Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Review Article

Biodegradable Polymeric Microspheres as Drug Carriers for Anti- Microbial Agent

Author(s): Nidhi Bansal, Komal Rao, Nikita Yadav and Neha Minocha*

Volume 19, Issue 1, 2024

Published on: 06 June, 2023

Page: [49 - 59] Pages: 11

DOI: 10.2174/1574885518666230530095329

Price: $65

Abstract

Introduction: Microspheres, the novel drug delivery system that offers therapeutic alternatives to single-unit dosage forms, both conventional and quick release. Microspheres are solid microspheres having a diameter of 1-1000 μm. Microspheres can be made utilising various procedures that vary in their effectiveness and dosage form administration when compared to standard dosage forms.

Background: The idea of targeted drug delivery is to concentrate the treatment in the target tissues while lowering the relative concentration of the drug in the non-target tissues. As a result, the medication is concentrated at the desired location. Thus, the medication has no effect on the tissues nearby. Therefore, by combining the drug with carrier particle like microspheres, nanoparticles, liposomes, niosomes, etc., that regulates the release and absorption characteristics of the drug, carrier technology offers an intelligent way for drug delivery.

Results: Microspheres are naturally biodegradable materials made of proteins or synthetic polymers that flow freely. Its formulation is approachable, maintaining the desired concentration at the site of interest without unfavorable effects and reliably delivering the drug to the target site with specificity.

Conclusion: Microspheres attracted a lot of interest for their sustained release as well as their ability to direct anti-cancer medications to the tumour using biodegradable polymers. Due to this, future drug delivery systems for innovative medications will heavily rely on microspheres.

Graphical Abstract

[1]
Kumar V, Antil M, Kumar D, Minocha N. Importance of ayurvedic medicine in modern lifestyle: A keynote review study. Int J Adv Educ Res 2016; 1(4): 31-3.
[2]
Neetu Jalwal P, Anu Neha. Babita. Formulation development and evaluation of floating tablet of ranitidine hydrochloride for the treatment of duodenal ulcer. Int J Pharma Professional’s Res 2016; 4(3): 872-80.
[3]
Weiss D, Gefen A, Einav S. Modelling catheter–vein biomechanical interactions during an intravenous procedure. Comput Methods Biomech Biomed Engin 2016; 19(3): 330-9.
[http://dx.doi.org/10.1080/10255842.2015.1024667] [PMID: 25853223]
[4]
Stoner KL, Harder H, Fallowfield LJ, Jenkins VA. Intravenous versus subcutaneous drug administration. Which do patients prefer? A systematic review. Patient 2015; 8(2): 145-53.
[http://dx.doi.org/10.1007/s40271-014-0075-y] [PMID: 25015302]
[5]
Boyd AE, DeFord LL, Mares JE, et al. Improving the success rate of gluteal intramuscular injections. Pancreas 2013; 42(5): 878-82.
[http://dx.doi.org/10.1097/MPA.0b013e318279d552] [PMID: 23508015]
[6]
Chander S, Komal R, Nikita Y, et al. Current cannabidiol safety: A review. Curr Drug Saf 2023; 18(4): 465-73.
[http://dx.doi.org/10.2174/1574886317666220902100511]
[7]
Minocha N, Sharma N, Pandey P. Wheatgrass: An epitome of nutritional value. Curr Nutr Food Sci 2022; 18(1): 22-30.
[http://dx.doi.org/10.2174/1573401317666210906140834]
[8]
Bhatt D, Jethva K, Patel S, Zaveri M. Novel drug delivery systems in herbals for cancer. World J Pharm Res 2016; 5: 368-78.
[9]
Mukherjee S, Ray S, Thakur RS. Solid lipid nanoparticles: A modern formulation approach in drug delivery system. Indian J Pharm Sci 2009; 71(4): 349-58.
[http://dx.doi.org/10.4103/0250-474X.57282] [PMID: 20502539]
[10]
Jumaa M, Müller BW. Lipid emulsions as a novel system to reduce the hemolytic activity of lytic agents: Mechanism of the protective effect. Eur J Pharm Sci 2000; 9(3): 285-90.
[http://dx.doi.org/10.1016/S0928-0987(99)00071-8] [PMID: 10594386]
[11]
Cavalli R, Caputo O, Gasco MR. Solid lipospheres of doxorubicin and idarubicin. Int J Pharm 1993; 89(1): R9-R12.
[http://dx.doi.org/10.1016/0378-5173(93)90313-5]
[12]
Gasco MR. Method for producing solid lipid microspheres having a narrow size distribution. U.S. Patent, US 5,250,236, 1993.
[13]
Sarangi MK, Padhi S. Solid lipid nano particles: A review. Drugs 2016; 5(7)
[14]
Jenning V, Gysler A, Schäfer-Korting M, Gohla SH. Vitamin A loaded solid lipid nanoparticles for topical use: Occlusive properties and drug targeting to the upper skin. Eur J Pharm Biopharm 2000; 49(3): 211-8.
[http://dx.doi.org/10.1016/S0939-6411(99)00075-2] [PMID: 10799811]
[15]
Minocha N, Kumar V. Nanostructure system: Liposome – A bioactive carrier in drug delivery systems. Mater Today Proc 2022; 69: 614-9.
[http://dx.doi.org/10.1016/j.matpr.2022.09.494]
[16]
Kumar V, Minocha N, Garg V, Dureja H. Nanostructured materials used in drug delivery. Mater Today Proc 2022; 69: 174-80.
[http://dx.doi.org/10.1016/j.matpr.2022.08.306]
[17]
Neha M, Nidhi S, Ravinder V, Deepak K, Parijat P, Nanoparticles SL. Solid lipid nanoparticles: Peculiar strategy to deliver bio-proactive molecules. Recent Pat Nanotechnol 2022; 17(3): 228-42.
[http://dx.doi.org/10.2174/1872210516666220317143351]
[18]
Deepika P, Shivkant S, Avneet LK, et al. Nanocrystals: A deep insight into formulation aspects, stabilization strategies and biomedical applications. Recent Pat Nanotechnol 2022.
[http://dx.doi.org/10.2174/1872210516666220523120313]
[19]
Kaushik D, Pandey P, Minocha N, et al. Emulgel: An emerging approach towards effective topical drug delivery. Drug Deliv Lett 2022; 12(4): 227-42.
[http://dx.doi.org/10.2174/2210303112666220818115231]
[20]
Kumar D, Singh J, Antil M, Kumar V. Emulgel-novel topical drug delivery system–a comprehensive review. Int J Pharm Sci Res 2016; 7(12): 4733-42.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.7(12).4733-42]
[21]
Komal R, Neha M. Glucosamine sulphate potassium chloride in the management of osteoarthritis- considering emulgel dosage form: A review. Curr Nutr & Food Sci 2023; 19(4): 419-27.
[http://dx.doi.org/10.2174/1573401318666220601150053]
[22]
Singh AN, Mahanti B, Bera K. Novel drug delivery system & it’s future: An overview. Int J Pharm Technol 2021; 9(2): 1070-88.
[23]
Venkatesan P, Manavalan R, Valliappan K. Microencapsulation: A vital technique in novel drug delivery system. J Pharmaceut Sci Res 2009; 1(4): 26-35.
[24]
Kushwaha N. Use of nanotechnology in cosmeceuticals: A review. Int J Pharm Sci Invent 2020; 09(01): 43-51.
[25]
Jalil R, Nixon JR. Biodegradable poly(lactic acid) and poly(lactide-co-glycolide) microcapsules: Problems associated with preparative techniques and release properties. J Microencapsul 1990; 7(3): 297-325.
[http://dx.doi.org/10.3109/02652049009021842] [PMID: 2200861]
[26]
Sahil K, Akanksha M, Premjeet S, Bilandi A, Kapoor B. Microsphere: A review. Int J Res Pharm Chem 2011; 1(4): 1184-98.
[27]
Singh P, Prakash DE, Ramesh B, Singh N, Mani TT. Biodegradable polymeric microspheres as drug carriers; A review. Indian J Nov Drug Deliv 2011; 3(2): 70-82.
[28]
Thanoo BC, Sunny MC, Jayakrishnan A. Cross-linked chitosan microspheres: Preparation and evaluation as a matrix for the controlled release of pharmaceuticals. J Pharm Pharmacol 2011; 44(4): 283-6.
[http://dx.doi.org/10.1111/j.2042-7158.1992.tb03607.x] [PMID: 1355537]
[29]
de Jong HGB. Coacervation and its significance for biology. Protoplasma 1932; 15(1): 110-73.
[http://dx.doi.org/10.1007/BF01610198]
[30]
Grote M. Jeewanu, or the ‘particles of life’. J Biosci 2011; 36(4): 563-70.
[http://dx.doi.org/10.1007/s12038-011-9087-0] [PMID: 21857103]
[31]
Green BK, Lowell S. Oil-containing microscopic capsules and method of making them. U.S. patent US 2,800,457, 1957.
[32]
Holliday WM, Berdick M, Bell SA, Kiritsis GC. Sustained relief analgesic composition.U.S. patent US 3,488,418, 1970.
[33]
Roderick PJ, Wilkes HC, Meade TW. The gastrointestinal toxicity of aspirin: An overview of randomised controlled trials. Br J Clin Pharmacol 1993; 35(3): 219-26.
[http://dx.doi.org/10.1111/j.1365-2125.1993.tb05689.x] [PMID: 8471398]
[34]
Jung T, Kamm W, Breitenbach A, Klebe G, Kissel T. Loading of tetanus toxoid to biodegradable nanoparticles from branched poly(sulfobutyl-polyvinyl alcohol)-g-(lactide-co-glycolide) nanoparticles by protein adsorption: A mechanistic study. Pharm Res 2002; 19(8): 1105-13.
[http://dx.doi.org/10.1023/A:1019833822997] [PMID: 12240935]
[35]
Rajput GC, Majmudar FD, Patel JK, et al. Stomach specific mucoadhesive tablets as controlled drug delivery system–A review work. Int J Pharm Biol Res 2010; 1: 30-41.
[36]
Li SP, Kowarski CR, Feld KM, Grim WM. Recent advances in microencapsulation technology and equipment. Drug Dev Ind Pharm 1988; 14(2-3): 353-76.
[http://dx.doi.org/10.3109/03639048809151975]
[37]
Ghosh S, Majumder S, Pal R, Chakraborty M, Biswas A, Gupta BK. Formulation and evaluation of hydroxyzine hydrochloride sustained release microspheres by ionotropic gelation technique using Carbopol 934P. Asian J Pharm 2014; 8(4): 230-6.
[http://dx.doi.org/10.4103/0973-8398.143934]
[38]
Chandrawanshi P, Patidar H. Magnetic microspheres: As a targeted drug delivery. J Pharm Res 2009; 2009: 964-5.
[39]
Minocha N, Saini S, Pandey P. Nutritional prospects of wheatgrass (Triticum aestivum) and its effects in treatment and chemoprevention. Exploration Med 2022; 3: 432-42.
[http://dx.doi.org/10.37349/emed.2022.00104]
[40]
Nv P, Nv W, Ss T, Sudarshan US. Microspheres: A novel drug delivery system. Am JPharmTech Res 2020; 10(2): 286-301.
[http://dx.doi.org/10.46624/ajptr.2020.v10.i2.021]
[41]
Kutmalge MD, Ratnaparkhi MP, Wattamwar MM, Chaudhari SP. A review on microsphere. Pharma Sci Monitor 2014; 5.
[42]
Ganesan P, Soundararajan R, Shanmugam U, Ramu V. Development, characterization and solubility enhancement of comparative dissolution study of second generation of solid dispersions and microspheres for poorly water soluble drug. Asian J pharmaceut Sci 2015; 10(5): 433-1.
[http://dx.doi.org/10.1016/j.ajps.2015.05.001]
[43]
Anande NM, Jain SK, Jain NK. Con-A conjugated mucoadhesive microspheres for the colonic delivery of diloxanide furoate. Int J Pharm 2008; 359(1-2): 182-9.
[http://dx.doi.org/10.1016/j.ijpharm.2008.04.009] [PMID: 18486369]
[44]
Liu G, Yang H, Zhou J, Law SJ, Jiang Q, Yang G. Preparation of magnetic microspheres from water-in-oil emulsion stabilized by block copolymer dispersant. Biomacromolecules 2005; 6(3): 1280-8.
[http://dx.doi.org/10.1021/bm049316f] [PMID: 15877343]
[45]
Patra CN. P D, J S, Rao MEB. Floating microspheres: Recent trends in the development of gastroretentive floating drug delivery system. Int J Pharmaceut Sci Nanotechnol 2011; 4(1): 1296-306.
[http://dx.doi.org/10.37285/ijpsn.2011.4.1.2]
[46]
Ahmad N, Hasan N, Ahmad Z, Zishan M, Zohrameena S. Momordica charantia: For traditional uses and pharmacological actions. J Drug Deliv Ther 2016; 6(2): 40-4.
[http://dx.doi.org/10.22270/jddt.v6i2.1202]
[47]
Kawashima Y, Niwa T, Takeuchi H, Hino T, Ito Y. Preparation of multiple unit hollow microspheres (microballoons) with acrylic resin containing tranilast and their drug release characteristics (In vitro) and floating behavior (In vivo). J Control Release 1991; 16(3): 279-89.
[http://dx.doi.org/10.1016/0168-3659(91)90004-W]
[48]
Alagusundaram M, Chetty MS, Umashankari K, Badarinath AV, Lavanya C, Ramkanth S. Microspheres as a novel drug delivery system: A review. Int J Chemtech Res 2009; 1(3): 526-34.
[49]
Tewes F, Corrigan OI, Healy AM. Surfactants in pharmaceutical products and systems. In: Encyclopedia of pharmaceutical science and technology. (4th ed.), Boca Raton, FL, USA: CRC Press 2015.
[50]
King TW, Patrick CW Jr. Development andIn vitro characterization of vascular endothelial growth factor (VEGF)-loaded poly(DL-lactic-co-glycolic acid)/poly(ethylene glycol) microspheres using a solid encapsulation/single emulsion/solvent extraction technique. J Biomed Mater Res 2000; 51(3): 383-90.
[http://dx.doi.org/10.1002/1097-4636(20000905)51:3<383:AID-JBM12>3.0.CO;2-D] [PMID: 10880080]
[51]
Yang Y, Chung TS, Ng NP. Morphology, drug distribution, and In vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. Biomaterials 2001; 22(3): 231-41.
[http://dx.doi.org/10.1016/S0142-9612(00)00178-2] [PMID: 11197498]
[52]
Smidsrød O, Skjakbrk G. Alginate as immobilization matrix for cells. Trends Biotechnol 1990; 8(3): 71-8.
[http://dx.doi.org/10.1016/0167-7799(90)90139-O] [PMID: 1366500]
[53]
Bailey AJ, Light ND, Atkins EDT. Chemical cross-linking restrictions on models for the molecular organization of the collagen fibre. Nature 1980; 288(5789): 408-10.
[http://dx.doi.org/10.1038/288408a0] [PMID: 7432539]
[54]
Cooper DR, Davidson RJ. The effect of ultraviolet irradiation on soluble collagen. Biochem J 1965; 97(1): 139-47.
[http://dx.doi.org/10.1042/bj0970139] [PMID: 16749094]
[55]
Korn AH, Feairheller SH, Filachoine EM. Glutaraldehyde: Nature of the reagent. J Mol Biol 1972; 65(3): 525-9.
[http://dx.doi.org/10.1016/0022-2836(72)90206-9] [PMID: 5023670]
[56]
Nimni ME, Cheung D, Strates B, Kodama M, Sheikh K. Chemically modified collagen: A natural biomaterial for tissue replacement. J Biomed Mater Res 1987; 21(6): 741-71.
[http://dx.doi.org/10.1002/jbm.820210606] [PMID: 3036880]
[57]
Wang X, Zhang A, Yan G, Sun W, Han Y, Sun H. Metabolomics and proteomics annotate therapeutic properties of geniposide: Targeting and regulating multiple perturbed pathways. PLoS One 2013; 8(8): e71403.
[http://dx.doi.org/10.1371/journal.pone.0071403] [PMID: 23967205]
[58]
Akao T, Kobashi K, Aburada M. Enzymic studies on the animal and intestinal bacterial metabolism of geniposide. Biol Pharm Bull 1994; 17(12): 1573-6.
[http://dx.doi.org/10.1248/bpb.17.1573] [PMID: 7735197]
[59]
Hermanson GT. Bioconjugate techniques. Academic press 2008.
[60]
Clark DE, Green HC. Alginic acid and process of making same. U.S. Patent, US 2,036,922, 1936.
[61]
Gombotz W, Gombotz WR. Protein release from alginate matrices. Adv Drug Deliv Rev 1998; 31(3): 267-85.
[http://dx.doi.org/10.1016/S0169-409X(97)00124-5] [PMID: 10837629]
[62]
Hazra M, Dasgupta Mandal D, Mandal T, Bhuniya S, Ghosh M. Designing polymeric microparticulate drug delivery system for hydrophobic drug quercetin. Saudi Pharm J 2015; 23(4): 429-36.
[http://dx.doi.org/10.1016/j.jsps.2015.01.007] [PMID: 27134546]
[63]
Joseph JJ, Sangeetha D, Shivashankar M. In vitro release and cytotoxic studies of novel alginate nanocarrier for the antitumor drug: Sunitinib. Regen Eng Transl Med 2019; 5(2): 220-7.
[http://dx.doi.org/10.1007/s40883-018-0090-y]
[64]
Haug A, Claeson K, Hansen SE, Sömme R, Stenhagen E, Palmstierna H. Fractionation of alginic acid. Acta Chem Scand 1959; 13: 601-3.
[http://dx.doi.org/10.3891/acta.chem.scand.13-0601]
[65]
Remminghorst U, Rehm BHA. Bacterial alginates: From biosynthesis to applications. Biotechnol Lett 2006; 28(21): 1701-12.
[http://dx.doi.org/10.1007/s10529-006-9156-x] [PMID: 16912921]
[66]
Rinaudo M. On the abnormal exponents a? and aD in Mark Houwink type equations for wormlike chain polysaccharides. Polym Bull 1992; 27(5): 585-9.
[http://dx.doi.org/10.1007/BF00300608]
[67]
LeRoux MA, Guilak F, Setton LA. Compressive and shear properties of alginate gel: Effects of sodium ions and alginate concentration. J Biomed Mater Res 1999; 47(1): 46-53.
[http://dx.doi.org/10.1002/(SICI)1097-4636(199910)47:1<46:AID-JBM6>3.0.CO;2-N] [PMID: 10400879]
[68]
Kong H, Smith MK, Mooney DJ. Designing alginate hydrogels to maintain viability of immobilized cells. Biomaterials 2003; 24(22): 4023-9.
[http://dx.doi.org/10.1016/S0142-9612(03)00295-3] [PMID: 12834597]
[69]
Zimmermann U, Klöck G, Federlin K, et al. Production of mitogen-contamination free alginates with variable ratios of mannuronic acid to guluronic acid by free flow electrophoresis. Electrophoresis 1992; 13(1): 269-74.
[http://dx.doi.org/10.1002/elps.1150130156] [PMID: 1396520]
[70]
Orive G, Ponce S, Hernández RM, Gascón AR, Igartua M, Pedraz JL. Biocompatibility of microcapsules for cell immobilization elaborated with different type of alginates. Biomaterials 2002; 23(18): 3825-31.
[http://dx.doi.org/10.1016/S0142-9612(02)00118-7] [PMID: 12164186]
[71]
Pelletier S, Hubert P, Payan E, Marchal P, Choplin L, Dellacherie E. Amphiphilic derivatives of sodium alginate and hyaluronate for cartilage repair: Rheological properties. J Biomed Mater Res 2001; 54(1): 102-8.
[http://dx.doi.org/10.1002/1097-4636(200101)54:1<102:AID-JBM12>3.0.CO;2-1] [PMID: 11077408]
[72]
Leonard M, De Boisseson MR, Hubert P, Dalençon F, Dellacherie E. Hydrophobically modified alginate hydrogels as protein carriers with specific controlled release properties. J Control Release 2004; 98(3): 395-405.
[http://dx.doi.org/10.1016/j.jconrel.2004.05.009] [PMID: 15312995]
[73]
Lehenkari PP, Horton MA. Single integrin molecule adhesion forces in intact cells measured by atomic force microscopy. Biochem Biophys Res Commun 1999; 259(3): 645-50.
[http://dx.doi.org/10.1006/bbrc.1999.0827] [PMID: 10364472]
[74]
Koo LY, Irvine DJ, Mayes AM, Lauffenburger DA, Griffith LG. Co-regulation of cell adhesion by nanoscale RGD organization and mechanical stimulus. J Cell Sci 2002; 115(7): 1423-33.
[http://dx.doi.org/10.1242/jcs.115.7.1423] [PMID: 11896190]
[75]
Cardoso M, Costa R, Mano J. Marine origin polysaccharides in drug delivery systems. Mar Drugs 2016; 14(2): 34.
[http://dx.doi.org/10.3390/md14020034] [PMID: 26861358]
[76]
Tønnesen HH, Karlsen J. Alginate in drug delivery systems. Drug Dev Ind Pharm 2002; 28(6): 621-30.
[http://dx.doi.org/10.1081/DDC-120003853] [PMID: 12149954]
[77]
Gonçalves VSS, Gurikov P, Poejo J, et al. Alginate-based hybrid aerogel microparticles for mucosal drug delivery. Eur J Pharm Biopharm 2016; 107: 160-70.
[http://dx.doi.org/10.1016/j.ejpb.2016.07.003] [PMID: 27393563]
[78]
Costa JR, Silva NC, Sarmento B, Pintado M. Potential chitosan-coated alginate nanoparticles for ocular delivery of daptomycin. Eur J Clin Microbiol Infect Dis 2015; 34(6): 1255-62.
[http://dx.doi.org/10.1007/s10096-015-2344-7] [PMID: 25754770]
[79]
Leslie SK, Cohen DJ, Sedlaczek J, Pinsker EJ, Boyan BD, Schwartz Z. Controlled release of rat adipose-derived stem cells from alginate microbeads. Biomaterials 2013; 34(33): 8172-84.
[http://dx.doi.org/10.1016/j.biomaterials.2013.07.017] [PMID: 23906513]
[80]
Aderibigbe B, Buyana B. Alginate in wound dressings. Pharmaceutics 2018; 10(2): 42.
[http://dx.doi.org/10.3390/pharmaceutics10020042] [PMID: 29614804]
[81]
Chopra H, Kumar S, Singh I. Strategies and therapies for wound healing: A review. Curr Drug Targets 2022; 23(1): 87-98.
[http://dx.doi.org/10.2174/1389450122666210415101218] [PMID: 33858310]
[82]
Liao J, Wang B, Huang Y, Qu Y, Peng J, Qian Z. Injectable alginate hydrogel cross-linked by calcium gluconate-loaded porous microspheres for cartilage tissue engineering. ACS Omega 2017; 2(2): 443-54.
[http://dx.doi.org/10.1021/acsomega.6b00495] [PMID: 30023607]
[83]
Alizadeh SH, Nemati S, Baradar KA, Nabavinia M, Beygi KY. Barium-cross-linked alginate-gelatine microcapsule as a potential platform for stem cell production and modular tissue formation. J Microencapsul 2017; 34(5): 488-97.
[http://dx.doi.org/10.1080/02652048.2017.1354940] [PMID: 28699824]
[84]
Henriques Lourenço A, Neves N, Ribeiro-Machado C, et al. Injectable hybrid system for strontium local delivery promotes bone regeneration in a rat critical-sized defect model. Sci Rep 2017; 7(1): 5098.
[http://dx.doi.org/10.1038/s41598-017-04866-4] [PMID: 28698571]
[85]
Barak S, Mudgil D. Locust bean gum: Processing, properties and food applications-A review. Int J Biol Macromol 2014; 66: 74-80.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.02.017] [PMID: 24548746]
[86]
Pollard M, Kelly R, Wahl C, et al. Investigation of equilibrium solubility of a carob galactomannan. Food Hydrocoll 2007; 21(5-6): 683-92.
[http://dx.doi.org/10.1016/j.foodhyd.2006.08.010]
[87]
Naganagouda K, Salimath PV, Mulimani VH. Purification and characterization of endo-beta-1,4 mannanase from Aspergillus niger gr for application in food processing industry. J Microbiol Biotechnol 2009; 19(10): 1184-90.
[PMID: 19884778]
[88]
Cheow WS, Kiew TY, Hadinoto K. Controlled release of Lactobacillus rhamnosus biofilm probiotics from alginate-locust bean gum microcapsules. Carbohydr Polym 2014; 103: 587-95.
[http://dx.doi.org/10.1016/j.carbpol.2014.01.036] [PMID: 24528770]
[89]
Sharma N, Deshpande RD, Sharma D, Sharma RK. Development of locust bean gum and xanthan gum based biodegradable microparticles of celecoxib using a central composite design and its evaluation. Ind Crops Prod 2016; 82: 161-70.
[http://dx.doi.org/10.1016/j.indcrop.2015.11.046]
[90]
Dey PA, Sa BI, Maiti SA. Carboxymethyl ethers of locust bean gum-a review. Int J Pharm Pharm Sci 2011; 3(2): 4-7.
[91]
Dea IC, Morrison A. Chemistry and interactions of seed galactomannans. In: Advances in carbohydrate chemistry and biochemistry Academic Press 1975; 31: pp. 241-312.
[http://dx.doi.org/10.1016/S0065-2318(08)60298-X]
[92]
Sailaja AK, Begum N. Formulation and evaluation of cox-2 inhibitor (etoricoxib) loaded ethyl cellulose nanoparticles for topical drug delivery. Nano Biomed Eng 2018; 10(1): 1-9.
[http://dx.doi.org/10.5101/nbe.v10i1.p1-9]
[93]
Kadam NR, Suvarna V. Microsphere: A brief review. Asian J Biomed Pharmaceut Sci 2015; 5(47): 13.
[http://dx.doi.org/10.15272/ajbps.v5i47.713]
[94]
Minocha N, Saini S, Pandey P. Design of experiments: How to develop and optimize drug delivery systems. TMR Pharmacol Res 2022; 2(3): 10.
[http://dx.doi.org/10.53388/PR202202010]
[95]
Parida P, Mishra SC, Sahoo S, Behera A, Nayak BP. Development and characterization of ethylcellulose based microsphere for sustained release of nifedipine. J Pharm Anal 2016; 6(5): 341-4.
[http://dx.doi.org/10.1016/j.jpha.2014.02.001] [PMID: 29404002]
[96]
Modi M, Goel T, Das T, et al. Ellagic acid & gallic acid from Lagerstroemia speciosa L. inhibit HIV-1 infection through inhibition of HIV-1 protease & reverse transcriptase activity. Indian J Med Res 2013; 137(3): 540-8.
[PMID: 23640562]
[97]
Abhay ML, Verma SS, Rekha F. Formulationa and Characterization of Microspheres of Artemether Literati J pharmaceut Drug Delivery Technol 2015; 1(2): 65-9.
[98]
Karki R, Jha SK. Formulation and evaluation of microspheres containing fluvastatin sodium. IntJ Drug Develop Res 2012; 4(2): 1-9.
[99]
Bhati C, Minocha N, Purohit D, et al. High performance liquid chromatography: Recent patents and advancement. Biomed Pharmacol J 2022; 15(2): 729-46.
[http://dx.doi.org/10.13005/bpj/2411]
[100]
Dey S, Pramanik S, Malgope A. Formulation and optimization of sustained release stavudine microspheres using response surface methodology. ISRN Pharm 2011; 2011: 627623.
[http://dx.doi.org/10.5402/2011/627623]
[101]
Minocha N, Sharma N, Pandey P, Saini S. Formulation and evaluation of solid lipid nanoparticles of wheatgrass (Triticum Aestivum) extract. Neuroquantology 2022; 20(17): 51-7.
[http://dx.doi.org/10.14704/Nq.2022.20.17.Nq88008]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy