostic marker in heart failure. J Card Fail 2010; 16(3): 230-8.
[http://dx.doi.org/10.1016/j.cardfail.2009.11.003] [PMID: 20206898]
[37]
Hansson GK, Robertson AKL, Söderberg-Nauclér C. Inflammation and atherosclerosis. Annu Rev Pathol 2006; 1(1): 297-329.
[http://dx.doi.org/10.1146/annurev.pathol.1.110304.100100] [PMID: 18039117]
[38]
Tatsumi K, Mackman N. Tissue factor and atherothrombosis. J Atheroscler Thromb 2015; 22(6): 543-9.
[http://dx.doi.org/10.5551/jat.30940] [PMID: 26016513]
[39]
Kim J, Kim Y, Song TJ, et al. Red blood cell distribution width is associated with poor clinical outcome in acute cerebral infarction. Thromb Haemost 2012; 108(8): 349-56.
[http://dx.doi.org/10.1160/TH12-03-0165] [PMID: 22739700]
[40]
Kara H, Degirmenci S, Bayir A, et al. Red cell distribution width and neurological scoring systems in acute stroke patients. Neuropsychiatr Dis Treat 2015; 11: 733-9.
[http://dx.doi.org/10.2147/NDT.S81525] [PMID: 25834448]
[41]
Pierce CN, Larson DF. Inflammatory cytokine inhibition of erythropoiesis in patients implanted with a mechanical circulatory assist device. Perfusion 2005; 20(2): 83-90.
[http://dx.doi.org/10.1191/0267659105pf793oa] [PMID: 15918445]
[42]
Ferrucci L, Guralnik JM, Woodman RC, et al. Proinflammatory state and circulating erythropoietin in persons with and without anemia. Am J Med 2005; 118(11): 1288.e11.
[http://dx.doi.org/10.1016/j.amjmed.2005.06.039] [PMID: 16271918]
[43]
Wang Z, Liu Y. Red cell distribution width as a predictor of one-year prognosis and mortality of endovascular therapy for acute anterior circulation ischemic stroke. J Stroke Cerebrovasc Dis 2022; 31(2): 106243.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2021.106243] [PMID: 34896818]
[44]
Shi Y, Guo L, Chen Y, et al. Risk factors for ischemic stroke: Differences between cerebral small vessel and large artery atherosclerosis aetiologies. Folia Neuropathol 2021; 59(4): 378-85.
[http://dx.doi.org/10.5114/fn.2021.112007] [PMID: 35114778]
[45]
Krasteva MP, Müller MD, Pilgram-Pastor SM, Heldner MR. Atherosklerose der intrakraniellen Arterien und der extrakraniellen Karotis. Ther Umsch 2021; 78(6): 277-89.
[http://dx.doi.org/10.1024/0040-5930/a001272] [PMID: 34291662]
[46]
Zöller B, Melander O, Svensson P, Engström G. Red cell distribution width and risk for venous thromboembolism: A population-based cohort study. Thromb Res 2014; 133(3): 334-9.
[http://dx.doi.org/10.1016/j.thromres.2013.12.013] [PMID: 24393657]
[47]
Frantzeskaki F, Armaganidis A, Orfanos SE. Immunothrombosis in acute respiratory distress syndrome: Cross talks between inflammation and coagulation. Respiration 2017; 93(3): 212-25.
[http://dx.doi.org/10.1159/000453002] [PMID: 27997925]
[48]
Zarbock A, Singbartl K, Ley K. Complete reversal of acid-induced acute lung injury by blocking of platelet-neutrophil aggregation. J Clin Invest 2006; 116(12): 3211-9.
[http://dx.doi.org/10.1172/JCI29499] [PMID: 17143330]
[49]
Döring Y, Drechsler M, Wantha S, et al. Lack of neutrophil-derived CRAMP reduces atherosclerosis in mice. Circ Res 2012; 110(8): 1052-6.
[http://dx.doi.org/10.1161/CIRCRESAHA.112.265868] [PMID: 22394519]
[50]
Franck G, Mawson TL, Folco EJ, et al. Roles of PAD4 and NETosis in experimental atherosclerosis and arterial injury. Circ Res 2018; 123(1): 33-42.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.312494] [PMID: 29572206]
[51]
Lee JH, Chung HJ, Kim K, et al. Red cell distribution width as a prognostic marker in patients with community-acquired pneumonia. Am J Emerg Med 2013; 31(1): 72-9.
[http://dx.doi.org/10.1016/j.ajem.2012.06.004] [PMID: 22867824]
[52]
Lee J, Zhu Y, Williams DJ, et al. Red blood cell distribution width and pediatric community-acquired pneumonia disease severity. Hosp Pediatr 2022; 12(9): 798-805.
[http://dx.doi.org/10.1542/hpeds.2022-006539] [PMID: 35922590]
[53]
Gorelik O, Izhakian S, Barchel D, et al. Changes in red cell distribution width during hospitalization for community-acquired pneumonia: Clinical characteristics and prognostic significance. Lung 2016; 194(6): 985-95.
[http://dx.doi.org/10.1007/s00408-016-9942-8] [PMID: 27650510]
[54]
Fluri F, Morgenthaler NG, Mueller B, Christ-Crain M, Katan M. Copeptin, procalcitonin and routine inflammatory markers-predictors of infection after stroke. PLoS One 2012; 7(10): e48309.
[http://dx.doi.org/10.1371/journal.pone.0048309] [PMID: 23118979]
[55]
Warusevitane A, Karunatilake D, Sim J, Smith C, Roffe C. Early diagnosis of pneumonia in severe stroke: Clinical features and the diagnostic role of c-reactive protein. PLoS One 2016; 11(3): e0150269.
[http://dx.doi.org/10.1371/journal.pone.0150269] [PMID: 26937636]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy