Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Chemistry and Biological Activity of Thieno[3,4-b]quinoline, Thieno[3,4-c] quinolone, Thieno[3,2-g]quinoline and Thieno[2,3-g]quinoline Derivatives: A Review (Part IX)

Author(s): Ameen A. Abu-Hashem*, Ahmed A.M. Abdelgawad and Moustafa A. Gouda

Volume 21, Issue 7, 2024

Published on: 07 July, 2023

Page: [764 - 778] Pages: 15

DOI: 10.2174/1570193X20666230601151439

Price: $65

Abstract

Over the previous decades, thieno-quinoline derivatives have acquired great interest due to their synthetic and biological applications. These reports have been disclosed on Thienoquinoline synthesis such as thieno[3,4-b]quinoline; thieno[3,4-c]quinolone; thieno [3,2-g]quinoline; thieno[2,3-g] quinoline; spiro-thieno[2,3-g]quinoline; benzo[b]thiophen-iso- quinoline derivatives, and therefore in the existent review, we provided an inclusive update on the synthesis of thienoquinolines. Characterization of the preparation methods and reactivity is categorized based on their types of reactions as addition, alkylation, chlorination, acylation, oxidation, reduction, cyclization and cyclo-condensation. Hence, this study will help the researchers to obtain knowledge from the last literature research to conquer their resolve problems in designing new compounds and processes.

Graphical Abstract

[1]
Ponce, M.B.; Rodríguez, E.T.; Flader, A.; Ehlers, P.; Langer, P. Synthesis of thieno[2,3- h]-/[3,2- h]quinolines and thieno[2,3- f] quinolines by Brønsted acid mediated cycloisomerisation. Org. Biomol. Chem., 2020, 18(33), 6531-6536.
[http://dx.doi.org/10.1039/D0OB01194K] [PMID: 32766664]
[2]
Jarak, I.; Kralj, M.; Šuman, L. Pavlović G.; Dogan, J.; Piantanida, I.; Žinić M.; Pavelić K.; Karminski-Zamola, G. Novel cyano- and N-isopropylamidino-substituted derivatives of benzo[b]thiophene-2-carboxanilides and benzo[b]thieno[2,3-c]quinolones: synthesis, photochemical synthesis, crystal structure determination, and antitumor evaluation. 2. J. Med. Chem., 2005, 48(7), 2346-2360.
[http://dx.doi.org/10.1021/jm049541f] [PMID: 15801828]
[3]
Goerlitzer, K.; Gabriel, B.; Jomaa, H.; Wiesner, J. Thieno[3,2-c]quinoline-4-yl-amines-synthesis and investigation of activity against malaria. ChemInform, 2006, 37(29), 278-284.
[http://dx.doi.org/10.1002/chin.200629140] [PMID: 16649537]
[4]
Dogan Koružnjak, J.; Grdiša, M.; Slade, N.; Zamola, B. Pavelić K.; Karminski-Zamola, G. Novel derivatives of benzo[b]thieno[2,3-c]quinolones: synthesis, photochemical synthesis, and antitumor evaluation. J. Med. Chem., 2003, 46(21), 4516-4524.
[http://dx.doi.org/10.1021/jm0210966] [PMID: 14521413]
[5]
Sović I.; Viskić M.; Bertoša, B.; Ester, K.; Kralj, M.; Hranjec, M.; Karminski-Zamola, G. Exploring antiproliferative activity of heteroaromatic amides and their fused derivatives using 3D-QSAR, synthesis, and biological tests. Monatsh. Chem., 2015, 146(9), 1503-1517.
[http://dx.doi.org/10.1007/s00706-015-1478-8]
[6]
Pierre, F.; Regan, C.F.; Chevrel, M.C.; Siddiqui-Jain, A.; Macalino, D.; Streiner, N.; Drygin, D.; Haddach, M.; O’Brien, S.E.; Rice, W.G.; Ryckman, D.M. Novel potent dual inhibitors of CK2 and Pim kinases with antiproliferative activity against cancer cells. Bioorg. Med. Chem. Lett., 2012, 22(9), 3327-3331.
[http://dx.doi.org/10.1016/j.bmcl.2012.02.099]
[7]
Castrillo, A.; Pennington, D.J.; Otto, F.; Parker, P.J.; Owen, M.J.; Boscá, L. Protein kinase Cepsilon is required for macrophage activation and defense against bacterial infection. J. Exp. Med., 2001, 194(9), 1231-1242.
[http://dx.doi.org/10.1084/jem.194.9.1231]
[8]
Mahajan, P.; Nikam, M.; Asrondkar, A.; Bobade, A.; Gill, C. Synthesis, antioxidant, and anti‐inflammatory evaluation of novel thiophene‐fused quinoline based β‐diketones and derivatives. J. Heterocycl. Chem., 2017, 54(2), 1415-1422.
[http://dx.doi.org/10.1002/jhet.2722]
[9]
Abu-Hashem, A.A.; Abdelgawad, A.A.M.; Gouda, M.A. Vilsmeier-Haack cyclisation as a facile synthetic route to thieno[2,3-b] quinolines (Part I). Lett. Org. Chem., 2022, 20(3), 197-220.
[http://dx.doi.org/10.2174/1570178619666220922105259]
[10]
Salem, M.A.; Abu-Hashem, A.A.; Abdelgawad, A.A.M.; Gouda, M.A. Synthesis and reactivity of thieno[2,3‐ b]quinoline derivatives (Part II). J. Heterocycl. Chem., 2021, 58(9), 1705-1740.
[http://dx.doi.org/10.1002/jhet.4269]
[11]
Gouda, M.A.; Abu-Hashem, A.A.; Abdelgawad, A.A.M. Recent progress on the chemistry of thieno[3,2‐ b]quinoline derivatives (part III). J. Heterocycl. Chem., 2021, 58(4), 908-927.
[http://dx.doi.org/10.1002/jhet.4205]
[12]
Abu-Hashem, A.A.; Abdelgawad, A.A.M.; Hussein, H.A.R.; Gouda, M.A. Synthetic and reactions routes to tetrahydrothieno[3,2-b] quinoline derivatives (Part IV). Mini Rev. Org. Chem., 2022, 19(1), 74-91.
[http://dx.doi.org/10.2174/1570193X18666210218212719]
[13]
Abu-Hashem, A.A.; El-Gazzar, A.B.A.; Abdelgawad, A.A.M.; Gouda, M.A. Synthesis and chemical reactions of thieno[3,2- c]quinolines from arylamine derivatives, part (V): A review. Phosphorus Sulfur Silicon Relat. Elem., 2022, 197(7), 665-688.
[http://dx.doi.org/10.1080/10426507.2021.2012176]
[14]
Gouda, M.A.; Abu-Hashem, A.A.; Abdelgawad, A.A.M. Thieno[3,2-c] quinoline heterocyclic synthesis and reactivity part (VI). Mini Rev. Org. Chem., 2022, 19(5), 629-653.
[http://dx.doi.org/10.2174/1570193X18666211004102537]
[15]
Abu-Hashem, A.A.; El-Gazzar, A.B.A.; Hafez, H.N.; Abdelgawa, A.A.M.; Gouda, M.A. Synthesis and reactions of thieno[2,3-c]quinolines from arylaldehyde and arylamine derivatives: A review (Part VIII). Mini Rev. Org. Chem., 2022, •••, 20.
[http://dx.doi.org/10.2174/1570193X20666221205163624]
[16]
Gouda, M.A.; Abu-Hashem, A.A.; Ameen, T.A.; Salem, M.A. Synthesis of pyrimido[4,5-b]quinolones from 6-aminopyrimidin-4-(thi)one derivatives. Mini Rev. Org. Chem., 2022, 20, 1-20.
[http://dx.doi.org/10.2174/1570193X20666221104110606]
[17]
Abu-Hashem, A.A.; Al-Hussain, S.A. The synthesis, antimicrobial activity, and molecular docking of new 1, 2, 4-triazole, 1, 2, 4-triazepine, quinoline, and pyrimidine scaffolds condensed to naturally occurring furochromones. Pharmaceuticals, 2022, 15(10), 1232.
[http://dx.doi.org/10.3390/ph15101232] [PMID: 36297343]
[18]
Abu-Hashem, A.A.; El-Gazzar, A.B.A.; Hussein, H.A.R.; Hafez, H.N. Synthesis and antimicrobial activity of aew triazines, tetrazines, thiazinoquinoxalines, thieno-triazepine-imidazo[4,5-b]quinolines from isatin derivatives. Polycycl. Aromat. Compd., 2022, 12, 1-20.
[http://dx.doi.org/10.1080/10406638.2022.2130368]
[19]
Abu-Hashem, A.A.; Al-Hussain, S.A. Design, synthesis of new 1,2,4-triazole/1,3,4-thiadiazole with spiroindoline, imidazo[4,5-b]quinoxaline and thieno[2,3-d] pyrimidine from isatin derivatives as anticancer agents. Molecules, 2022, 27(3), 835.
[http://dx.doi.org/10.3390/molecules27030835] [PMID: 35164098]
[20]
Abu-Hashem, A.A.; Al-Hussain, S.A.; Zaki, M.E.A. Design, synthesis and anticancer activity of new polycyclic: Imidazole, thiazine, oxathiine, pyrroloquinoxaline and thienotriazolopyrimidine derivatives. Molecules, 2021, 26(7), 2031.
[http://dx.doi.org/10.3390/molecules26072031] [PMID: 33918322]
[21]
Abu-Hashem, A.A.; El-Shazly, M. Synthesis and antimicrobial evaluation of novel triazole, tetrazole, and spiropyrimidinethiadiazole derivatives. Polycycl. Aromat. Compd., 2021, 41(3), 478-497.
[http://dx.doi.org/10.1080/10406638.2019.1598448]
[22]
Abu-Hashem, A.A. Synthesis and antimicrobial activity of new 1,2,4‐triazole, 1,3,4‐oxadiazole, 1,3,4‐thiadiazole, thiopyrane, thiazolidinone, and azepine derivatives. J. Heterocycl. Chem., 2021, 58(1), 74-92.
[http://dx.doi.org/10.1002/jhet.4149]
[23]
Abu-Hashem, A.A. Synthesis of new pyrazoles, oxadiazoles, triazoles, pyrrolotriazines, and pyrrolotriazepines as potential cytotoxic agents. J. Heterocycl. Chem., 2021, 58(3), 805-821.
[http://dx.doi.org/10.1002/jhet.4216]
[24]
Abu-Hashem, A.A.; Hussein, H.A.R.; Aly, A.S. Synthesis and antimicrobial activity of novel 1, 2, 4-triazolopyrimidofuroquinazolinones from natural furochromones (Visnagenone and Khellinone). Med. Chem., 2021, 17(7), 707-723.
[http://dx.doi.org/10.2174/18756638MTA1hNjcq3] [PMID: 32250227]
[25]
Abu-Hashem, A.A.; Al-Hussain, S.A.; Zaki, M.E.A. Synthesis of novel benzodi- furanyl; 1,3,5-triazines; 1,3,5-oxadiazepines; and thiazolopyrimidines derived from visnaginone and khellinone as anti-Inflammatory and analgesic agents. Molecules, 2020, 25(1), 220.
[http://dx.doi.org/10.3390/molecules25010220] [PMID: 31948127]
[26]
Abu-Hashem, A.A.; Abu-Zied, K.M.; AbdelSalam Zaki, M.E.; El-Shehry, M.F.; Awad, H.M.; Khedr, M.A. Design, synthesis, and anticancer potential of the enzyme (PARP-1) inhibitor with computational studies of new triazole, thiazolidinone, thieno[2,3-d] pyrimidinones. Lett. Drug Des. Discov., 2020, 17(6), 799-817.
[http://dx.doi.org/10.2174/1570180817666200117114716]
[27]
Gouda, M.A.; Abu-Hashem, A.A.; Hussein, H.A.R.; Aly, A.S. Recent progress on fused thiadiazines: A literature review. Polycycl. Aromat. Compd., 2022, 42(5), 2861-2893.
[http://dx.doi.org/10.1080/10406638.2020.1825002]
[28]
Gouda, M.A.; Abu-Hashem, A.A.; Salem, M.A.; Helal, M.H.; Al-Ghorbani, M.; Hamama, W.S. Recent progress on coumarin SCAFFOLD‐BASED anti‐microbial agents (Part III). J. Heterocycl. Chem., 2020, 57(11), 3784-3817.
[http://dx.doi.org/10.1002/jhet.4100]
[29]
Abu-Hashem, A.A.; Fathy, U.; Gouda, M.A. Synthesis of 1,2, 4‐TRIAZOLOPYRIDAZINES, isoxazolofuropyridazines, and tetrazolopyridazines as antimicrobial agents. J. Heterocycl. Chem., 2020, 57(9), jhet. 4065.
[http://dx.doi.org/10.1002/jhet.4065]
[30]
Gouda, M.A.; Abu-Hashem, A.A.; Hussein, H.A.R.; Aly, A.S. Recent development in the chemistry of bicyclic 6+5 systems, part II: Chemistry of triazolopyrimidine derivatives. Lett. Org. Chem., 2020, 17(12), 897-925.
[http://dx.doi.org/10.2174/1570178617666200417121205]
[31]
Abu-Hashem, A.A.; Zaki, M.E.A. Direct amination and synthesis of fused N-substituted isothiochromene derivatives. J. Heterocycl. Chem., 2019, 56(3), 886-894.
[http://dx.doi.org/10.1002/jhet.3466]
[32]
Abu-Hashem, A. Synthesis of new furothiazolo pyrimido quinazolinones from visnagenone or khellinone and antimicrobial activity. Molecules, 2018, 23(11), 2793.
[http://dx.doi.org/10.3390/molecules23112793] [PMID: 30373270]
[33]
Abu-Hashem, A.A.; Faty, R.A.M. Synthesis, antimicrobial evaluation of some new 1,3,4-thiadiazoles and 1,3,4-thiadiazines. Curr. Org. Synth., 2018, 15(8), 1161-1170.
[http://dx.doi.org/10.2174/1570179415666180720114547]
[34]
Abu-Hashem, A.A.; Gouda, M.A.; Badria, F.A. Design, synthesis and identification of novel substituted isothiochromene analogs as potential antiviral and cytotoxic agents. Med. Chem. Res., 2018, 27(10), 2297-2311.
[http://dx.doi.org/10.1007/s00044-018-2236-3]
[35]
Abu-Hashem, A.A. Synthesis and biological activity of pyrimidines, quinolines, thiazines and pyrazoles bearing a common thieno moiety. Acta Pol. Pharm., 2018, 75(1), 59-70.
[36]
Abu-Hashem, A.A.; Gouda, M.A. Synthesis and antimicrobial activity of some novel quinoline, chromene, pyrazole derivatives bearing triazolopyrimidine moiety. J. Heterocycl. Chem., 2017, 54(2), 850-858.
[http://dx.doi.org/10.1002/jhet.2645]
[37]
Abu-Hashem, A.A.; Hussein, H.A.R.; Abu-zied, K.M. Synthesis of novel 1, 2, 4-triazolopyrimidines and their evaluation as antimicrobial agents. Med. Chem. Res., 2017, 26(1), 120-130.
[http://dx.doi.org/10.1007/s00044-016-1733-5]
[38]
Gouda, M.A.; Abu-Hashem, A.A.; Saad, H.H.; Elattar, K.M. 5-Chloropyrazole-4-carboxaldehydes as synthon in heterocyclic synthesis. Res. Chem. Intermed., 2016, 42(3), 2119-2162.
[http://dx.doi.org/10.1007/s11164-015-2139-6]
[39]
Abu-Hashem, A.A.; El-Shazly, M. Synthesis, reactions and biological activities of furochromones: A review. Eur. J. Med. Chem., 2015, 90, 633-665.
[http://dx.doi.org/10.1016/j.ejmech.2014.12.001] [PMID: 25499986]
[40]
Abu-Hashem, A.; Hussein, H. Synthesis and antitumor activity of new pyrimidine and caffeine derivatives. Lett. Drug Des. Discov., 2015, 12(6), 471-478.
[http://dx.doi.org/10.2174/1570180812666150429234237]
[41]
Abu-Hashem, A.A.; Badria, F.A. Design, synthesis of novel thiourea and pyrimidine derivatives as potential antitumor agents. J. Chin. Chem. Soc., 2015, 62(6), 506-512.
[http://dx.doi.org/10.1002/jccs.201400351]
[42]
Abu-Hashem, A.A. Synthesis and reaction of novel spiro-pyrimidine derivatives. J. Heterocycl. Chem., 2014, 51(4), 1020-1026.
[http://dx.doi.org/10.1002/jhet.2002]
[43]
Abu-Hashem, A.A.; Hussein, H.A.R.; Aly, A.S.; Gouda, M.A. Synthesis of benzofuran derivatives via different methods. Synth. Commun., 2014, 44(16), 2285-2312.
[http://dx.doi.org/10.1080/00397911.2014.894528]
[44]
Abu-Hashem, A.A.; Aly, A.S. Synthesis of new pyrazole, triazole, and thiazolidine-pyrimido [4, 5-b] quinoline derivatives with potential antitumor activity. Arch. Pharm. Res., 2012, 35(3), 437-445.
[http://dx.doi.org/10.1007/s12272-012-0306-5] [PMID: 22477190]
[45]
Abu-Hashem, A.A.; Abu-Zied, K.M.; El-Shehry, M.F. Synthetic utility of bifunctional thiophene derivatives and antimicrobial evaluation of the newly synthesized agents. Monatsh. Chem., 2011, 142(5), 539-545.
[http://dx.doi.org/10.1007/s00706-011-0456-z]
[46]
Abu-Hashem, A.A.; Youssef, M.M.; Hussein, H.A.R. Synthesis, antioxidant, antitumor activities of some new thiazolopyrimidines, pyrrolothiazolopyrimidines and triazolopyrrolothiazolopyrimidines derivatives. J. Chin. Chem. Soc., 2011, 58(1), 41-48.
[http://dx.doi.org/10.1002/jccs.201190056]
[47]
Gouda, M.A.; Abu-Hashem, A.A. Synthesis, characterization, antioxidant and antitumor evaluation of some new thiazolidine and thiazolidinone derivatives. Arch. Pharm. , 2011, 344(3), 170-177.
[http://dx.doi.org/10.1002/ardp.201000165] [PMID: 21384416]
[48]
Abu-Hashem, A.A.; Youssef, M.M. Synthesis of new visnagen and khellin furochromone pyrimidine derivatives and their anti-inflammatory and analgesic activity. Molecules, 2011, 16(3), 1956-1972.
[http://dx.doi.org/10.3390/molecules16031956] [PMID: 21358587]
[49]
Abu-Hashem, A.A.; Gouda, M.A. Synthesis, anti-inflammatory and analgesic evaluation of certain new 3a,4,9,9a-Tetrahydro-4,9-benzenobenz[f]isoindole-1,3-diones. Arch. Pharm. , 2011, 344(8), 543-551.
[http://dx.doi.org/10.1002/ardp.201100020] [PMID: 21681809]
[50]
Abu-Hashem, A.; El-Shehry, M.; Badria, F. Design and synthesis of novel thiophenecarbohydrazide, thienopyrazole and thienopyrimidine derivatives as antioxidant and antitumor agents. Acta Pharm., 2010, 60(3), 311-323.
[http://dx.doi.org/10.2478/v10007-010-0027-6] [PMID: 21134865]
[51]
Abu-Hashem, A.A.; Gouda, M.A.; Badria, F.A. Synthesis of some new pyrimido[2′1′2,3]thiazolo[4,5-b]quinoxaline derivatives as anti-inflammatory and analgesic agents. Eur. J. Med. Chem., 2010, 45(5), 1976-1981.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.042] [PMID: 20149490]
[52]
El Shehry, M.F.; Abu-Hashem, A.A.; El-Telbani, E.M. Synthesis of 3-((2,4-dichlorophenoxy)methyl)-1,2,4-triazolo(thiadiazoles and thiadiazines) as anti-inflammatory and molluscicidal agents. Eur. J. Med. Chem., 2010, 45(5), 1906-1911.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.030] [PMID: 20153090]
[53]
El-Gazzar, A.B.A.; Youssef, M.M.; Youssef, A.M.S.; Abu-Hashem, A.A.; Badria, F.A. Design and synthesis of azolopyrimidoquinolines, pyrimidoquinazolines as anti-oxidant, anti-inflammatory and analgesic activities. Eur. J. Med. Chem., 2009, 44(2), 609-624.
[http://dx.doi.org/10.1016/j.ejmech.2008.03.022] [PMID: 18462840]
[54]
El-Gazzar, A.B.A.; Hafez, H.N.; Abu-Hashem, A.A.; Aly, A.S. Synthesis and antioxidant, anti-inflammatory, and analgesic activity of novel polycyclic pyrimido[4,5-b]quinolines. Phosphorus Sulfur Silicon Relat. Elem., 2009, 184(2), 379-405.
[http://dx.doi.org/10.1080/10426500802167027]
[55]
El-Gazzar, A.B.A.; Gaafar, A.M.; Youssef, M.M.; Abu-Hashem, A.A.; Badria, F.A. Synthesis and anti-oxidant activity of novel pyrimido[4,5-b]quinolin-4-one derivatives with a new ring system. Phosphorus Sulfur Silicon Relat. Elem., 2007, 182(9), 2009-2037.
[http://dx.doi.org/10.1080/10426500701369864]
[56]
Keshk, E.M.; Abu-Hashem, A.A.; Girges, M.M. Abd EL-Rahman, A.H.; Badria, F.A. Synthesis of benzo[1,2-b:5,4-b′]difuranyltriazoles, -oxadiazoles, -thiazolidinones, thiadiazoles, and the use of DNA in evaluation of their biological activity. Phosphorus Sulfur Silicon Relat. Elem., 2004, 179(8), 1577-1593.
[http://dx.doi.org/10.1080/10426500490464140]
[57]
Teja, C.; Nawaz Khan, F-R. For a recent review of the synthesis of thienoquinolines, see. Asian J. Org. Chem., 2020, 9, 1889-1900.
[http://dx.doi.org/10.1002/ajoc.202000427]
[58]
Salvati, E.; Botta, L.; Amato, J.; Di Leva, F.S.; Zizza, P.; Gioiello, A.; Pagano, B.; Graziani, G.; Tarsounas, M.; Randazzo, A.; Novellino, E.; Biroccio, A.; Cosconati, S. Lead discovery of dual G-quadruplex stabilizers and Poly(ADP-ribose) polymerases (PARPs) inhibitors: A new avenue in anticancer treatment. J. Med. Chem., 2017, 60(9), 3626-3635.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01563] [PMID: 28445046]
[59]
Moretto, A.F.; Kirincich, S.J.; Xu, W.X.; Smith, M.J.; Wan, Z.K.; Wilson, D.P.; Follows, B.C.; Binnun, E.; Joseph-McCarthy, D.; Foreman, K.; Erbe, D.V.; Zhang, Y.L.; Tam, S.K.; Tam, S.Y.; Lee, J. Bicyclic and tricyclic thiophenes as protein tyrosine phosphatase 1B inhibitors. Bioorg. Med. Chem., 2006, 14(7), 2162-2177.
[http://dx.doi.org/10.1016/j.bmc.2005.11.005] [PMID: 16303309]
[60]
Chatterjee, A.; Cutler, S.J.; Doerksen, R.J.; Khan, I.A.; Williamson, J.S. Discovery of thienoquinolone derivatives as selective and ATP non-competitive CDK5/p25 inhibitors by structure-based virtual screening. Bioorg. Med. Chem., 2014, 22(22), 6409-6421.
[http://dx.doi.org/10.1016/j.bmc.2014.09.043] [PMID: 25438765]
[61]
MacDowell, D.W.H.; Jeffries, A.T.; Meyers, M.B. Polycyclic orthoquinonoidal heterocycles: Thieno[3,4-b]quinoline and naphtho[2,3-c]thiophene. J. Org. Chem., 1971, 36(10), 1416-1419.
[http://dx.doi.org/10.1021/jo00809a022]
[62]
Brown, R.J.; Carver, F.W.S.; Hollingsworth, B.L. 506. The reaction of ethyl 2-oxocyclopentanecarboxylate with arylamines. Part II. The preparation of 2,3-dihydro-β-quinindones (2,3,4,9-tetrahydro-9-oxo-1H-cyclopenta[b]quinolines). J. Chem. Soc., 1962, 0(0), 2624-2626.
[http://dx.doi.org/10.1039/JR9620002624]
[63]
Meyer, R.; Kleinert, H.; Richter, S.; Gewald, K. Synthesis, isolation, and characterization of naphtho[2,3-c]thiophen. J.C.S. Chem. Comm., 1980, 13, 612.
[http://dx.doi.org/10.1039/c39800000612]
[64]
Beer, R.J.S.; Broadhurst, T.; Robertson, A. 495. Peroxides of tetrahydrocarbazole and related compounds. Part V. 8-Bromo-1: 2: 3: 4-tetrahydrocarbazole. J. Chem. Soc., 1953, 495, 2440.
[http://dx.doi.org/10.1039/jr9530002440]
[65]
Irgashev, R.A.; Demina, N.S.; Kazin, N.A.; Rusinov, G.L. Construction of new heteroacenes based on benzo[b]thieno[2,3-d]thiophene/quinoline or 1,8-naphthyridine systems using the Friedländer reaction. Tetrahedron Lett., 2019, 60(16), 1135-1138.
[http://dx.doi.org/10.1016/j.tetlet.2019.03.041]
[66]
Blount, B.K.; Perkin, W.H.; Plant, S.G.P. J. Chem. Soc., 1983.
[67]
Hromatka, O.; Binder, D.; Eichinger, K. Über die Synthese von substituierten Thieno[3,4—b]chinolin-9(4H)-onen. Monatsh. Chem., 1974, 105(6), 1164-1169.
[http://dx.doi.org/10.1007/BF00909849]
[68]
Grohe, K.; Heitzer, H. Cycloaracylierung von Enaminen, I. Synthese von 4-Chinolon-3-carbonsäuren. Liebigs Ann. Chem., 1987, 1987(1), 29-37.
[http://dx.doi.org/10.1002/jlac.198719870106]
[69]
Levendis, D.C.; Moffit, J.; Staskun, B.; van Es, T. Thionyl chloride-induced conversion of 1-ethyl-1,4-dihydro-2-methyl-4-oxoquinoline-3-carboxylic acids to highly functionalised thieno[3,4-b]quinoline derivatives. J. Chem. Res. Synop., 1999, 10(10), 614-615.
[http://dx.doi.org/10.1039/a905272k]
[70]
Van Es, T.; Staskun, B.; Piggott, A.M. The synthesis of 4-ethyl-2-propyl-3-substituted-pyrrolo[3,4-b] quinoline-1, 9-dione derivatives from 3, 3-dichloro-4-ethyl-thieno[3,4-b] quinoline-1, 9-dione and Propylamine. S. Afr. J. Chem., 2006, 59, 101-108.
[71]
Van Es, T.; Staskun, B.; Fernandes, M.A. Production of 9-thioxo-2, 3, 4, 9-tetrahydro-pyrrolo[3,4-b] quinolin-1-one derivatives from the aminolysis of 3, 3, 9-trichloro-3H-thieno[3,4-b] quinolin-1-one. S. Afr. J. Chem., 2003, 56, 30-33.
[72]
Mohamed, Y.A.; Aziza, M.A.; Salama, F.M.; Alafify, A. Some new quinazolines with antibacterial activity. J. Serb. Chem. Soc., 1992, 57, 29-34.
[73]
Ghorab, M.M.; Abdel-Hamide, S.G.; Farrag, H.A. Synthesis of novel quinolines, pyranoquinolines, furoquinolines, thieno-quinoline and their effect on the ultrastructure of some pathogenic microorganisms. Acta Pol. Pharm., 2001, 58(3), 175-184.
[74]
Liu, Z.; Gao, R.; Lou, J.; He, Y.; Yu, Z. Metal-Free C sp −C sp and C sp −C sp3 bond cleavages of N,S-enynes toward thiophene-fused N-heterocycles. Adv. Synth. Catal., 2018, 360(16), 3097-3108.
[http://dx.doi.org/10.1002/adsc.201800599]
[75]
Görlitzer, K.; Gabriel, B.; Jomaa, H.; Wiesner, J. Thieno[3,4-c] chinolin-4-yl-amine–Synthese und Prüfung auf Wirksamkeit gegen Malaria. Die Pharmazie-An Inter. J. Pharm. Sci., 2006, 61(11), 901-907.
[76]
Görlitzer, K.; Gabriel, B.; Frohberg, P.; Wobst, I.; Drutkowski, G.; Wiesner, J.; Jomaa, H. Thieno[2,3-c]chinoline–Synthese und biologische Prüfung. Die Pharmazie-An Inter. J. Pharm. Sci., 2004, 59(6), 439-442.
[77]
Gronowitz, S.; Timari, G. Some reactions of thieno-fused quinoline N -oxides. J. Heterocycl. Chem., 1990, 27(5), 1501-1504.
[http://dx.doi.org/10.1002/jhet.5570270559]
[78]
Gronowitz, S.; Timari, G. On the synthesis of thieno[3,2-c]quinoline N -oxide and thieno-[3,2- C]isoquinoline N -oxide. The nmr spectra of the six isomeric thieno-fused quinoline and isoquinoline N -oxides. J. Heterocycl. Chem., 1990, 27(4), 1127-1129.
[http://dx.doi.org/10.1002/jhet.5570270460]
[79]
Gronowitz, S.A.; Hörnfeldt, A.B.; Yang, Y.H.A.; Hörnfeldt, A.B.; Yang, Y.H. Chem. Scr., 1986, 26, 311.
[80]
Al-Omran, F.; Mohammed, A.K.M.; Al-Awadhi, H.; Elnagdi, M.H. Reactivity of condensed thiophenes in the Diels-Alder reaction: The reactivity of 3-aminothieno[3,4:3`,4`] benzo [b] pyranone; 3-aminothieno[3,4-c] quinoline and of 5-amino-7-substituted thieno[3,4-d] pyridazinone toward electron-poor olefins and acetylenes. Tetrahedron, 1996, 52(36), 11915-11928.
[http://dx.doi.org/10.1016/0040-4020(96)00689-8]
[81]
Yamaguchi, M.; Maruyama, N.; Koga, T.; Kamei, K.; Akima, M.; Kuroki, T.; Hamana, M.; Ohi, N. Novel antiasthmatic agents with dual activities of thromboxane A2 synthetase inhibition and bronchodilation. V. Thienopyridazinone derivatives. Chem. Pharm. Bull., 1995, 43(2), 236-240.
[http://dx.doi.org/10.1248/cpb.43.236] [PMID: 7728930]
[82]
a) Valderrama, J.; Fournet, A.; Valderrama, C.; Bastias, S.; Astudillo, C.; Rojas de Arias, A. Thieno[3,2‐g]quinoline‐4,9‐dione analogues showed various biological properties. Chem. Pharm. Bull., 1999, 47, 1221-1226.;
b) Jackson, Y.A.; Hepburn, S.A.; Reynolds, W.F. J. Chem. Soc. Perkin Trans., 2001, 47, 2237-2239.;
c) Valderrama, J.A.; Cardenas, L. Heterocycl. Commun., 2003, 9, 175-180.
[83]
Rebstock, A.S.; Mongin, F.; Trécourt, F.; Quéguiner, G. Metallation of pyridines and quinolines in the presence of a remote carboxylate group. New syntheses of heterocyclic quinones. Org. Biomol. Chem., 2004, 2(3), 291-295.
[http://dx.doi.org/10.1039/B312723K] [PMID: 14747855]
[84]
Gomez-Monterrey, I.M.; Campiglia, P.; Mazzoni, O.; Novellino, E.; Diurno, M.V. Cycloaddition reactions of thiazolidine derivatives. An approach to the synthesis of new functionalized heterocyclic systems. Tetrahedron Lett., 2001, 42(33), 5755-5757.
[http://dx.doi.org/10.1016/S0040-4039(01)01035-8]
[85]
Gomez-Monterrey, I.; Campiglia, P.; Lama, T.; Colla, P.L.; Diurno, M.V.; Grieco, P.; Novellino, E. Synthesis of new pyrido[4,3- g and 3,4- g]quinoline-9,10-dione and dihydrothieno[2,3- g and 3,2-g]quinoline-4,9-dione derivatives and preliminary evaluation of cytotoxic activity. ARKIVOC, 2004, 2004(5), 85-96.
[http://dx.doi.org/10.3998/ark.5550190.0005.509]
[86]
Rittle, K.E.; Evans, B.E.; Bock, M.G.; DiPardo, R.M.; Whitter, W.L.; Homnick, C.F.; Veber, D.F.; Freidinger, R.M. A new amine resolution method and its application to 3-aminobenzodiazepines. Tetrahedron Lett., 1987, 28(5), 521-522.
[http://dx.doi.org/10.1016/S0040-4039(00)95771-X]
[87]
Bolognese, A.; Correale, G.; Manfra, M.; Esposito, A.; Novellino, E.; Lavecchia, A. Antitumor agents 6. synthesis, structure−activity relationships, and biological Evaluation of Spiro[imidazolidine-4,3′-thieno[2,3-g]quinoline]-tetraones and spiro[thieno[2,3-g]quin-oline-3,5′-[1,2,4]triazinane]-tetraones with potent antiproliferative activity. J. Med. Chem., 2008, 51(24), 8148-8157.
[http://dx.doi.org/10.1021/jm8007689] [PMID: 19053767]
[88]
Gomez-Monterrey, I.; Campiglia, P.; Carotenuto, A.; Califano, D.; Pisano, C.; Vesci, L.; Lama, T.; Bertamino, A.; Sala, M.; di Bosco, A.M.; Grieco, P.; Novellino, E. Design, synthesis, and cytotoxic evaluation of a new series of 3-substituted Spiro[(dihydropyrazine-2,5-dione)-6,3‘-(2‘,3‘-dihydrothieno[2,3- b]naphtho-4‘,9‘-dione)] derivatives. J. Med. Chem., 2007, 50(8), 1787-1798.
[http://dx.doi.org/10.1021/jm0612158] [PMID: 17375902]
[89]
Jiang, Z.; Liu, N.; Hu, D.; Dong, G.; Miao, Z.; Yao, J.; He, H.; Jiang, Y.; Zhang, W.; Wang, Y.; Sheng, C. The discovery of novel antifungal scaffolds by structural simplification of the natural product sampangine. Chem. Commun. , 2015, 51(78), 14648-14651.
[http://dx.doi.org/10.1039/C5CC05699C] [PMID: 26289663]
[90]
Liu, N.; Zhong, H.; Tu, J.; Jiang, Z.; Jiang, Y.; Jiang, Y.; Jiang, Y.; Li, J.; Zhang, W.; Wang, Y.; Sheng, C. Discovery of simplified sampangine derivatives as novel fungal biofilm inhibitors. Eur. J. Med. Chem., 2018, 143, 1510-1523.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.043]
[91]
Weintraub, L.; Oles, S.R.; Kalish, N. Convenient general synthesis of amidines. J. Org. Chem., 1968, 33(4), 1679-1681.
[http://dx.doi.org/10.1021/jo01268a093]
[92]
Copp, F.C.; Franzmann, K.W.; Gilmore, J.; Whalley, W.B. Synthesis of 5,6,6a,7,7a,12a-hexahydro-4H-benzo[d,e]benzothieno-[2,3-g]quinolines and of 8-phenyl-2,3,7,8,9,9a-hexahydro-1H-benzo[d,e] quinolines. J. Chem. Soc., Perkin Trans. 1, 1983, 909, 909.
[http://dx.doi.org/10.1039/p19830000909]
[93]
Kano, S.; Mochizuki, N.; Hibino, S.; Shibuya, S. Synthesis of 6-thiaellipticine and related compounds via heterocyclic o-quinodimethane intermediates. J. Org. Chem., 1982, 47(18), 3566-3569.
[http://dx.doi.org/10.1021/jo00139a043]
[94]
Bosch, J.; Alvarez, M.; Granados, R. Benzomorphan related compounds. XII 2,5-Methanothieno[3,2- g]quinolines as rigid bridged thienomorphans. J. Heterocycl. Chem., 1980, 17(4), 745-747.
[http://dx.doi.org/10.1002/jhet.5570170423]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy