Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Polymorphic Variants of ASS1 Gene Related to Arginine Metabolism and the Risk of HCC

Author(s): Kulsoom Bibi, Tehseen Fatima, Saba Sohrab, Ghulam Haider, Shamshad Zarina and Amber Ilyas*

Volume 30, Issue 7, 2023

Published on: 21 June, 2023

Page: [587 - 596] Pages: 10

DOI: 10.2174/0929866530666230529143121

Price: $65

Abstract

Background: Hepatocellular carcinoma is a primary liver cancer and 6th most common cancer globally. Inefficient diagnostic strategies and the limited availability of treatments are the foremost reasons. Variable factors directly impact the disease burden, among them, molecular alterations have been found to play a significant role. In liver, argininosuccinate synthase-1 is a center of arginine metabolism and rate limiting enzyme of urea cycle. It also triggers multiple mechanisms that lead to HCC pathogenesis.

Objectives: The aim of this study is to analyze the ASS1 gene expression, its polymorphic genotype and microsatellite instability among HCC patients from our Pakistani population.

Method: Blood samples were collected from disease and healthy control individuals. Allele-Specific PCR was performed for SNP analysis. MSI of tri and tetra nucleotide repeats were analyzed by PCR. The differential expression of ASS1 gene was also investigated. Furthermore, the reactome database and STRING software were utilized for finding correlations between ASS1 gene with other associated gene/proteins.

Results: The GG wild-type genotype was more prevailed in the disease group as compared to the control. Significant downregulation in ASS1 and NOS2 genes was observed. Bioinformatics analysis reveals the correlation between ASS1 polymorphism and HCC development appears to be linked with the EMT pathway and polyamine production. Furthermore, MSI significantly resided in the disease group. Results were analyzed statistically to calculate the significance of obtained results.

Conclusion: Study concludes that the insight of HCC mechanism through population-specific genetic mutations and altered gene expression of ASS1 might be helpful in early diagnostic and therapeutic purposes.

Graphical Abstract

[1]
Llovet, J.M.; Kelley, R.K.; Villanueva, A.; Singal, A.G.; Pikarsky, E.; Roayaie, S.; Lencioni, R.; Koike, K.; Zucman-Rossi, J.; Finn, R.S. Hepatocellular carcinoma. Nat. Rev. Dis. Primers, 2021, 7(1), 6.
[http://dx.doi.org/10.1038/s41572-020-00240-3] [PMID: 33479224]
[2]
Gao, J.; Xiong, Y.; Wang, Y.; Wang, Y.; Zheng, G.; Xu, H. Hepatitis B virus X protein activates Notch signaling by its effects on Notch1 and Notch4 in human hepatocellular carcinoma. Int. J. Oncol., 2016, 48(1), 329-337.
[http://dx.doi.org/10.3892/ijo.2015.3221] [PMID: 26530164]
[3]
Kapitanov, T.; Neumann, U.P.; Schmeding, M. Hepatocellular carcinoma in liver cirrhosis: Surgical resection versus transarterial chemoembolization - A meta-analysis. Gastroenterol. Res. Pract., 2015, 2015, 696120.
[http://dx.doi.org/10.1155/2015/696120] [PMID: 25642245]
[4]
LoConte, N.K.; Brewster, A.M.; Kaur, J.S.; Merrill, J.K.; Alberg, A.J. Alcohol and cancer: A statement of the American society of clinical oncology. J. Clin. Oncol., 2018, 36(1), 83-93.
[http://dx.doi.org/10.1200/JCO.2017.76.1155] [PMID: 29112463]
[5]
Chang, J.S.; Hsiao, J.R.; Chen, C.H. ALDH2 polymorphism and alcohol-related cancers in Asians: A public health perspective. J. Biomed. Sci., 2017, 24(1), 19.
[http://dx.doi.org/10.1186/s12929-017-0327-y]
[6]
Cao, W.; Yu, P.; Yang, K.; Cao, D. Aflatoxin B1: Metabolism, toxicology, and its involvement in oxidative stress and cancer development. Toxicol. Mech. Methods, 2022, 32(6), 395-419.
[http://dx.doi.org/10.1080/15376516.2021.2021339] [PMID: 34930097]
[7]
Arlt, V.M.; Stiborova, M.; Schmeiser, H.H. Aristolochic acid as a probable human cancer hazard in herbal remedies: A review. Mutagenesis, 2002, 17(4), 265-277.
[http://dx.doi.org/10.1093/mutage/17.4.265] [PMID: 12110620]
[8]
De Mattia, E.; Cecchin, E.; Polesel, J.; Bignucolo, A.; Roncato, R.; Lupo, F.; Crovatto, M.; Buonadonna, A.; Tiribelli, C.; Toffoli, G. Genetic biomarkers for hepatocellular cancer risk in a caucasian population. World J. Gastroenterol., 2017, 23(36), 6674-6684.
[http://dx.doi.org/10.3748/wjg.v23.i36.6674] [PMID: 29085212]
[9]
Chieh Kow, A.W. Transplantation versus liver resection in patients with hepatocellular carcinoma. Transl. Gastroenterol. Hepatol., 2019, 4(5), 33.
[10]
Park, M.K.; Lee, Y.B.; Moon, H.; Choi, N.R.; Kim, M.A.; Jang, H.; Nam, J.Y.; Cho, E.J.; Lee, J.H.; Yu, S.J.; Kim, Y.J.; Yoon, J.H. Effectiveness of lenvatinib versus sorafenib for unresectable hepatocellular carcinoma in patients with hepatic decompensation. Dig. Dis. Sci., 2022, 67(10), 4939-4949.
[http://dx.doi.org/10.1007/s10620-021-07365-9] [PMID: 35048224]
[11]
Long, Y.; Tsai, W.B.; Wang, D.; Hawke, D.H.; Savaraj, N.; Feun, L.G.; Hung, M.C.; Chen, H.H.W.; Kuo, M.T. Argininosuccinate synthetase 1 (ASS1) is a common metabolic marker of chemosensitivity for targeted arginine- and glutamine-starvation therapy. Cancer Lett., 2017, 388, 54-63.
[http://dx.doi.org/10.1016/j.canlet.2016.11.028] [PMID: 27913198]
[12]
Stuehr, D.J. Enzymes of the L-arginine to nitric oxide pathway. J. Nutr., 2004, 134(S10), 2748S-2751S.
[http://dx.doi.org/10.1093/jn/134.10.2748S] [PMID: 15465779]
[13]
Zhou, L.; Wang, Y.; Tian, D.; Yang, J.; Yang, Y.Z. Decreased levels of nitric oxide production and nitric oxide synthase-2 expression are associated with the development and metastasis of hepatocellular carcinoma. Mol. Med. Rep., 2012, 6(6), 1261-1266.
[http://dx.doi.org/10.3892/mmr.2012.1096] [PMID: 23007408]
[14]
Khare, S.; Kim, L.C.; Lobel, G.; Doulias, P.T.; Ischiropoulos, H.; Nissim, I.; Keith, B.; Simon, M.C. ASS1 and ASL suppress growth in clear cell renal cell carcinoma via altered nitrogen metabolism. Cancer Metab., 2021, 9(1), 40.
[http://dx.doi.org/10.1186/s40170-021-00271-8] [PMID: 34861885]
[15]
Silberman, A.; Goldman, O.; Boukobza Assayag, O.; Jacob, A.; Rabinovich, S.; Adler, L.; Lee, J.S.; Keshet, R.; Sarver, A.; Frug, J.; Stettner, N.; Galai, S.; Persi, E.; Halpern, K.B.; Zaltsman-Amir, Y.; Pode-Shakked, B.; Eilam, R.; Anikster, Y.; Nagamani, S.C.S.; Ulitsky, I.; Ruppin, E.; Erez, A. Acid-induced downregulation of ASS1 contributes to the maintenance of intracellular pH in cancer. Cancer Res., 2019, 79(3), 518-533.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-1062] [PMID: 30573518]
[16]
Schcolnik-Cabrera, A.; Juárez-López, D. Dual contribution of the mTOR pathway and of the metabolism of amino acids in prostate cancer. Cell Oncol., 2022, 45(5), 831-859.
[http://dx.doi.org/10.1007/s13402-022-00706-4] [PMID: 36036882]
[17]
Ayoub, W.S.; Steggerda, J.; Yang, J.D.; Kuo, A.; Sundaram, V.; Lu, S.C. Current status of hepatocellular carcinoma detection: Screening strategies and novel biomarkers. Ther. Adv. Med. Oncol., 2019, 11, 1758835919869120.
[http://dx.doi.org/10.1177/1758835919869120] [PMID: 31523283]
[18]
Hafeez Bhatti, A.B.; Dar, F.S.; Waheed, A.; Shafique, K.; Sultan, F.; Shah, N.H. Hepatocellular Carcinoma in Pakistan: National trends and global perspective. Gastroenterol. Res. Pract., 2016, 2016, 5942306.
[http://dx.doi.org/10.1155/2016/5942306] [PMID: 26955390]
[19]
Wu, J.W.; Tseng, T.C.; Liu, C.J.; Su, T.H.; Liu, C.H.; Chen, P.J.; Chen, D-S.; Kao, J-H. Both hepatitis A and hepatitis D infections may be associated with more advanced liver disease in patients with chronic hepatitis B. Adv. Dig. Med., 2021, 8(4), 211-217.
[http://dx.doi.org/10.1002/aid2.13222]
[20]
Rozhok, A.I.; DeGregori, J. The evolution of lifespan and age-dependent cancer risk. Trends Cancer, 2016, 2(10), 552-560.
[http://dx.doi.org/10.1016/j.trecan.2016.09.004] [PMID: 28439564]
[21]
Saha, S.K.; Lee, S.B.; Won, J.; Choi, H.Y.; Kim, K.; Yang, G.M.; Dayem, A.A.; Cho, S. Correlation between oxidative stress, nutrition, and cancer initiation. Int. J. Mol. Sci., 2017, 18(7), 1544.
[http://dx.doi.org/10.3390/ijms18071544] [PMID: 28714931]
[22]
Shokrzadeh, M.; Mohammadpour, A. Evaluation of a modified salt-out method for DNA extraction from whole blood lymphocytes: A simple and economical method for gene polymorphism. Pharmaceut. Biomed. Res., 2018, 4(2), 28-32.
[http://dx.doi.org/10.18502/pbr.v4i2.218]
[23]
Lieu, E.L.; Nguyen, T.; Rhyne, S.; Kim, J. Amino acids in cancer. Exp. Mol. Med., 2020, 52(1), 15-30.
[http://dx.doi.org/10.1038/s12276-020-0375-3] [PMID: 31980738]
[24]
Li, D.; Lu, Y.; Zhao, F.; Yan, L.; Yang, X.; Wei, L.; Yang, X.; Yuan, X.; Yang, K. Targeted metabolomic profiles of serum amino acids and acylcarnitines related to gastric cancer. PeerJ, 2022, 10, e14115.
[http://dx.doi.org/10.7717/peerj.14115] [PMID: 36221263]
[25]
Wei, Z.; Liu, X.; Cheng, C.; Yu, W.; Yi, P. Metabolism of amino acids in cancer. Front. Cell Dev. Biol., 2021, 8, 603837.
[http://dx.doi.org/10.3389/fcell.2020.603837] [PMID: 33511116]
[26]
Kim, R.H.; Coates, J.M.; Bowles, T.L.; McNerney, G.P.; Sutcliffe, J.; Jung, J.U.; Gandour-Edwards, R.; Chuang, F.Y.S.; Bold, R.J.; Kung, H.J. Arginine deiminase as a novel therapy for prostate cancer induces autophagy and caspase-independent apoptosis. Cancer Res., 2009, 69(2), 700-708.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-3157] [PMID: 19147587]
[27]
Ji, J.X.; Cochrane, D.R.; Tessier-Cloutier, B.; Chen, S.Y.; Ho, G.; Pathak, K.V.; Alcazar, I.N.; Farnell, D.; Leung, S.; Cheng, A.; Chow, C.; Colborne, S.; Negri, G.L.; Kommoss, F.; Karnezis, A.; Morin, G.B.; McAlpine, J.N.; Gilks, C.B.; Weissman, B.E.; Trent, J.M.; Hoang, L.; Pirrotte, P.; Wang, Y.; Huntsman, D.G. Arginine Depletion Therapy with ADI-PEG20 Limits Tumor Growth in Argininosuccinate Synthase-Deficient Ovarian Cancer, Including Small-Cell Carcinoma of the Ovary, Hypercalcemic Type. Clin. Cancer Res., 2020, 26(16), 4402-4413.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-1905] [PMID: 32409304]
[28]
Hall, P.E.; Ready, N.; Johnston, A.; Bomalaski, J.S.; Venhaus, R.R.; Sheaff, M.; Krug, L.; Szlosarek, P.W. Phase II study of arginine deprivation therapy with pegargiminase in patients with relapsed sensitive or refractory small-cell lung cancer. Clin. Lung Cancer, 2020, 21(6), 527-533.
[http://dx.doi.org/10.1016/j.cllc.2020.07.012] [PMID: 32859536]
[29]
Chen, Y.J.; Shen, C.J.; Yu, S.H.; Lin, C.L.; Shih, H.M. Increased risk of hepatocellular carcinoma in patients with traumatic liver injury. Medicine, 2022, 101(6), e28837.
[http://dx.doi.org/10.1097/MD.0000000000028837] [PMID: 35147128]
[30]
Melaram, R. Environmental risk factors implicated in liver disease: A mini-review. Front. Public Health, 2021, 9, 683719.
[http://dx.doi.org/10.3389/fpubh.2021.683719] [PMID: 34249849]
[31]
Marrero, J.A.; Kulik, L.M.; Sirlin, C.B.; Zhu, A.X.; Finn, R.S.; Abecassis, M.M.; Roberts, L.R.; Heimbach, J.K. Diagnosis, staging, and management of hepatocellular carcinoma: 2018 Practice guidance by the american association for the study of liver diseases. Hepatology, 2018, 68(2), 723-750.
[http://dx.doi.org/10.1002/hep.29913] [PMID: 29624699]
[32]
Wang, W.; Li, Q.; Huang, G.; Lin, B.; Lin, D.Z.; Ma, Y.; Zhang, Z.; Chen, T.; Zhou, J. Tandem mass tag-based proteomic analysis of potential biomarkers for hepatocellular carcinoma differentiation. Onco. Targets. Ther., 2021, 14, 1007-1020.
[http://dx.doi.org/10.2147/OTT.S273823] [PMID: 33603407]
[33]
Furusawa, A.; Miyamoto, M.; Takano, M.; Tsuda, H.; Song, Y.S.; Aoki, D.; Miyasaka, N.; Inazawa, J.; Inoue, J. Ovarian cancer therapeutic potential of glutamine depletion based on GS expression. Carcinogenesis, 2018, 39(6), 758-766.
[http://dx.doi.org/10.1093/carcin/bgy033] [PMID: 29617730]
[34]
Szlosarek, P.W.; Klabatsa, A.; Pallaska, A.; Sheaff, M.; Smith, P.; Crook, T.; Grimshaw, M.J.; Steele, J.P.; Rudd, R.M.; Balkwill, F.R.; Fennell, D.A. In vivo loss of expression of argininosuccinate synthetase in malignant pleural mesothelioma is a biomarker for susceptibility to arginine depletion. Clin. Cancer Res., 2006, 12(23), 7126-7131.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1101] [PMID: 17145837]
[35]
Schonfeld, M.; Zhao, J.; Komatz, A.; Weinman, S.A.; Tikhanovich, I. The polymorphism rs975484 in the protein arginine methyltransferase 1 gene modulates expression of immune checkpoint genes in hepatocellular carcinoma. J. Biol. Chem., 2020, 295(20), 7126-7137.
[http://dx.doi.org/10.1074/jbc.RA120.013401] [PMID: 32245889]
[36]
Song, T.; Li, L.; Wu, S.; Liu, Y.; Guo, C.; Wang, W.; Dai, L.; Zhang, T.; Wu, H.; Su, B. Peripheral blood genetic biomarkers for the early diagnosis of hepatocellular carcinoma. Front. Oncol., 2021, 11, 583714.
[http://dx.doi.org/10.3389/fonc.2021.583714] [PMID: 33777736]
[37]
Ierardi, E.; Rosania, R.; Zotti, M.; Giorgio, F.; Prencipe, S.; Valle, N.D.; Francesco, V.D.; Panella, C. From chronic liver disorders to hepatocellular carcinoma: Molecular and genetic pathways. World J. Gastrointest. Oncol., 2010, 2(6), 259-264.
[http://dx.doi.org/10.4251/wjgo.v2.i6.259] [PMID: 21160638]
[38]
Bell, R.J.A.; Rube, H.T.; Kreig, A.; Mancini, A.; Fouse, S.D.; Nagarajan, R.P.; Choi, S.; Hong, C.; He, D.; Pekmezci, M.; Wiencke, J.K.; Wrensch, M.R.; Chang, S.M.; Walsh, K.M.; Myong, S.; Song, J.S.; Costello, J.F. The transcription factor GABP selectively binds and activates the mutant TERT promoter in cancer. Science, 2015, 348(6238), 1036-1039.
[http://dx.doi.org/10.1126/science.aab0015] [PMID: 25977370]
[39]
Chen, Y.; Zhang, H.; Liao, W.; Zhou, J.; He, G.; Xie, X.; Fei, R.; Qin, L.; Wei, L.; Chen, H. FOXP3 gene polymorphism is associated with hepatitis B-related hepatocellular carcinoma in China. J. Exp. Clin. Cancer Res., 2013, 32(1), 39.
[http://dx.doi.org/10.1186/1756-9966-32-39] [PMID: 23759077]
[40]
Delage, B.; Fennell, D.A.; Nicholson, L.; McNeish, I.; Lemoine, N.R.; Crook, T.; Szlosarek, P.W. Arginine deprivation and argininosuccinate synthetase expression in the treatment of cancer. Int. J. Cancer, 2010, 126(12), 2762-2772.
[http://dx.doi.org/10.1002/ijc.25202] [PMID: 20104527]
[41]
Feun, L.G.; Marini, A.; Walker, G.; Elgart, G.; Moffat, F.; Rodgers, S.E.; Wu, C.J.; You, M.; Wangpaichitr, M.; Kuo, M.T.; Sisson, W.; Jungbluth, A.A.; Bomalaski, J.; Savaraj, N. Negative argininosuccinate synthetase expression in melanoma tumours may predict clinical benefit from arginine-depleting therapy with pegylated arginine deiminase. Br. J. Cancer, 2012, 106(9), 1481-1485.
[http://dx.doi.org/10.1038/bjc.2012.106] [PMID: 22472884]
[42]
Wheatley, D.N. Controlling cancer by restricting arginine availability-arginine-catabolizing enzymes as anticancer agents. Anticancer Drugs, 2004, 15(9), 825-833.
[http://dx.doi.org/10.1097/00001813-200410000-00002] [PMID: 15457122]
[43]
Koike, S.; Kabuyama, Y.; Obeng, K.A.; Sugahara, K.; Sato, Y.; Yoshizawa, F. An increase in liver polyamine concentration contributes to the tryptophan-induced acute stimulation of rat hepatic protein synthesis. Nutrients, 2020, 12(9), 2665.
[http://dx.doi.org/10.3390/nu12092665] [PMID: 32882842]
[44]
Pegg, A.E.; Casero, R.A., Jr Current status of the polyamine research field. Methods Mol. Biol., 2011, 720, 3-35.
[http://dx.doi.org/10.1007/978-1-61779-034-8_1] [PMID: 21318864]
[45]
Vandenberg, C.A. Integrins step up the pace of cell migration through polyamines and potassium channels. Proc. Natl. Acad. Sci., 2008, 105(20), 7109-7110.
[http://dx.doi.org/10.1073/pnas.0803231105] [PMID: 18480268]
[46]
Hajaj, E.; Sciacovelli, M.; Frezza, C.; Erez, A. The context-specific roles of urea cycle enzymes in tumorigenesis. Mol. Cell, 2021, 81(18), 3749-3759.
[http://dx.doi.org/10.1016/j.molcel.2021.08.005] [PMID: 34469752]
[47]
Rabinovich, S.; Adler, L.; Yizhak, K.; Sarver, A.; Silberman, A.; Agron, S.; Stettner, N.; Sun, Q.; Brandis, A.; Helbling, D.; Korman, S.; Itzkovitz, S.; Dimmock, D.; Ulitsky, I.; Nagamani, S.C.S.; Ruppin, E.; Erez, A. Diversion of aspartate in ASS1-deficient tumours fosters de novo pyrimidine synthesis. Nature, 2015, 527(7578), 379-383.
[http://dx.doi.org/10.1038/nature15529] [PMID: 26560030]
[48]
Tao, X.; Zuo, Q.; Ruan, H.; Wang, H.; Jin, H.; Cheng, Z.; Lv, Y.; Qin, W.; Wang, C. Argininosuccinate synthase 1 suppresses cancer cell invasion by inhibiting STAT3 pathway in hepatocellular carcinoma. Acta Biochim. Biophys. Sin., 2019, 51(3), 263-276.
[http://dx.doi.org/10.1093/abbs/gmz005] [PMID: 30883650]
[49]
Affronti, H.C.; Rowsam, A.M.; Pellerite, A.J.; Rosario, S.R.; Long, M.D.; Jacobi, J.J.; Bianchi-Smiraglia, A.; Boerlin, C.S.; Gillard, B.M.; Karasik, E.; Foster, B.A.; Moser, M.; Wilton, J.H.; Attwood, K.; Nikiforov, M.A.; Azabdaftari, G.; Pili, R.; Phillips, J.G.; Casero, R.A., Jr; Smiraglia, D.J. Pharmacological polyamine catabolism upregulation with methionine salvage pathway inhibition as an effective prostate cancer therapy. Nat. Commun., 2020, 11(1), 52.
[http://dx.doi.org/10.1038/s41467-019-13950-4] [PMID: 31911608]
[50]
Zhang, X.; Li, J.; Ghoshal, K.; Fernandez, S.; Li, L. Identification of a subtype of hepatocellular carcinoma with poor prognosis based on expression of genes within the glucose metabolic pathway. Cancers, 2019, 11(12), 2023.
[http://dx.doi.org/10.3390/cancers11122023] [PMID: 31847435]
[51]
Le, D.T.; Durham, J.N.; Smith, K.N.; Wang, H.; Bartlett, B.R.; Aulakh, L.K.; Lu, S.; Kemberling, H.; Wilt, C.; Luber, B.S.; Wong, F.; Azad, N.S.; Rucki, A.A.; Laheru, D.; Donehower, R.; Zaheer, A.; Fisher, G.A.; Crocenzi, T.S.; Lee, J.J.; Greten, T.F.; Duffy, A.G.; Ciombor, K.K.; Eyring, A.D.; Lam, B.H.; Joe, A.; Kang, S.P.; Holdhoff, M.; Danilova, L.; Cope, L.; Meyer, C.; Zhou, S.; Goldberg, R.M.; Armstrong, D.K.; Bever, K.M.; Fader, A.N.; Taube, J.; Housseau, F.; Spetzler, D.; Xiao, N.; Pardoll, D.M.; Papadopoulos, N.; Kinzler, K.W.; Eshleman, J.R.; Vogelstein, B.; Anders, R.A.; Diaz, L.A., Jr Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science, 2017, 357(6349), 409-413.
[http://dx.doi.org/10.1126/science.aan6733] [PMID: 28596308]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy