Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Review Article

Neurotoxic Effects of Nanoparticles and their Pathogenesis

Author(s): Sunena*, Deepali Tomar and Sunil Jawla

Volume 12, Issue 1, 2024

Published on: 03 August, 2023

Page: [32 - 44] Pages: 13

DOI: 10.2174/2211738511666230602143628

Price: $65

Abstract

A recent study on the deployment of nanoparticles in the consumer and healthcare sectors has shown highly serious safety concerns. This is despite the fact that nanoparticles offer a vast array of applications and great promise. According to studies on how nanoparticles interact with neurons, the central nervous system experiences both negative and positive impacts central nervous system. With a maximum concentration of 0.1-1.0 wt.%, nanoparticles can be incorporated into materials to impart antibacterial and antiviral properties. Depending on the host or base materials utilised, this concentration may be transformed into a liquid phase release rate (leaching rate). For instance, nanoparticulate silver (Ag) or copper oxide (CuO)-filled epoxy resin exhibits extremely restricted release of the metal ions (Ag+ or Cu2+) into their surroundings unless they are physically removed or deteriorated. Nanoparticles are able to traverse a variety of barriers, including the blood-brain barrier (BBB) and skin, and are capable of penetrating biological systems and leaking into internal organs. In these circumstances, it is considered that the maximum drug toxicity test limit (10 g/ml), as measured in artificial cerebrospinal solution, is far lower than the concentration or dosage. As this is a fast-increasing industry, as the public exposure to these substances increases, so does their use. Thus, neurologists are inquisitive about how nanoparticles influence human neuronal cells in the central nervous system (CNS) in terms of both their potential benefits and drawbacks. This study will emphasise and address the significance of nanoparticles in human neuronal cells and how they affect the human brain and its activities

Graphical Abstract

[1]
Malhotra BD, Ali MA. Nanomaterials in biosensors: Fundamentals and applications. In: Malhotra BD, Ali MA, Eds. Nanomaterials for Biosensors. Norwich, UK: William Andrew Publishing 2018; pp. 1-74.
[2]
Saleh TA, Gupta VK. Synthesis, classification, and properties of nanomaterials. In: Saleh TA, Gupta VK, Eds. Nanomaterial and Polymer Membranes. Amsterdam, The Netherlands: Elsevier 2016; pp. 83-133.
[http://dx.doi.org/10.1016/B978-0-12-804703-3.00004-8]
[3]
Zhang C, Xie B, Zou Y, et al. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional biomaterials for cell fate regulation. Adv Drug Deliv Rev 2018; 132: 33-56.
[http://dx.doi.org/10.1016/j.addr.2018.06.020] [PMID: 29964080]
[4]
Sudha PN, Sangeetha K, Vijayalakshmi K, Barhoum A. Nano materials history, classification, unique properties, production and market. In: Barhoum A, Makhlouf ASH, Eds. Emerging Applica tions of Nanoparticles and Architecture Nanostructures Amster dam. The Netherlands: Elsevier 2018; pp. 341-84.
[http://dx.doi.org/10.1016/B978-0-323-51254-1.00012-9]
[5]
Omrani MM, Ansari M, Kiaie N. Therapeutic effect of stem cells and nano-biomaterials on alzheimer’s disease. Biointerface Res Appl Chem 2016; 6: 1814-20.
[6]
Husain Q. Nanosupport bound lipases their stability and applica tions. Biointerface Res Appl Chem 2017; 7: 2194-216.
[7]
Higa AM, Mambrini GP, Hausen M, Strixino FT, Leite FL. Ag nanoparticle-based nano-immunosensor for anti-glutathione s transferase detection. Biointerface Res Appl Chem 2016; 6: 1053-8.
[8]
Faisal N, Kumar K. Polymer and metal nanocomposites in biomed ical applications. Biointerface Res Appl Chem 2017; 7: 2286-94.
[9]
Ealias AM, Saravanakumar MP. A review on the classification, characterisation, synthesis of nanoparticles and their application. Mater Sci Eng 2017; 263: 032019.
[10]
Tawfik AS, Damola TS, Ibrahim GD, Mohammed AA-D. Carbon based nanomaterials for desulfurization: classification, preparation, and evaluation. In: Tawfik AS, Ed. Applying Nanotechnology to the Desulfurization Process in Petroleum Engineering. Hershey, PA, USA: IGI Global 2016; pp. 154-79.
[11]
Strambeanu N, Demetrovici L, Dragos D, Lungu M. Nanoparticles: Definition, classification and general physical properties. In: Lungu M, Neculae A, Bunoiu M, Biris C, Eds. Nanoparticles’ Promises and Risks: Characterization, Manipulation, and Potential Hazards to Humanity and the Environment. New York, NY, USA: Springer 2015; pp. 3-8.
[http://dx.doi.org/10.1007/978-3-319-11728-7_1]
[12]
McNamara K, Tofail SAM. Nanoparticles in biomedical applica tions. Adv Phys X 2017; 2(1): 54-88.
[http://dx.doi.org/10.1080/23746149.2016.1254570]
[13]
Khan HA, Sakharkar MK, Nayak A, Kishore U, Khan A. 14—Nanoparticles for biomedical applications: An overview. In: Nara yan R, Ed Nanobiomaterials. Cambridge, UK: Woodhead Publishing 2018; pp. 357-84.
[http://dx.doi.org/10.1016/B978-0-08-100716-7.00014-3]
[14]
Dong X. Current strategies for brain drug delivery. Theranostics 2018; 8(6): 1481-93.
[http://dx.doi.org/10.7150/thno.21254] [PMID: 29556336]
[15]
Oberdörster G, Elder A, Rinderknecht A. Nanoparticles and the brain: Cause for concern? J Nanosci Nanotechnol 2009; 9(8): 4996-5007.
[http://dx.doi.org/10.1166/jnn.2009.GR02] [PMID: 19928180]
[16]
Bellettato CM, Scarpa M. Possible strategies to cross the blood– brain barrier. Ital J Pediatr 2018; 44(S2) (Suppl. 2): 131.
[http://dx.doi.org/10.1186/s13052-018-0563-0] [PMID: 30442184]
[17]
Hasannejad-Asl B, Pooresmaeil F, Choupani E, et al. Nanoparticles as Powerful Tools for Crossing the Blood-brain Barrier CNS & Neurological Disorders-Drug Targets. Formerly. Curr Drug Targets CNS Neurol Disord 2022.
[18]
Oberdörster G, Sharp Z, Atudorei V, et al. Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 2004; 16(6-7): 437-45.
[http://dx.doi.org/10.1080/08958370490439597] [PMID: 15204759]
[19]
Dukhin SS, Labib ME. Convective diffusion of nanoparticles from the epithelial barrier toward regional lymph nodes. Adv Colloid Interface Sci 2013; 199-200: 23-43.
[http://dx.doi.org/10.1016/j.cis.2013.06.002] [PMID: 23859221]
[20]
Teleanu D, Chircov C, Grumezescu A, Teleanu R. Neurotoxicity of nanomaterials: An up-to-date overview. Nanomaterials 2019; 9(1): 96.
[http://dx.doi.org/10.3390/nano9010096] [PMID: 30642104]
[21]
Cox A, Vinciguerra D, Re F, et al. Protein-functionalized nanopar ticles derived from end-functional polymers and polymer prodrugs for crossing the blood-brain barrier. Eur J Pharm Biopharm 2019; 142(142): 70-82.
[http://dx.doi.org/10.1016/j.ejpb.2019.06.004] [PMID: 31176723]
[22]
Hasannejad-Asl B, Pooresmaeil F, Choupani E, et al. Nanoparticles as Powerful Tools for Crossing the Blood-brain Barrier. CNS Neurol Disord Drug Targets 2023; 22(1): 18-26.
[23]
Banik BL, Fattahi P, Brown JL. Polymeric nanoparticles: The future of nanomedicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2016; 8(2): 271-99.
[http://dx.doi.org/10.1002/wnan.1364] [PMID: 26314803]
[24]
Crucho CIC, Barros MT. Polymeric nanoparticles: A study on the preparation variables and characterization methods. Mater Sci Eng C 2017; 80: 771-84.
[http://dx.doi.org/10.1016/j.msec.2017.06.004] [PMID: 28866227]
[25]
Reynolds JL, Mahato RI. Nanomedicines for the treatment of CNS diseases. J Neuroimmune Pharmacol 2017; 12(1): 1-5.
[http://dx.doi.org/10.1007/s11481-017-9725-x] [PMID: 28150132]
[26]
Hong F, Zhou Y, Ji J, Zhuang J, Sheng L, Wang L. Nano-TiO2 inhibits development of the central nervous system and its mecha nism in offspring mice. J Agric Food Chem 2018; 66(44): 11767-74.
[http://dx.doi.org/10.1021/acs.jafc.8b02952] [PMID: 30269504]
[27]
Boyes WK, van Thriel C. Neurotoxicology of Nanomaterials. Chem Res Toxicol 2020; 33(5): 1121-44.
[http://dx.doi.org/10.1021/acs.chemrestox.0c00050] [PMID: 32233399]
[28]
Ziemińska E, Stafiej A, Strużyńska L. The role of the glutamatergic NMDA receptor in nanosilver-evoked neurotoxicity in primary cul tures of cerebellar granule cells. Toxicology 2014; 315(1): 38-48.
[http://dx.doi.org/10.1016/j.tox.2013.11.008] [PMID: 24291493]
[29]
Liu Z, Ren G, Zhang T, Yang Z. Action potential changes associat ed with the inhibitory effects on voltage-gated sodium current of hippocampal CA1 neurons by silver nanoparticles. Toxicology 2009; 264(3): 179-84.
[http://dx.doi.org/10.1016/j.tox.2009.08.005] [PMID: 19683029]
[30]
Long TC, Tajuba J, Sama P, et al. Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro. Environ Health Perspect 2007; 115(11): 1631-7.
[http://dx.doi.org/10.1289/ehp.10216] [PMID: 18007996]
[31]
Hadrup N, Loeschner K, Mortensen A, et al. The similar neurotox ic effects of nanoparticulate and ionic silver in vivo and in vitro. Neurotoxicology 2012; 33(3): 416-23.
[http://dx.doi.org/10.1016/j.neuro.2012.04.008] [PMID: 22531227]
[32]
Xu L, Dan M, Shao A, et al. Silver nanoparticles induce tight junc tion disruption and astrocyte neurotoxicity in a rat blood-brain bar rier primary triple coculture model. Int J Nanomedicine 2015; 10: 6105-18.
[PMID: 26491287]
[33]
Feng X, Chen L, Guo W, et al. Graphene oxide induces p62/SQSTM-dependent apoptosis through the impairment of au tophagic flux and lysosomal dysfunction in PC12 cells. Acta Biomater 2018; 81: 278-92.
[http://dx.doi.org/10.1016/j.actbio.2018.09.057] [PMID: 30273743]
[34]
Liu Y, Li J, Xu K, et al. Characterization of superparamagnetic iron oxide nanoparticle-induced apoptosis in PC12 cells and mouse hippocampus and striatum. Toxicol Lett 2018; 292: 151-61.
[http://dx.doi.org/10.1016/j.toxlet.2018.04.033] [PMID: 29715513]
[35]
Coccini T, Grandi S, Lonati D, Locatelli C, De Simone U. Com parative cellular toxicity of titanium dioxide nanoparticles on hu man astrocyte and neuronal cells after acute and prolonged exposure. Neurotoxicology 2015; 48: 77-89.
[http://dx.doi.org/10.1016/j.neuro.2015.03.006] [PMID: 25783503]
[36]
Oh E, Liu R, Nel A, et al. Meta-analysis of cellular toxicity for cadmium-containing quantum dots. Nat Nanotechnol 2016; May; 11(5): 479-86.
[37]
Zheng X, Zhang C, Guo Q, et al. Dual-functional nanoparticles for precise drug delivery to Alzheimer’s disease lesions: Targeting mechanisms, pharmacodynamics and safety. Int J Pharm 2017; 525(1): 237-48.
[http://dx.doi.org/10.1016/j.ijpharm.2017.04.033] [PMID: 28432017]
[38]
Deng H, Wang P, Jankovic J. The genetics of Parkinson disease. Ageing Res Rev 2018; 42: 72-85.
[http://dx.doi.org/10.1016/j.arr.2017.12.007] [PMID: 29288112]
[39]
Pan Y, Neuss S, Leifert A, et al. Jahnen‐Dechent W. Size‐dependent cytotoxicity of gold nanoparticles. Small 2007; Nov 5; 3(11): 1941-9.
[40]
Sridhar V, Gaud R, Bajaj A, Wairkar S. Pharmacokinetics and pharmacodynamics of intranasally administered selegiline nanopar ticles with improved brain delivery in Parkinson’s disease. Nanomedicine 2018; 14(8): 2609-18.
[http://dx.doi.org/10.1016/j.nano.2018.08.004] [PMID: 30171904]
[41]
Raj R, Wairkar S, Sridhar V, Gaud R. Pramipexole dihydrochloride loaded chitosan nanoparticles for nose to brain delivery: Develop ment, characterization and in vivo anti-Parkinson activity. Int J Biol Macromol 2018; 109: 27-35.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.056] [PMID: 29247729]
[42]
Motyl J. Przykaza Ł Boguszewski PM, Kosson P, Strosznajder JB. Pramipexole and Fingolimod exert neuroprotection in a mouse model of Parkinson’s disease by activation of sphingosine kinase 1 and Akt kinase. Neuropharmacology 2018; 135: 139-50.
[http://dx.doi.org/10.1016/j.neuropharm.2018.02.023] [PMID: 29481916]
[43]
Hegazy MA, Maklad HM, Samy DM, Abdelmonsif DA, El Sabaa BM, Elnozahy FY. Cerium oxide nanoparticles could ameliorate behavioral and neurochemical impairments in 6-hydroxydopamine induced Parkinson’s disease in rats. Neurochem Int 2017; 108: 361-71.
[http://dx.doi.org/10.1016/j.neuint.2017.05.011] [PMID: 28527632]
[44]
Talamini L, Violatto MB, Cai Q, et al. Influence of size and shape on the anatomical distribution of endotoxin-free gold nanoparticles. ACS Nano 2017 May 30; 11(6): 5519-29.
[45]
Saraiva C, Paiva J, Santos T, Ferreira L, Bernardino L. MicroRNA 124 loaded nanoparticles enhance brain repair in Parkinson’s dis ease. J Control Release 2016; 235: 291-305.
[http://dx.doi.org/10.1016/j.jconrel.2016.06.005] [PMID: 27269730]
[46]
Zhou Z, Lu J, Liu WW, et al. Advances in stroke pharmacology. Pharmacol Ther 2018; 191: 23-42.
[http://dx.doi.org/10.1016/j.pharmthera.2018.05.012] [PMID: 29807056]
[47]
Barthels D, Das H. Current advances in ischemic stroke research and therapies. Biochim Biophys Acta Mol Basis Dis 2020; 1866(4): 165260.
[48]
Sarmah D, Saraf J, Kaur H, et al. Stroke management: An emerg ing role of nanotechnology. Micromachines 2017; 8(9): 262.
[http://dx.doi.org/10.3390/mi8090262] [PMID: 30400452]
[49]
Chen L, Gao X. The application of nanoparticles for neuroprotec tion in acute ischemic stroke. Ther Deliv 2017; 8(10): 915-28.
[http://dx.doi.org/10.4155/tde-2017-0023] [PMID: 28944741]
[50]
Han L, Cai Q, Tian D, et al. Targeted drug delivery to ischemic stroke via chlorotoxin-anchored, lexiscan-loaded nanoparticles. Nanomedicine 2016; 12(7): 1833-42.
[http://dx.doi.org/10.1016/j.nano.2016.03.005] [PMID: 27039220]
[51]
Wang C, Lin G, Luan Y, et al. Hif-proly l hydroxylase 2 silencing using sirna delivered by mri-visible nanoparticles improves therapy efficacy of transplanted epcs for ischemic stroke. Biomaterials 2019; 197: 229-43.
[52]
Yildirimer L, Thanh NTK, Loizidou M, Seifalian AM. Toxicology and clinical potential of nanoparticles. Nano Today 2011; 6(6): 585-607.
[http://dx.doi.org/10.1016/j.nantod.2011.10.001] [PMID: 23293661]
[53]
Gatoo MA, Naseem S, Arfat MY, Mahmood Dar A, Qasim K, Zubair S. Physicochemical properties of nanomaterials: Implication in associated toxic manifestations. BioMed Res Int 2014; 2014: 1-8.
[http://dx.doi.org/10.1155/2014/498420] [PMID: 25165707]
[54]
Shin S, Song I, Um S. Role of physicochemical properties in nano particle toxicity. Nanomaterials 2015; 5(3): 1351-65.
[http://dx.doi.org/10.3390/nano5031351] [PMID: 28347068]
[55]
Hu W, Peng C, Lv M, et al. Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano 2011 May 24; 5(5): 3693-700.
[56]
Hobson DW, Guy RC. Nanotoxicology. In: Wexler P, Ed. Ency clopedia of Toxicology. (3rd ed.). Oxford, UK: Academic Press 2014; pp. 434-6.
[http://dx.doi.org/10.1016/B978-0-12-386454-3.01045-9]
[57]
Viswanath B, Kim S. Influence of nanotoxicity on human health and environment: The alternative strategies. Rev Environ Contam Toxicol 2017; 242: 61-104.
[PMID: 27718008]
[58]
Ai J, Biazar E, Jafarpour M, et al. Nanotoxicology and nanoparticle safety in biomedical designs. Int J Nanomedicine 2011; 6: 1117-27.
[PMID: 21698080]
[59]
Aillon KL, Xie Y, El-Gendy N, Berkland CJ, Forrest ML. Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv Drug Deliv Rev 2009; 61(6): 457-66.
[http://dx.doi.org/10.1016/j.addr.2009.03.010] [PMID: 19386275]
[60]
Zhang XQ, Xu X, Bertrand N, Pridgen E, Swami A, Farokhzad OC. Interactions of nanomaterials and biological systems: Implica tions to personalized nanomedicine. Adv Drug Deliv Rev 2012; 64(13): 1363-84.
[http://dx.doi.org/10.1016/j.addr.2012.08.005] [PMID: 22917779]
[61]
Shvedova A, Pietroiusti A, Kagan V. Nanotoxicology ten years later: Lights and shadows. Toxicol Appl Pharmacol 2016; 299: 1-2.
[http://dx.doi.org/10.1016/j.taap.2016.02.014] [PMID: 26908175]
[62]
Shang L, Nienhaus K, Nienhaus GU. Engineered nanoparticles interacting with cells: size matters. J Nanobiotechnology 2014; 12(1): 5.
[http://dx.doi.org/10.1186/1477-3155-12-5] [PMID: 24491160]
[63]
Singh AK. Introduction to nanoparticles and nanotoxicology. In: Singh AK, Ed Engineered Nanoparticles. Boston, MA, USA: Aca demic Press 2016; pp. 1-18.
[http://dx.doi.org/10.1016/B978-0-12-801406-6.00001-7]
[64]
Li J, Martin FL. Current perspective on nanomaterial-induced adverse effects: Neurotoxicity as a case example. In: Jiang X, Gao H, Eds. Neurotoxicity of Nanomaterials and Nanomedicine Cam bridge. MA, USA: Academic Press 2017; pp. 75-98.
[http://dx.doi.org/10.1016/B978-0-12-804598-5.00004-0]
[65]
Gao H, Jiang X. Introduction and overview. In: Jiang X, Gao H, Eds. Neurotoxicity of Nanomaterials and Nanomedicine Cam bridge. MA, USA: Academic Press 2017.
[http://dx.doi.org/10.1016/B978-0-12-804598-5.02001-8]
[66]
Lovisolo D, Dionisi M, Ruffinatti FA, Distasi C. Nanoparticles and potential neurotoxicity: Focus on molecular mechanisms. AIMS Mol Sci 2017; 5: 1-13.
[http://dx.doi.org/10.3934/molsci.2018.1.1]
[67]
Jiang X, Gao H. Preface. In: Jiang X, Gao H, Eds. Neurotoxicity of Nanomaterials and Nanomedicine. Cambridge, MA, USA: Aca demic Press 2017.
[http://dx.doi.org/10.1016/B978-0-12-804598-5.05001-7]
[68]
Song B, Zhang Y, Liu J, Feng X, Zhou T, Shao L. Unraveling the neurotoxicity of titanium dioxide nanoparticles: Farticleocusing on molecular mechanisms. Beilstein J Nanotechnol 2016; 7: 645-54.
[http://dx.doi.org/10.3762/bjnano.7.57] [PMID: 27335754]
[69]
Jia X, Wang S, Zhou L, Sun L. The potential liver, brain, and em bryo toxicity of titanium dioxide nanoparticles on mice. Nanoscale Res Lett 2017; 12(1): 478.
[http://dx.doi.org/10.1186/s11671-017-2242-2] [PMID: 28774157]
[70]
Karmakar A, Zhang Q, Zhang Y. Neurotoxicity of nanoscale mate rials. Yao Wu Shi Pin Fen Xi 2014; 22(1): 147-60.
[PMID: 24673911]
[71]
Valdiglesias V, Fernández-Bertólez N, Kiliç G, et al. Are iron oxide nanoparticles safe? Current knowledge and future perspec tives. J Trace Elem Med Biol 2016; 38: 53-63.
[http://dx.doi.org/10.1016/j.jtemb.2016.03.017] [PMID: 27056797]
[72]
Ahmed MM, Hussein MMA. Neurotoxic effects of silver nanopar ticles and the protective role of rutin. Biomed Pharmacother 2017; 90: 731-9.
[http://dx.doi.org/10.1016/j.biopha.2017.04.026] [PMID: 28419969]
[73]
Xu P, Van Kirk EA, Zhan Y, Murdoch WJ, Radosz M, Shen Y. Targeted charge-reversal nanoparticles for nuclear drug delivery. Angew Chem Int Ed 2007; 46(26): 4999-5002.
[http://dx.doi.org/10.1002/anie.200605254]
[74]
Flora SJS. The applications, neurotoxicity, and related mechanism of gold nanoparticles. In: Jiang X, Gao H, Eds. Neurotoxicity of Nanomaterials and Nanomedicine. Cambridge, MA, USA: Academic Press 2017; pp. 179-203.
[http://dx.doi.org/10.1016/B978-0-12-804598-5.00008-8]
[75]
Zhou M, Xie L, Fang CJ, et al. Implications for blood-brain-barrier permeability, in vitro oxidative stress and neurotoxicity potential induced by mesoporous silica nanoparticles: Effects of surface modification. RSC Advances 2016; 6(4): 2800-9.
[http://dx.doi.org/10.1039/C5RA17517H]
[76]
You R, Ho YS, Hung CHL, et al. Silica nanoparticles induce neu rodegeneration-like changes in behavior, neuropathology, and af fect synapse through MAPK activation. Part Fibre Toxicol 2018; 15(1): 28.
[http://dx.doi.org/10.1186/s12989-018-0263-3] [PMID: 29970116]
[77]
Distasi C, Ruffinatti FA, Dionisi M, et al. SiO2 nanoparticles mod ulate the electrical activity of neuroendocrine cells without exerting genomic effects. Sci Rep 2018; 8(1): 2760.
[http://dx.doi.org/10.1038/s41598-018-21157-8] [PMID: 29426889]
[78]
Shi D, Mi G, Webster TJ. The synthesis, application, and related neurotoxicity of carbon nanotubes. In: Jiang X, Gao H, Eds. Neuro toxicity of Nanomaterials and Nanomedicine. Cambridge, MA, USA: Academic Press 2017; pp. 259-84.
[http://dx.doi.org/10.1016/B978-0-12-804598-5.00011-8]
[79]
Kulkarni M, Mazare A, Gongadze E, et al. Titanium nanostructures for biomedical applications. Nanotechnology 2015; 26(6): 062002.
[http://dx.doi.org/10.1088/0957-4484/26/6/062002] [PMID: 25611515]
[80]
Walters MNI, Papadimitriou JM, Spector WG. Phagocytosis: A review. CRC Crit Rev Toxicol 1978; 5(4): 377-421.
[http://dx.doi.org/10.3109/10408447809081012] [PMID: 210992]
[81]
Mossman BT, Churg A. Mechanisms in the pathogenesis of asbes tosis and silicosis. Am J Respir Crit Care Med 1998; 157(5): 1666-80.
[http://dx.doi.org/10.1164/ajrccm.157.5.9707141] [PMID: 9603153]
[82]
Rimal B, Greenberg AK, Rom WN. Basic pathogenetic mecha nisms in silicosis: Current understanding. Curr Opin Pulm Med 2005; 11(2): 169-73.
[http://dx.doi.org/10.1097/01.mcp.0000152998.11335.24] [PMID: 15699791]
[83]
Voigt N, Henrich-Noack P, Kockentiedt S, Hintz W, Tomas J, Sabel BA. Toxicity of polymeric nanoparticles in vivo and in vitro. J Nanopart Res 2014; 16(6): 2379.
[http://dx.doi.org/10.1007/s11051-014-2379-1] [PMID: 2642098]
[84]
Neves AR, Queiroz JF, Lima SAC, Reis S. Apo E-functionalization of solid lipid nanoparticles enhances brain drug delivery: Uptake mechanism and transport pathways. Bioconjug Chem 2017; 28(4): 995-1004.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00705] [PMID: 28355061]
[85]
Mendonça MCP, Soares ES, de Jesus MB, et al. Reduced graphene oxide induces transient blood–brain barrier opening: An in vivo study. J Nanobiotechnology 2015; 13(1): 78.
[http://dx.doi.org/10.1186/s12951-015-0143-z] [PMID: 26518450]
[86]
Liu X, Sui B, Sun J. Blood-brain barrier dysfunction induced by silica NPs in vitro and in vivo: Involvement of oxidative stress and Rho-kinase/JNK signaling pathways. Biomaterials 2017; 121: 64-82.
[http://dx.doi.org/10.1016/j.biomaterials.2017.01.006] [PMID: 28081460]
[87]
Kafa H, Wang JTW, Rubio N, et al. Translocation of LRP1 target ed carbon nanotubes of different diameters across the blood–brain barrier in vitro and in vivo. J Control Release 2016; 225: 217-29.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.031] [PMID: 26809004]
[88]
Lu W, Sun Q, Wan J, She Z, Jiang XG. Cationic albumin conjugated pegylated nanoparticles allow gene delivery into brain tumors via intravenous administration. Cancer Res 2006; 66(24): 11878-87.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2354] [PMID: 17178885]
[89]
Huang R, Ke W, Han L, et al. Brain-targeting mechanisms of lac toferrin-modified DNA-loaded nanoparticles. J Cereb Blood Flow Metab 2009; 29(12): 1914-23.
[http://dx.doi.org/10.1038/jcbfm.2009.104] [PMID: 19654588]
[90]
Sousa de Almeida M, Susnik E, Drasler B, Taladriz-Blanco P, Petri-Fink A, Rothen-Rutishauser B. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem Soc Rev 2021; 50(9): 5397-434.
[http://dx.doi.org/10.1039/D0CS01127D] [PMID: 33666625]
[91]
Swanson JA, Watts C. Macropinocytosis. Trends Cell Biol 1995; 5(11): 424-8.
[http://dx.doi.org/10.1016/S0962-8924(00)89101-1] [PMID: 14732047]
[92]
Reifarth M, Hoeppener S, Schubert US. Uptake and intracellular fate of engineered nanoparticles in mammalian cells: Capabilities and limitations of transmission electron microscopy-polymer-based nanoparticles. Adv Mater 2018; 30(9): 1703704.
[http://dx.doi.org/10.1002/adma.201703704] [PMID: 29325211]
[93]
dos Santos T, Varela J, Lynch I, Salvati A, Dawson KA. Effects of transport inhibitors on the cellular uptake of carboxylated polysty rene nanoparticles in different cell lines. PLoS One 2011; 6(9): e24438.
[http://dx.doi.org/10.1371/journal.pone.0024438] [PMID: 21949717]
[94]
Kuhn DA, Vanhecke D, Michen B, et al. Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macro phages. Beilstein J Nanotechnol 2014; 5: 1625-36.
[http://dx.doi.org/10.3762/bjnano.5.174] [PMID: 25383275]
[95]
Iversen TG, Skotland T, Sandvig K. Endocytosis and intracellular transport of nanoparticles: Present knowledge and need for future studies. Nano Today 2011; 6(2): 176-85.
[http://dx.doi.org/10.1016/j.nantod.2011.02.003]
[96]
Voigt J, Christensen J, Shastri VP. Differential uptake of nanopar ticles by endothelial cells through polyelectrolytes with affinity for caveolae. Proc Natl Acad Sci USA 2014; 111(8): 2942-7.
[http://dx.doi.org/10.1073/pnas.1322356111] [PMID: 24516167]
[97]
Mayor S, Parton RG, Donaldson JG. Clathrin-independent path ways of endocytosis. Cold Spring Harb Perspect Biol 2014; 6(6): a016758.
[http://dx.doi.org/10.1101/cshperspect.a016758] [PMID: 24890511]
[98]
Czajka M, Sawicki K, Sikorska K, Popek S, Kruszewski M. Kap ka-Skrzypczak L. Toxicity of titanium dioxide nanoparticles in central nervous system. Toxicol In Vitro 2015; 29(5): 1042-52.
[http://dx.doi.org/10.1016/j.tiv.2015.04.004] [PMID: 25900359]
[99]
Rosales C, Uribe-Querol E. Phagocytosis: A fundamental process in immunity. BioMed Res Int 2017; 2017: 1-18.
[http://dx.doi.org/10.1155/2017/9042851] [PMID: 28691037]
[100]
Simkó M, Mattsson MO. Risks from accidental exposures to engi neered nanoparticles and neurological health effects: A critical re view. Part Fibre Toxicol 2010; 7(1): 42.
[http://dx.doi.org/10.1186/1743-8977-7-42] [PMID: 21176150]
[101]
Bai R, Zhang L, Liu Y, et al. Integrated analytical techniques with high sensitivity for studying brain translocation and potential im pairment induced by intranasally instilled Archives of Toxicology 1 3 copper nanoparticles. Toxicol Lett 2014; 226: 70-80.
[http://dx.doi.org/10.1016/j.toxlet.2014.01.041] [PMID: 24503010]
[102]
Liang H, Chen A, Lai X, et al. Neuroinflammation is induced by tongue-instilled ZnO nanoparticles via the Ca2+-dependent NF-κB and MAPK pathways. Part Fibre Toxicol 2018; 15(1): 39.
[http://dx.doi.org/10.1186/s12989-018-0274-0] [PMID: 30340606]
[103]
Chen L, Yokel RA, Hennig B, Toborek M. Manufactured alumi num oxide nanoparticles decrease expression of tight junction pro teins in brain vasculature. J Neuroimmune Pharmacol 2008; 3(4): 286-95.
[http://dx.doi.org/10.1007/s11481-008-9131-5] [PMID: 18830698]
[104]
Takács S, Szabó A, Oszlánczi G, et al. Repeated simultaneous cortical electrophysiological and behavioral recording in rats ex posed to manganese-containing nanoparticles. Acta Biol Hung 2012; 63(4): 426-40.
[http://dx.doi.org/10.1556/ABiol.63.2012.4.2] [PMID: 23134600]
[105]
Sárközi L, Horváth E, Kónya Z, et al. Subacute intratracheal expo sure of rats to manganese nanoparticles: Behavioral, electrophysio logical, and general toxicological effects. Inhal Toxicol 2009; 21 (Suppl. 1): 83-91.
[http://dx.doi.org/10.1080/08958370902939406] [PMID: 19558238]
[106]
Oszlánczi G, Vezér T, Sárközi L, Horváth E, Kónya Z, Papp A. Functional neurotoxicity of Mn-containing nanoparticles in rats. Ecotoxicol Environ Saf 2010; 73(8): 2004-9.
[http://dx.doi.org/10.1016/j.ecoenv.2010.09.002] [PMID: 20863568]
[107]
Sonavane G, Tomoda K, Makino K. Biodistribution of colloidal gold nanoparticles after intravenous administration: Effect of parti cle size. Colloids Surf B Biointerfaces 2008; 66(2): 274-80.
[http://dx.doi.org/10.1016/j.colsurfb.2008.07.004] [PMID: 18722754]
[108]
Lasagna-Reeves C, Gonzalez-Romero D, Barria MA, et al. Bioac cumulation and toxicity of gold nanoparticles after repeated admin istration in mice. Biochem Biophys Res Commun 2010; 393(4): 649-55.
[http://dx.doi.org/10.1016/j.bbrc.2010.02.046] [PMID: 20153731]
[109]
Kakkar V, Kaur IP. Evaluating potential of curcumin loaded solid lipid nanoparticles in aluminium induced behavioural, biochemical and histopathological alterations in mice brain. Food Chem Toxicol 2011; 49(11): 2906-13.
[http://dx.doi.org/10.1016/j.fct.2011.08.006] [PMID: 21889563]
[110]
Kruszewski M, Brzoska K, Brunborg G, et al. Toxicity of silver nanomaterials in higher eukaryotes. Advances in molecular toxi cology 2011; 5: 179-218.
[http://dx.doi.org/10.1016/B978-0-444-53864-2.00005-0]
[111]
An L, Liu S, Yang Z, Zhang T. Cognitive impairment in rats in duced by nano-CuO and its possible mechanisms. Toxicol Lett 2012; 213(2): 220-7.
[http://dx.doi.org/10.1016/j.toxlet.2012.07.007] [PMID: 22820425]
[112]
Li Y, Li J, Yin J, et al. Systematic influence induced by 3 nm tita nium dioxide following intratracheal instillation of mice. J Nanosci Nanotechnol 2010; 10(12): 8544-9.
[http://dx.doi.org/10.1166/jnn.2010.2690] [PMID: 21121364]
[113]
Hussain SM, Javorina AK, Schrand AM, Duhart HM, Ali SF, Schlager JJ. The interaction of manganese nanoparticles with PC 12 cells induces dopamine depletion. Toxicol Sci 2006; 92(2): 456-63.
[http://dx.doi.org/10.1093/toxsci/kfl020] [PMID: 16714391]
[114]
Liu Z, Liu S, Ren G, Zhang T, Yang Z. Nano-CuO inhibited volt age-gated sodium current of hippocampal CA1 neurons via reactive oxygen species but independent from G-proteins pathway. J Appl Toxicol 2011; 31(5): 439-45.
[http://dx.doi.org/10.1002/jat.1611] [PMID: 21218498]
[115]
Gitler AD, Chesi A, Geddie ML, et al. α-Synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity. Nat Genet 2009; 41(3): 308-15.
[http://dx.doi.org/10.1038/ng.300] [PMID: 19182805]
[116]
Ze Y, Hu R, Wang X, et al. Neurotoxicity and gene-expressed profile in brain-injured mice caused by exposure to titanium diox ide nanoparticles. J Biomed Mater Res A 2014; 102(2): 470-8.
[http://dx.doi.org/10.1002/jbm.a.34705] [PMID: 23533084]
[117]
Miao W, Zhu B, Xiao X, et al. Effects of titanium dioxide nanopar ticles on lead bioconcentration and toxicity on thyroid endocrine system and neuronal development in zebrafish larvae. Aquat Toxicol 2015; 161: 117-26.
[http://dx.doi.org/10.1016/j.aquatox.2015.02.002] [PMID: 25703175]
[118]
Tin-Tin-Win-Shwe. Yamamoto S, Ahmed S, Kakeyama M, Koba yashi T, Fujimaki H. Brain cytokine and chemokine mRNA ex pression in mice induced by intranasal instillation with ultrafine carbon black. Toxicol Lett 2006; 163(2): 153-60.
[http://dx.doi.org/10.1016/j.toxlet.2005.10.006] [PMID: 16293374]
[119]
Kircher MF, Mahmood U, King RS, Weissleder R, Josephson L. A multimodal nanoparticle for preoperative magnetic resonance im aging and intraoperative optical brain tumor delineation. Cancer Res 2003; 63(23): 8122-5.
[PMID: 14678964]
[120]
de Oliveira GMT, Kist LW, Pereira TCB, et al. Transient modula tion of acetylcholinesterase activity caused by exposure to dextran coated iron oxide nanoparticles in brain of adult zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2014; 162(1): 77-84.
[http://dx.doi.org/10.1016/j.cbpc.2014.03.010] [PMID: 24704546]
[121]
Faiola F, Jiang G, Zho Q, Yao X, Yin N. Vitamin E attenuates silver nanoparticle-induced effects on body weight and neurotoxici ty in rats. Biochem Bio hys Res Commun 2015; 458: 405-10.
[122]
Davenport LL, Hsieh H, Eppert BL, et al. Systemic and behavioral effects of intranasal administration of silver nanoparticles. Neurotoxicol Teratol 2015; 51: 68-76.
[http://dx.doi.org/10.1016/j.ntt.2015.08.006] [PMID: 26340819]
[123]
Zhao X, Ren X, Zhu R, Luo Z, Ren B. Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in zebrafish embryos. Aquat Toxicol 2016; 180: 56-70.
[http://dx.doi.org/10.1016/j.aquatox.2016.09.013] [PMID: 27658222]
[124]
Liu H, Zhao W, Wang X, et al. Neurotoxicity and brain localiza tion of europium doped Gd2O3 nanotubes in rats after intranasal instillation. J Rare Earths 2017; 2017: 1-7.
[125]
Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 1995; 146(1): 3-15.
[PMID: 7856735]
[126]
Dröge W. Free radicals in the physiological control of cell function. Physiol Rev 2002; 82(1): 47-95.
[http://dx.doi.org/10.1152/physrev.00018.2001] [PMID: 11773609]
[127]
Yin N, Liu Q, Liu J, et al. Silver nanoparticle exposure attenuates the viability of rat cerebellum granule cells through apoptosis cou pled to oxidative stress. Small 2013; 9(9-10): 1831-41.
[http://dx.doi.org/10.1002/smll.201202732] [PMID: 23427069]
[128]
Lazzari G, Vinciguerra D, Balasso A, et al. Light sheet fluorescence microscopy versus confocal microscopy: In quest of a suitable tool to assess drug and nanomedicine penetration into multicellular tumor spheroids. European Journal of Pharmaceutics and Biopharmaceutics 2019 Sep 1; 142: 195-203.
[129]
Chu S, Li X, Sun N, et al. The combination of ultrafine carbon black and lead provokes cytotoxicity and apoptosis in mice lung fibroblasts through oxidative stress-activated mitochondrial pathways. Science of The Total Environment 2021 Dec 10; 799: 149420.
[130]
Teleanu RI, Chircov C, Grumezescu AM, Teleanu DM. Tumor angiogenesis and anti-angiogenic strategies for cancer treatment. Journal of clinical medicine 2019; Dec 29; 9(1): 84.
[131]
Yang B, Mao X, Hong F, et al. Lead-free direct band gap double-perovskite nanocrystals with bright dual-color emission. Journal of the American Chemical Society 2018; Nov 19; 140(49): 17001-6.
[132]
Pfaender S, Mar KB, Michailidis E, et al. LY6E impairs coronavirus fusion and confers immune control of viral disease. Nature microbiology 2020 Nov; 5(11): 1330-9.
[133]
Chen YL, Analytis JG, Chu JH, et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3. science 2009; Jul 10;325(5937): 178-81.
[134]
Hadrup N, Loeschner K, Bergström A, et al. Subacute oral toxicity investigation of nanoparticulate and ionic silver in rats. Archives of toxicology 2012 Apr; 86: 543-51.
[135]
Chen Z, Yin JJ, Zhou YT, et al. Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxi city. ACS Nano 2012; 6(5): 4001-12.
[http://dx.doi.org/10.1021/nn300291r] [PMID: 22533614]
[136]
Long TC, Saleh N, Tilton RD, Lowry GV, Veronesi B. Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): Implications for nanoparticle neurotoxicity. Environ Sci Technol 2006; 40(14): 4346-52.
[http://dx.doi.org/10.1021/es060589n] [PMID: 16903269]
[137]
Phenrat T, Long TC, Lowry GV, Veronesi B. Partial oxidation (“aging”) and surface modification decrease the toxicity of na nosized zerovalent iron. Environ Sci Technol 2009; 43(1): 195-200.
[http://dx.doi.org/10.1021/es801955n] [PMID: 19209606]
[138]
Geppert M, Hohnholt MC, Nürnberger S, Dringen R. Ferritin up regulation and transient ROS production in cultured brain astro cytes after loading with iron oxide nanoparticles. Acta Biomater 2012; 8(10): 3832-9.
[http://dx.doi.org/10.1016/j.actbio.2012.06.029] [PMID: 22750736]
[139]
Ren C, Hu X, Zhou Q. Graphene oxide quantum dots reduce oxida tive stress and inhibit neurotoxicity in vitro and in vivo through cat alase-like activity and metabolic regulation. Adv Sci 2018; 5(5): 1700595.
[http://dx.doi.org/10.1002/advs.201700595] [PMID: 29876205]
[140]
Stern ST, Adiseshaiah PP, Crist RM. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Part Fibre Toxicol 2012; 9(1): 20.
[http://dx.doi.org/10.1186/1743-8977-9-20] [PMID: 22697169]
[141]
Yang M, Zhang M, Tahara Y, et al. Lysosomal membrane permea bilization: Carbon nanohorn-induced reactive oxygen species gen eration and toxicity by this neglected mechanism. Toxicol Appl Pharmacol 2014; 280(1): 117-26.
[http://dx.doi.org/10.1016/j.taap.2014.07.022] [PMID: 25110057]
[142]
Pongrac IM. Pavičić I, Milić M, et al. Oxidative stress response in neural stem cells exposed to different superparamagnetic iron oxide nanoparticles. Int J Nanomedicine 2016; 11: 1701-15.
[PMID: 27217748]
[143]
Wu T, Tang M. The inflammatory response to silver and titanium dioxide nanoparticles in the central nervous system. Nanomedicine 2018; 13(2): 233-49.
[http://dx.doi.org/10.2217/nnm-2017-0270] [PMID: 29199887]
[144]
Sun C, Yin N, Wen R, et al. Silver nanoparticles induced neurotox icity through oxidative stress in rat cerebral astrocytes is distinct from the effects of silver ions. Neurotoxicology 2016; 52: 210-21.
[http://dx.doi.org/10.1016/j.neuro.2015.09.007] [PMID: 26702581]
[145]
Skalska J. Dąbrowska-Bouta B, Strużyńska L. Oxidative stress in rat brain but not in liver following oral administration of a low dose of nanoparticulate silver. Food Chem Toxicol 2016; 97: 307-15.
[http://dx.doi.org/10.1016/j.fct.2016.09.026] [PMID: 27658324]
[146]
Attia H, Nounou H, Shalaby M. Zinc oxide nanoparticles induced oxidative DNA damage, inflammation and apoptosis in rat’s brain after oral exposure. Toxics 2018; 6(2): 29.
[http://dx.doi.org/10.3390/toxics6020029] [PMID: 29861430]
[147]
Biran R, Martin DC, Tresco PA. Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microe lectrode arrays. Exp Neurol 2005; 195(1): 115-26.
[http://dx.doi.org/10.1016/j.expneurol.2005.04.020] [PMID: 16045910]
[148]
Ge D, Du Q, Ran B, et al. The neurotoxicity induced by engineered nanomaterials. Int J Nanomedicine 2019; 14: 4167-86.
[http://dx.doi.org/10.2147/IJN.S203352] [PMID: 31239675]
[149]
Li X, Zheng H, Zhang Z, et al. Glia activation induced by peripher al administration of aluminum oxide nanoparticles in rat brains. Nanomedicine 2009; 5(4): 473-9.
[http://dx.doi.org/10.1016/j.nano.2009.01.013] [PMID: 19523415]
[150]
Stansley B, Post J, Hensley K. A comparative review of cell culture systems for the study of microglial biology in Alzheimer’s disease. J Neuroinflammation 2012; 9(1): 115.
[http://dx.doi.org/10.1186/1742-2094-9-115] [PMID: 22651808]
[151]
Knudsen KB, Northeved H, Ek PK, et al. Differential toxicological response to positively and negatively charged nanoparticles in the rat brain. Nanotoxicology 2014; 8(7): 764-74.
[PMID: 23889261]
[152]
Chen IC, Hsiao IL, Lin HC, Wu CH, Chuang CY, Huang YJ. Influ ence of silver and titanium dioxide nanoparticles on in vitro blood brain barrier permeability. Environ Toxicol Pharmacol 2016; 47: 108-18.
[http://dx.doi.org/10.1016/j.etap.2016.09.009] [PMID: 27664952]
[153]
Xia T, Li N, Nel AE. Potential health impact of nanoparticles. Annu Rev Public Health 2009; 30(1): 137-50.
[http://dx.doi.org/10.1146/annurev.publhealth.031308.100155 ] [PMID: 19705557]
[154]
Landsiedel R, Kapp MD, Schulz M, Wiench K, Oesch F. Genotox icity investigations on nanomaterials: Methods, preparation and characterization of test material, potential artifacts and limita tions—Many questions, some answers. Mutat Res Rev Mutat Res 2009; 681(2-3): 241-58.
[http://dx.doi.org/10.1016/j.mrrev.2008.10.002] [PMID: 19041420]
[155]
Feng X, Chen A, Zhang Y, Wang J, Shao L, Wei L. Central nerv ous system toxicity of metallic nanoparticles. Int J Nanomedicine 2015; 10: 4321-40.
[PMID: 26170667]
[156]
Kang Y, Liu J, Song B, et al. Potential links between cytoskeletal disturbances and electroneurophysiological dysfunctions induced in the central nervous system by inorganic nanoparticles. Cell Physiol Biochem 2016; 40(6): 1487-505.
[http://dx.doi.org/10.1159/000453200] [PMID: 27997890]
[157]
Rim KT, Song SW, Kim HY. Oxidative DNA damage from nano particle exposure and its application to workers’ health: A literature review. Saf Health Work 2013; 4(4): 177-86.
[http://dx.doi.org/10.1016/j.shaw.2013.07.006] [PMID: 24422173]
[158]
Xie H, Mason MM, Wise JP Sr. Genotoxicity of metal nanoparti cles. Rev Environ Health 2011; 26(4): 251-68.
[http://dx.doi.org/10.1515/REVEH.2011.033]
[159]
Hsiao IL, Chang CC, Wu CY, et al. Indirect effects of TiO2 nano particle on neuron-glial cell interactions. Chem Biol Interact 2016; 254(C): 34-44.
[http://dx.doi.org/10.1016/j.cbi.2016.05.024] [PMID: 27216632]
[160]
Singh N, Manshian B, Jenkins GJS, et al. NanoGenotoxicology: The DNA damaging potential of engineered nanomaterials. Biomaterials 2009; 30(23-24): 3891-914.
[http://dx.doi.org/10.1016/j.biomaterials.2009.04.009] [PMID: 19427031]
[161]
Soenen SJ, Rivera-Gil P, Montenegro JM, Parak WJ, De Smedt SC, Braeckmans K. Cellular toxicity of inorganic nanoparticles: Common aspects and guidelines for improved nanotoxicity evalua tion. Nano Today 2011; 6(5): 446-65.
[http://dx.doi.org/10.1016/j.nantod.2011.08.001]
[162]
Ganguly P, Breen A, Pillai SC. Toxicity of nanomaterials: Expo sure, pathways, assessment, and recent advances. ACS Biomater Sci Eng 2018; 4(7): 2237-75.
[http://dx.doi.org/10.1021/acsbiomaterials.8b00068] [PMID: 33435097]
[163]
Márquez-Ramírez SG, Delgado-Buenrostro NL, Chirino YI. Iglesi as GG, López-Marure R. Titanium dioxide nanoparticles inhibit proliferation and induce morphological changes and apoptosis in glial cells. Toxicology 2012; 302(2-3): 146-56.
[http://dx.doi.org/10.1016/j.tox.2012.09.005] [PMID: 23044362]
[164]
Peynshaert K, Manshian BB, Joris F, et al. Exploiting intrinsic nanoparticle toxicity: The pros and cons of nanoparticle-induced autophagy in biomedical research. Chem Rev 2014; 114(15): 7581-609.
[http://dx.doi.org/10.1021/cr400372p] [PMID: 24927160]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy