Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Antitumor Mechanisms of Molecules Secreted by Trypanosoma cruzi in Colon and Breast Cancer: A Review

Author(s): Soheil Sadr, Shakila Ghiassi, Narges Lotfalizadeh, Pouria Ahmadi Simab, Ashkan Hajjafari and Hassan Borji*

Volume 23, Issue 15, 2023

Published on: 13 June, 2023

Page: [1710 - 1721] Pages: 12

DOI: 10.2174/1871520623666230529141544

Price: $65

Abstract

Background: Molecules secreted by Trypanosoma cruzi (T. cruzi) have beneficial effects on the immune system and can fight against cancer by inhibiting the growth of tumor cells, preventing angiogenesis, and promoting immune activation.

Objective: This study aimed to investigate the effects of molecules secreted by Trypanosoma cruzi on the growth of colon and breast cancer cells, to understand the underlying mechanisms of action.

Results: Calreticulin from T. cruzi, a 45 kDa protein, participates in essential changes in the tumor microenvironment by triggering an adaptive immune response, exerting an antiangiogenic effect, and inhibiting cell growth. On the other hand, a 21 kDa protein (P21) secreted at all stages of the parasite's life cycle can inhibit cell invasion and migration. Mucins, such as Tn, sialyl-Tn, and TF, are present both in tumor cells and on the surface of T. cruzi and are characterized as common antigenic determinants, inducing a cross-immune response. In addition, molecules secreted by the parasite are used recombinantly in immunotherapy against cancer for their ability to generate a reliable and long-lasting immune response.

Conclusion: By elucidating the antitumor mechanisms of the molecules secreted by T. cruzi, this study provides valuable insights for developing novel therapeutic strategies to combat colon and breast cancer.

Graphical Abstract

[1]
Ailioaie, L.M.; Ailioaie, C.; Litscher, G. Latest innovations and nanotechnologies with curcumin as a nature-inspired photosensitizer applied in the photodynamic therapy of cancer. Pharmaceutics, 2021, 13(10), 1562.
[http://dx.doi.org/10.3390/pharmaceutics13101562] [PMID: 34683855]
[2]
Najafi, M.; Majidpoor, J.; Toolee, H.; Mortezaee, K. The current knowledge concerning solid cancer and therapy. J. Biochem. Mol. Toxicol., 2021, 35(11), e22900.
[http://dx.doi.org/10.1002/jbt.22900] [PMID: 34462987]
[3]
Araghi, M.; Soerjomataram, I.; Jenkins, M.; Brierley, J.; Morris, E.; Bray, F.; Arnold, M. Global trends in colorectal cancer mortality: projections to the year 2035. Int. J. Cancer, 2019, 144(12), 2992-3000.
[http://dx.doi.org/10.1002/ijc.32055] [PMID: 30536395]
[4]
Joseph, D.A.; King, J.B.; Dowling, N.F.; Thomas, C.C.; Richardson, L.C. Vital signs: Colorectal cancer screening test use—United States, 2018. MMWR Morb. Mortal. Wkly. Rep., 2020, 69(10), 253-259.
[http://dx.doi.org/10.15585/mmwr.mm6910a1] [PMID: 32163384]
[5]
Hussain, A.M.A.; Lafta, R.K. Cancer trends in Iraq 2000–2016. Oman Med. J., 2021, 36(1), e219.
[http://dx.doi.org/10.5001/omj.2021.18] [PMID: 33552559]
[6]
Kow, A.W.C. Hepatic metastasis from colorectal cancer. J. Gastrointest. Oncol., 2019, 10(6), 1274-1298.
[http://dx.doi.org/10.21037/jgo.2019.08.06] [PMID: 31949948]
[7]
Kaushik, I.; Ramachandran, S.; Prasad, S.; Srivastava, S.K. Drug rechanneling: A novel paradigm for cancer treatment. Semin. Cancer Biol., 2021, 68, 279-290.
[http://dx.doi.org/10.1016/j.semcancer.2020.03.011] [PMID: 32437876]
[8]
Gao, Q.; Feng, J.; Liu, W.; Wen, C.; Wu, Y.; Liao, Q.; Zou, L.; Sui, X.; Xie, T.; Zhang, J.; Hu, Y. Opportunities and challenges for co-delivery nanomedicines based on combination of phytochemicals with chemotherapeutic drugs in cancer treatment. Adv. Drug Deliv. Rev., 2022, 188, 114445.
[http://dx.doi.org/10.1016/j.addr.2022.114445] [PMID: 35820601]
[9]
Stewart, C.; Ralyea, C.; Lockwood, S. Ovarian cancer: An integrated review. Semin. Oncol. Nurs., 2019, 35(2), 151-156.
[http://dx.doi.org/10.1016/j.soncn.2019.02.001] [PMID: 30867104]
[10]
Liang, J.L.; Luo, G.F.; Chen, W.H.; Zhang, X.Z. Recent advances in engineered materials for immunotherapy‐involved combination cancer therapy. Adv. Mater., 2021, 33(31), 2007630.
[http://dx.doi.org/10.1002/adma.202007630] [PMID: 34050564]
[11]
Saxena, M.; van der Burg, S.H.; Melief, C.J.M.; Bhardwaj, N. Therapeutic cancer vaccines. Nat. Rev. Cancer, 2021, 21(6), 360-378.
[http://dx.doi.org/10.1038/s41568-021-00346-0] [PMID: 33907315]
[12]
Hollingsworth, R.E.; Jansen, K. Turning the corner on therapeutic cancer vaccines. NPJ Vaccines, 2019, 4(1), 7.
[http://dx.doi.org/10.1038/s41541-019-0103-y] [PMID: 30774998]
[13]
Eissa, M.M.; Ismail, C.A.; El-Azzouni, M.Z.; Ghazy, A.A.; Hadi, M.A. Immuno-therapeutic potential of Schistosoma mansoni and Trichinella spiralis antigens in a murine model of colon cancer. Invest. New Drugs, 2019, 37(1), 47-56.
[http://dx.doi.org/10.1007/s10637-018-0609-6] [PMID: 29808307]
[14]
Darani, H.Y.; Yousefi, M. Parasites and cancers: Parasite antigens as possible targets for cancer immunotherapy. Future Oncol., 2012, 8(12), 1529-1535.
[http://dx.doi.org/10.2217/fon.12.155] [PMID: 23231515]
[15]
Guan, W.; Zhang, X.; Wang, X.; Lu, S.; Yin, J.; Zhang, J. Employing parasite against cancer: A lesson from the canine tapeworm Echinococcus granulocus. Front. Pharmacol., 2019, 10, 1137.
[http://dx.doi.org/10.3389/fphar.2019.01137] [PMID: 31607934]
[16]
Yousofi Darani, H.; Daneshpour, S.; Kefayat, A.H.; Mofid, M.R.; Rostami Rad, S. Effect of hydatid cyst fluid antigens on induction of apoptosis on breast cancer cells. Adv. Biomed. Res., 2019, 8(1), 27.
[http://dx.doi.org/10.4103/abr.abr_220_18] [PMID: 31123670]
[17]
Zininga, T.; Ramatsui, L.; Shonhai, A. Heat shock proteins as immunomodulants. Molecules, 2018, 23(11), 2846.
[http://dx.doi.org/10.3390/molecules23112846] [PMID: 30388847]
[18]
Huang, J.; Yang, B.; Peng, Y.; Huang, J.; Wong, S.H.D.; Bian, L.; Zhu, K.; Shuai, X.; Han, S. Nanomedicine‐boosting tumor immunogenicity for enhanced immunotherapy. Adv. Funct. Mater., 2021, 31(21), 2011171.
[http://dx.doi.org/10.1002/adfm.202011171]
[19]
Junqueira, C.; Santos, L.I.; Galvão-Filho, B.; Teixeira, S.M.; Rodrigues, F.G.; DaRocha, W.D.; Chiari, E.; Jungbluth, A.A.; Ritter, G.; Gnjatic, S.; Old, L.J.; Gazzinelli, R.T. Trypanosoma cruzi as an effective cancer antigen delivery vector. Proc. Natl. Acad. Sci. USA, 2011, 108(49), 19695-19700.
[http://dx.doi.org/10.1073/pnas.1110030108] [PMID: 22114198]
[20]
Chen, L.; He, Z.; Qin, L.; Li, Q.; Shi, X.; Zhao, S.; Chen, L.; Zhong, N.; Chen, X. Antitumor effect of malaria parasite infection in a murine Lewis lung cancer model through induction of innate and adaptive immunity. PLoS One, 2011, 6(9), e24407.
[http://dx.doi.org/10.1371/journal.pone.0024407] [PMID: 21931708]
[21]
Berriel, E.; Russo, S.; Monin, L.; Festari, M.F.; Berois, N.; Fernández, G.; Freire, T.; Osinaga, E. Antitumor activity of human hydatid cyst fluid in a murine model of colon cancer. Sc. World J. , 2013, 2013, 1-7.
[http://dx.doi.org/10.1155/2013/230176] [PMID: 24023528]
[22]
Ubillos, L.; Freire, T.; Berriel, E.; Chiribao, M.L.; Chiale, C.; Festari, M.F.; Medeiros, A.; Mazal, D.; Rondán, M.; Bollati-Fogolín, M.; Rabinovich, G.A.; Robello, C.; Osinaga, E. Trypanosoma cruzi extracts elicit protective immune response against chemically induced colon and mammary cancers. Int. J. Cancer, 2016, 138(7), 1719-1731.
[http://dx.doi.org/10.1002/ijc.29910] [PMID: 26519949]
[23]
Baird, J.R.; Fox, B.A.; Sanders, K.L.; Lizotte, P.H.; Cubillos-Ruiz, J.R.; Scarlett, U.K.; Rutkowski, M.R.; Conejo-Garcia, J.R.; Fiering, S.; Bzik, D.J. Avirulent Toxoplasma gondii generates therapeutic antitumor immunity by reversing immunosuppression in the ovarian cancer microenvironment. Cancer Res., 2013, 73(13), 3842-3851.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-1974] [PMID: 23704211]
[24]
Lidani, K.C.F.; Andrade, F.A.; Bavia, L.; Damasceno, F.S.; Beltrame, M.H.; Messias-Reason, I.J.; Sandri, T.L. Chagas disease: From discovery to a worldwide health problem. Front. Public Health, 2019, 7, 166.
[http://dx.doi.org/10.3389/fpubh.2019.00166] [PMID: 31312626]
[25]
Echavarría, N.G.; Echeverría, L.E.; Stewart, M.; Gallego, C.; Saldarriaga, C. Chagas disease: Chronic chagas cardiomyopathy. Curr. Probl. Cardiol., 2021, 46(3), 100507.
[http://dx.doi.org/10.1016/j.cpcardiol.2019.100507] [PMID: 31983471]
[26]
Pérez-Molina, J.A.; Molina, I. Chagas disease. Lancet, 2018, 391(10115), 82-94.
[http://dx.doi.org/10.1016/S0140-6736(17)31612-4] [PMID: 28673423]
[27]
Martín-Escolano, J.; Marín, C.; Rosales, M.J.; Tsaousis, A.D.; Medina-Carmona, E.; Martín-Escolano, R. An updated view of the Trypanosoma cruzi life cycle: Intervention points for an effective treatment. ACS Infect. Dis., 2022, 8(6), 1107-1115.
[http://dx.doi.org/10.1021/acsinfecdis.2c00123] [PMID: 35652513]
[28]
Bivona, A.E.; Alberti, A.S.; Cerny, N.; Trinitario, S.N.; Malchiodi, E.L. Chagas disease vaccine design: The search for an efficient Trypanosoma cruzi immune-mediated control. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(5), 165658.
[http://dx.doi.org/10.1016/j.bbadis.2019.165658] [PMID: 31904415]
[29]
Villanueva-Lizama, L.E.; Cruz-Chan, J.V.; Versteeg, L.; Teh-Poot, C.F.; Hoffman, K.; Kendricks, A.; Keegan, B.; Pollet, J.; Gusovsky, F.; Hotez, P.J.; Bottazzi, M.E.; Jones, K.M. TLR4 agonist protects against Trypanosoma cruzi acute lethal infection by decreasing cardiac parasite burdens. Parasite Immunol., 2020, 42(10), e12769.
[http://dx.doi.org/10.1111/pim.12769] [PMID: 32592180]
[30]
Acosta, R.E.V.; Araujo, F.C.L.; Fiocca, V.F.; Montes, C.L.; Gruppi, A. Understanding CD8+ T cell immunity to Trypanosoma cruzi and how to improve it. Trends Parasitol., 2019, 35(11), 899-917.
[http://dx.doi.org/10.1016/j.pt.2019.08.006] [PMID: 31607632]
[31]
Ramírez-Toloza, G.; Sosoniuk-Roche, E.; Valck, C.; Aguilar-Guzmán, L.; Ferreira, V.P.; Ferreira, A. Trypanosoma cruzi calreticulin: Immune evasion, infectivity, and tumorigenesis. Trends Parasitol., 2020, 36(4), 368-381.
[http://dx.doi.org/10.1016/j.pt.2020.01.007] [PMID: 32191851]
[32]
Borges, B.C.; Uehara, I.A.; dos Santos, M.A.; Martins, F.A.; de Souza, F.C.; Junior, Á.F.; da Luz, F.A.C.; da Costa, M.S.; Notário, A.F.O.; Lopes, D.S.; Teixeira, S.C.; Teixeira, T.L.; de Castilhos, P.; da Silva, C.V.; Silva, M.J.B. The recombinant protein based on Trypanosoma cruzi P21 interacts with CXCR4 receptor and abrogates the invasive phenotype of human breast cancer cells. Front. Cell Dev. Biol., 2020, 8, 569729.
[http://dx.doi.org/10.3389/fcell.2020.569729] [PMID: 33195200]
[33]
Garcia, S.B.; Aranha, A.L.; Garcia, F.R.B.; Basile, F.V.; Pinto, A.P.M.; Oliveira, E.C.; Zucoloto, S. A retrospective study of histopathological findings in 894 cases of megacolon: What is the relationship between megacolon and colonic cancer? Rev. Inst. Med. Trop. São Paulo, 2003, 45(2), 91-93.
[http://dx.doi.org/10.1590/S0036-46652003000200007] [PMID: 12754574]
[34]
Menna-Barreto, R.F.S.; Salomão, K.; Dantas, A.P.; Santa-Rita, R.M.; Soares, M.J.; Barbosa, H.S.; de Castro, S.L. Different cell death pathways induced by drugs in Trypanosoma cruzi: An ultrastructural study. Micron, 2009, 40(2), 157-168.
[http://dx.doi.org/10.1016/j.micron.2008.08.003] [PMID: 18849169]
[35]
de Castro Andreassa, E.; Santos, M.D.M.; Wassmandorf, R.; Wippel, H.H.; Carvalho, P.C.; Fischer, J.S.G.; Souza, T.A.C.B. Proteomic changes in Trypanosoma cruzi epimastigotes treated with the proapoptotic compound PAC-1. Biochim. Biophys. Acta. Proteins Proteomics, 2021, 1869(2), 140582.
[http://dx.doi.org/10.1016/j.bbapap.2020.140582] [PMID: 33285319]
[36]
Atayde, V.D.; Jasiulionis, M.G.; Cortez, M.; Yoshida, N. A recombinant protein based on Trypanosoma cruzi surface molecule gp82 induces apoptotic cell death in melanoma cells. Melanoma Res., 2008, 18(3), 172-183.
[http://dx.doi.org/10.1097/CMR.0b013e3282feeaab] [PMID: 18477891]
[37]
Cardoso, M.S.; Reis-Cunha, J.L.; Bartholomeu, D.C. Evasion of the immune response by Trypanosoma cruzi during acute infection. Front. Immunol., 2016, 6, 659.
[http://dx.doi.org/10.3389/fimmu.2015.00659] [PMID: 26834737]
[38]
Bunkofske, M.E.; Perumal, N.; White, B.; Strauch, E.M.; Tarleton, R. Epitopes in the glycosylphosphatidylinositol attachment signal peptide of Trypanosoma cruzi mucin proteins generate robust but delayed and nonprotective CD8+ T cell responses. J. Immunol., 2023, 210(4), 420-430.
[http://dx.doi.org/10.4049/jimmunol.2200723] [PMID: 36603035]
[39]
Taylor, M.C.; Ward, A.; Olmo, F.; Jayawardhana, S.; Francisco, A.F.; Lewis, M.D.; Kelly, J.M. Intracellular DNA replication and differentiation of Trypanosoma cruzi is asynchronous within individual host cells in vivo at all stages of infection. PLoS Negl. Trop. Dis., 2020, 14(3), e0008007.
[http://dx.doi.org/10.1371/journal.pntd.0008007] [PMID: 32196491]
[40]
Abras, A.; Ballart, C.; Fernández-Arévalo, A.; Pinazo, M.J.; Gascón, J.; Muñoz, C.; Gállego, M. Worldwide control and management of Chagas disease in a new era of globalization: A close look at congenital Trypanosoma cruzi infection. Clin. Microbiol. Rev., 2022, 35(2), e00152-e21.
[http://dx.doi.org/10.1128/cmr.00152-21] [PMID: 35239422]
[41]
Carlier, Y.; Altcheh, J.; Angheben, A.; Freilij, H.; Luquetti, A.O.; Schijman, A.G.; Segovia, M.; Wagner, N.; Albajar Vinas, P. Congenital Chagas disease: Updated recommendations for prevention, diagnosis, treatment, and follow-up of newborns and siblings, girls, women of childbearing age, and pregnant women. PLoS Negl. Trop. Dis., 2019, 13(10), e0007694.
[http://dx.doi.org/10.1371/journal.pntd.0007694] [PMID: 31647811]
[42]
Guarner, J. Chagas disease as example of a reemerging parasite. Semin. Diagn. Pathol., 2019, 36(3), 164-169.
[http://dx.doi.org/10.1053/j.semdp.2019.04.008] [PMID: 31006555]
[43]
Rios, L.; Campos, E.E.; Menon, R.; Zago, M.P.; Garg, N.J. Epidemiology and pathogenesis of maternal-fetal transmission of Trypanosoma cruzi and a case for vaccine development against congenital Chagas disease. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(3), 165591.
[http://dx.doi.org/10.1016/j.bbadis.2019.165591] [PMID: 31678160]
[44]
Chatelain, E.; Konar, N. Translational challenges of animal models in Chagas disease drug development: A review. Drug Des. Devel. Ther., 2015, 9, 4807-4823.
[http://dx.doi.org/10.2147/DDDT.S90208] [PMID: 26316715]
[45]
Pino-Marín, A.; Medina-Rincón, G.J.; Gallo-Bernal, S.; Duran-Crane, A.; Arango Duque, Á.I.; Rodríguez, M.J.; Medina-Mur, R.; Manrique, F.T.; Forero, J.F.; Medina, H.M. Chagas cardiomyopathy: From Romaña sign to heart failure and sudden cardiac death. Pathogens, 2021, 10(5), 505.
[http://dx.doi.org/10.3390/pathogens10050505] [PMID: 33922366]
[46]
Zuma, A.A.; Dos Santos, B.E.; de Souza, W. Basic biology of Trypanosoma cruzi. Curr. Pharm. Des., 2021, 27(14), 1671-1732.
[http://dx.doi.org/10.2174/18734286MTEyDMDQ2z] [PMID: 33272165]
[47]
Bonfim-Melo, A.; Ferreira, E.R.; Florentino, P.T.V.; Mortara, R.A. Amastigote synapse: The tricks of Trypanosoma cruzi extracellular amastigotes. Front. Microbiol., 2018, 9, 1341.
[http://dx.doi.org/10.3389/fmicb.2018.01341] [PMID: 30013522]
[48]
Araujo, F.C.L.; Tosello, B.J.; Rodriguez, C.; Canale, F.P.; Fiocca, V.F.; Boccardo, S.; Beccaria, C.G.; Adoue, V.; Joffre, O.; Gruppi, A.; Montes, C.L.; Acosta, R.E.V. Limited Foxp3+ regulatory T cells response during acute Trypanosoma cruzi infection is required to allow the emergence of robust parasite-specific CD8+ T cell immunity. Front. Immunol., 2018, 9, 2555.
[http://dx.doi.org/10.3389/fimmu.2018.02555] [PMID: 30455700]
[49]
Díaz, L.I.M.; De Pablos, L.M.; Longhi, S.A.; Zago, M.P.; Schijman, A.G.; Osuna, A. Immune complexes in chronic Chagas disease patients are formed by exovesicles from Trypanosoma cruzi carrying the conserved MASP N-terminal region. Sci. Rep., 2017, 7(1), 44451.
[http://dx.doi.org/10.1038/srep44451] [PMID: 28294160]
[50]
das Dores Pereira, R.; Rabelo, R.A.N.; Leite, P.G.; Cramer, A.; Botelho, A.F.M.; Cruz, J.S.; Régis, W.C.B.; Perretti, M.; Teixeira, M.M.; Machado, F.S. Role of formyl peptide receptor 2 (FPR2) in modulating immune response and heart inflammation in an experimental model of acute and chronic Chagas disease. Cell. Immunol., 2021, 369, 104427.
[http://dx.doi.org/10.1016/j.cellimm.2021.104427]
[51]
Arnold, M.; Sierra, M.S.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global patterns and trends in colorectal cancer incidence and mortality. Gut, 2017, 66(4), 683-691.
[http://dx.doi.org/10.1136/gutjnl-2015-310912] [PMID: 26818619]
[52]
Kopetz, S.; Chang, G.J.; Overman, M.J.; Eng, C.; Sargent, D.J.; Larson, D.W.; Grothey, A.; Vauthey, J.N.; Nagorney, D.M.; McWilliams, R.R. Improved survival in metastatic colorectal cancer is associated with adoption of hepatic resection and improved chemotherapy. J. Clin. Oncol., 2009, 27(22), 3677-3683.
[http://dx.doi.org/10.1200/JCO.2008.20.5278] [PMID: 19470929]
[53]
Sokolova, O.; Naumann, M. Crosstalk between DNA damage and inflammation in the multiple steps of gastric carcinogenesis. Curr. Top. Microbiol. Immunol., 2019, 421, 107-137.
[54]
Ruan, H.; Leibowitz, B.J.; Zhang, L.; Yu, J. Immunogenic cell death in colon cancer prevention and therapy. Mol. Carcinog., 2020, 59(7), 783-793.
[http://dx.doi.org/10.1002/mc.23183] [PMID: 32215970]
[55]
Paskeh, M.D.A.; Entezari, M.; Mirzaei, S.; Zabolian, A.; Saleki, H.; Naghdi, M.J.; Sabet, S.; Khoshbakht, M.A.; Hashemi, M.; Hushmandi, K.; Sethi, G.; Zarrabi, A.; Kumar, A.P.; Tan, S.C.; Papadakis, M.; Alexiou, A.; Islam, M.A.; Mostafavi, E.; Ashrafizadeh, M. Emerging role of exosomes in cancer progression and tumor microenvironment remodeling. J. Hematol. Oncol., 2022, 15(1), 83.
[http://dx.doi.org/10.1186/s13045-022-01305-4] [PMID: 35765040]
[56]
Galli, F.; Aguilera, J.V.; Palermo, B.; Markovic, S.N.; Nisticò, P.; Signore, A. Relevance of immune cell and tumor microenvironment imaging in the new era of immunotherapy. J. Exp. Clin. Cancer Res., 2020, 39(1), 89.
[http://dx.doi.org/10.1186/s13046-020-01586-y] [PMID: 32423420]
[57]
Corn, K.C.; Windham, M.A.; Rafat, M. Lipids in the tumor microenvironment: From cancer progression to treatment. Prog. Lipid Res., 2020, 80, 101055.
[http://dx.doi.org/10.1016/j.plipres.2020.101055] [PMID: 32791170]
[58]
Elia, I.; Haigis, M.C. Metabolites and the tumour microenvironment: From cellular mechanisms to systemic metabolism. Nat. Metab., 2021, 3(1), 21-32.
[http://dx.doi.org/10.1038/s42255-020-00317-z] [PMID: 33398194]
[59]
Chan, T.A.; Yarchoan, M.; Jaffee, E.; Swanton, C.; Quezada, S.A.; Stenzinger, A.; Peters, S. Development of tumor mutation burden as an immunotherapy biomarker: Utility for the oncology clinic. Ann. Oncol., 2019, 30(1), 44-56.
[http://dx.doi.org/10.1093/annonc/mdy495] [PMID: 30395155]
[60]
Barrueto, L.; Caminero, F.; Cash, L.; Makris, C.; Lamichhane, P.; Deshmukh, R.R. Resistance to checkpoint inhibition in cancer immunotherapy. Transl. Oncol., 2020, 13(3), 100738.
[http://dx.doi.org/10.1016/j.tranon.2019.12.010] [PMID: 32114384]
[61]
Li, W.H.; Li, Y.M. Chemical strategies to boost cancer vaccines. Chem. Rev., 2020, 120(20), 11420-11478.
[http://dx.doi.org/10.1021/acs.chemrev.9b00833] [PMID: 32914967]
[62]
Jiang, M.; Chen, W.; Yu, W.; Xu, Z.; Liu, X.; Jia, Q.; Guan, X.; Zhang, W. Sequentially pH-responsive drug-delivery nanosystem for tumor immunogenic cell death and cooperating with immune checkpoint blockade for efficient cancer chemoimmunotherapy. ACS Appl. Mater. Interfaces, 2021, 13(37), 43963-43974.
[http://dx.doi.org/10.1021/acsami.1c10643] [PMID: 34506118]
[63]
Osinaga, E. Expression of cancer-associated simple mucin-type O-glycosylated antigens in parasites. IUBMB Life, 2007, 59(4), 269-273.
[http://dx.doi.org/10.1080/15216540601188553] [PMID: 17505964]
[64]
Bolhassani, A.; Zahedifard, F. Therapeutic live vaccines as a potential anticancer strategy. Int. J. Cancer, 2012, 131(8), 1733-1743.
[http://dx.doi.org/10.1002/ijc.27640] [PMID: 22610886]
[65]
Junqueira, C.; Caetano, B.; Bartholomeu, D.C.; Melo, M.B.; Ropert, C.; Rodrigues, M.M.; Gazzinelli, R.T. The endless race between Trypanosoma cruzi and host immunity: Lessons for and beyond Chagas disease. Expert Rev. Mol. Med., 2010, 12, e29.
[http://dx.doi.org/10.1017/S1462399410001560] [PMID: 20840799]
[66]
Wolska, K.; Gorska, A.; Antosik, K.; Lugowska, K. Immunomodulatory effects of propolis and its components on basic immune cell functions. Indian J. Pharm. Sci., 2019, 81(4), 575-588.
[67]
Campo, V.L.; Riul, T.B.; Carvalho, I.; Baruffi, M.D. Antibodies against mucin-based glycopeptides affect Trypanosoma cruzi cell invasion and tumor cell viability. ChemBioChem, 2014, 15(10), 1495-1507.
[http://dx.doi.org/10.1002/cbic.201400069] [PMID: 24920542]
[68]
Yedjou, C.G.; Sims, J.N.; Miele, L.; Noubissi, F.; Lowe, L.; Fonseca, D.D.; Alo, R.A.; Payton, M.; Tchounwou, P.B. Health and racial disparity in breast cancer. Adv. Exp. Med. Biol., 2019, 1152, 31-49.
[http://dx.doi.org/10.1007/978-3-030-20301-6_3] [PMID: 31456178]
[69]
Yang, R.; Li, Y.; Wang, H.; Qin, T.; Yin, X.; Ma, X. Therapeutic progress and challenges for triple negative breast cancer: Targeted therapy and immunotherapy. Mol. Biomed., 2022, 3(1), 8.
[http://dx.doi.org/10.1186/s43556-022-00071-6] [PMID: 35243562]
[70]
Kuroda, H.; Jamiyan, T.; Yamaguchi, R.; Kakumoto, A.; Abe, A.; Harada, O.; Masunaga, A. Tumor microenvironment in triple-negative breast cancer: The correlation of tumor-associated macrophages and tumor-infiltrating lymphocytes. Clin. Transl. Oncol., 2021, 23(12), 2513-2525.
[http://dx.doi.org/10.1007/s12094-021-02652-3] [PMID: 34089486]
[71]
Yin, L.; Duan, J.J.; Bian, X.W.; Yu, S. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res., 2020, 22(1), 61.
[http://dx.doi.org/10.1186/s13058-020-01296-5] [PMID: 32517735]
[72]
Lau, K.H.; Tan, A.M.; Shi, Y. New and emerging targeted therapies for advanced breast cancer. Int. J. Mol. Sci., 2022, 23(4), 2288.
[http://dx.doi.org/10.3390/ijms23042288] [PMID: 35216405]
[73]
Azevedo, S.A.C.; Cristina de Oliveira, R.; Rodrigues, C.C.; Teixeira, S.C.; Borges, B.C.; Vieira da Silva, C. Trypanosoma cruzi infection induces proliferation and impairs migration of a human breast cancer cell line. Exp. Parasitol., 2023, 245, 108443.
[http://dx.doi.org/10.1016/j.exppara.2022.108443] [PMID: 36526003]
[74]
Crouse, J.; Xu, H.C.; Lang, P.A.; Oxenius, A. NK cells regulating T cell responses: Mechanisms and outcome. Trends Immunol., 2015, 36(1), 49-58.
[http://dx.doi.org/10.1016/j.it.2014.11.001] [PMID: 25432489]
[75]
Jiang, W.; Xu, J. Immune modulation by mesenchymal stem cells. Cell Prolif., 2020, 53(1), e12712.
[http://dx.doi.org/10.1111/cpr.12712] [PMID: 31730279]
[76]
Burke, J.D.; Young, H.A. IFN-γ: A cytokine at the right time, is in the right place. Semin. Immunol., 2019, 43, 101280.
[http://dx.doi.org/10.1016/j.smim.2019.05.002] [PMID: 31221552]
[77]
Jorgovanovic, D.; Song, M.; Wang, L.; Zhang, Y. Roles of IFN-γ: in tumor progression and regression: A review. Biomark. Res., 2020, 8(1), 49.
[http://dx.doi.org/10.1186/s40364-020-00228-x] [PMID: 33005420]
[78]
Lin, Y.; Qi, X.; Liu, H.; Xue, K.; Xu, S.; Tian, Z. The anti-cancer effects of fucoidan: A review of both in vivo and in vitro investigations. Cancer Cell Int., 2020, 20(1), 154.
[http://dx.doi.org/10.1186/s12935-020-01233-8] [PMID: 32410882]
[79]
Afolabi, L.O.; Bi, J.; Chen, L.; Wan, X. A natural product, Piperlongumine (PL), increases tumor cells sensitivity to NK cell killing. Int. Immunopharmacol., 2021, 96, 107658.
[http://dx.doi.org/10.1016/j.intimp.2021.107658] [PMID: 33887610]
[80]
Ehteshamfar, S.M.; Akhbari, M.; Afshari, J.T.; Seyedi, M.; Nikfar, B.; Shapouri-Moghaddam, A.; Ghanbarzadeh, E.; Momtazi-Borojeni, A.A. Anti‐inflammatory and immune‐modulatory impacts of berberine on activation of autoreactive T cells in autoimmune inflammation. J. Cell. Mol. Med., 2020, 24(23), 13573-13588.
[http://dx.doi.org/10.1111/jcmm.16049] [PMID: 33135395]
[81]
Ullrich, K.A.M.; Schulze, L.L.; Paap, E.M.; Müller, T.M.; Neurath, M.F.; Zundler, S. Immunology of IL-12: An update on functional activities and implications for disease. EXCLI J., 2020, 19, 1563-1589.
[PMID: 33408595]
[82]
Huang, C.; Bi, J. Expression regulation and function of T-Bet in NK cells. Front. Immunol., 2021, 12, 761920.
[http://dx.doi.org/10.3389/fimmu.2021.761920] [PMID: 34675939]
[83]
Brevi, A.; Cogrossi, L.L.; Grazia, G.; Masciovecchio, D.; Impellizzieri, D.; Lacanfora, L.; Grioni, M.; Bellone, M. Much more than IL-17A: cytokines of the IL-17 family between microbiota and cancer. Front. Immunol., 2020, 11, 565470.
[http://dx.doi.org/10.3389/fimmu.2020.565470] [PMID: 33244315]
[84]
Ruiz de Morales, J.M.G.; Puig, L.; Daudén, E.; Cañete, J.D.; Pablos, J.L.; Martín, A.O.; Juanatey, C.G.; Adán, A.; Montalbán, X.; Borruel, N.; Ortí, G.; Holgado-Martín, E.; García-Vidal, C.; Vizcaya-Morales, C.; Martín-Vázquez, V.; González-Gay, M.Á. Critical role of interleukin (IL)-17 in inflammatory and immune disorders: An updated review of the evidence focusing in controversies. Autoimmun. Rev., 2020, 19(1), 102429.
[http://dx.doi.org/10.1016/j.autrev.2019.102429] [PMID: 31734402]
[85]
Amezcua Vesely, M.C.; Rodríguez, C.; Gruppi, A.; Acosta, R.E.V. Interleukin-17 mediated immunity during infections with Trypanosoma cruzi and other protozoans. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(5), 165706.
[http://dx.doi.org/10.1016/j.bbadis.2020.165706] [PMID: 31987839]
[86]
Chung, S.H.; Ye, X.Q.; Iwakura, Y. Interleukin-17 family members in health and disease. Int. Immunol., 2021, 33(12), 723-729.
[http://dx.doi.org/10.1093/intimm/dxab075] [PMID: 34611705]
[87]
Wu, S.Y.; Fu, T.; Jiang, Y.Z.; Shao, Z.M. Natural killer cells in cancer biology and therapy. Mol. Cancer, 2020, 19(1), 120.
[http://dx.doi.org/10.1186/s12943-020-01238-x] [PMID: 32762681]
[88]
Farhood, B.; Najafi, M.; Mortezaee, K. CD8 + cytotoxic T lymphocytes in cancer immunotherapy: A review. J. Cell. Physiol., 2019, 234(6), 8509-8521.
[http://dx.doi.org/10.1002/jcp.27782] [PMID: 30520029]
[89]
Huntington, N.D.; Cursons, J.; Rautela, J. The cancer-natural killer cell immunity cycle. Nat. Rev. Cancer, 2020, 20(8), 437-454.
[http://dx.doi.org/10.1038/s41568-020-0272-z] [PMID: 32581320]
[90]
Tay, R.E.; Richardson, E.K.; Toh, H.C. Revisiting the role of CD4+ T cells in cancer immunotherapy—new insights into old paradigms. Cancer Gene Ther., 2021, 28(1-2), 5-17.
[http://dx.doi.org/10.1038/s41417-020-0183-x] [PMID: 32457487]
[91]
Patel, C.H.; Leone, R.D.; Horton, M.R.; Powell, J.D. Targeting metabolism to regulate immune responses in autoimmunity and cancer. Nat. Rev. Drug Discov., 2019, 18(9), 669-688.
[http://dx.doi.org/10.1038/s41573-019-0032-5] [PMID: 31363227]
[92]
Schuijs, M.J.; Hammad, H.; Lambrecht, B.N. Professional and ‘amateur’antigen-presenting cells in type 2 immunity. Trends Immunol., 2019, 40(1), 22-34.
[http://dx.doi.org/10.1016/j.it.2018.11.001] [PMID: 30502024]
[93]
Zhu, X.; Zhu, J. CD4 T helper cell subsets and related human immunological disorders. Int. J. Mol. Sci., 2020, 21(21), 8011.
[http://dx.doi.org/10.3390/ijms21218011] [PMID: 33126494]
[94]
Richardson, J.R.; Schöllhorn, A.; Gouttefangeas, C.; Schuhmacher, J. CD4+ T cells: Multitasking cells in the duty of cancer immunotherapy. Cancers, 2021, 13(4), 596.
[http://dx.doi.org/10.3390/cancers13040596] [PMID: 33546283]
[95]
Lo Nigro, C.; Macagno, M.; Sangiolo, D.; Bertolaccini, L.; Aglietta, M.; Merlano, M.C. NK-mediated antibody-dependent cell-mediated cytotoxicity in solid tumors: Biological evidence and clinical perspectives. Ann. Transl. Med., 2019, 7(5), 105.
[http://dx.doi.org/10.21037/atm.2019.01.42] [PMID: 31019955]
[96]
Roumenina, L.T.; Daugan, M.V.; Petitprez, F.; Sautès-Fridman, C.; Fridman, W.H. Context-dependent roles of complement in cancer. Nat. Rev. Cancer, 2019, 19(12), 698-715.
[http://dx.doi.org/10.1038/s41568-019-0210-0] [PMID: 31666715]
[97]
Ramírez-Toloza, G.; Aguilar-Guzmán, L.; Valck, C.; Ferreira, V.P.; Ferreira, A. The interactions of parasite calreticulin with initial complement components: Consequences in immunity and virulence. Front. Immunol., 2020, 11, 1561.
[http://dx.doi.org/10.3389/fimmu.2020.01561] [PMID: 32793217]
[98]
Sosoniuk-Roche, E.; Cruz, P.; Maldonado, I.; Duaso, L.; Pesce, B.; Michalak, M.; Valck, C.; Ferreira, A. In vitro treatment of a murine mammary adenocarcinoma cell line with recombinant Trypanosoma cruzi calreticulin promotes immunogenicity and phagocytosis. Mol. Immunol., 2020, 124, 51-60.
[http://dx.doi.org/10.1016/j.molimm.2020.05.013] [PMID: 32526557]
[99]
Huang, Y.; Hui, K.; Jin, M.; Yin, S.; Wang, W.; Ren, Q. Two endoplasmic reticulum proteins (calnexin and calreticulin) are involved in innate immunity in Chinese mitten crab (Eriocheir sinensis). Sci. Rep., 2016, 6(1), 27578.
[http://dx.doi.org/10.1038/srep27578] [PMID: 27279413]
[100]
Wang, W.A.; Groenendyk, J.; Michalak, M. Calreticulin signaling in health and disease. Int. J. Biochem. Cell Biol., 2012, 44(6), 842-846.
[http://dx.doi.org/10.1016/j.biocel.2012.02.009] [PMID: 22373697]
[101]
Wiseman, R.L.; Mesgarzadeh, J.S.; Hendershot, L.M. Reshaping endoplasmic reticulum quality control through the unfolded protein response. Mol. Cell, 2022, 82(8), 1477-1491.
[http://dx.doi.org/10.1016/j.molcel.2022.03.025] [PMID: 35452616]
[102]
Kielbik, M.; Szulc-Kielbik, I.; Klink, M. Calreticulin—Multifunctional chaperone in immunogenic cell death: Potential significance as a prognostic biomarker in ovarian cancer patients. Cells, 2021, 10(1), 130.
[http://dx.doi.org/10.3390/cells10010130] [PMID: 33440842]
[103]
Pandya, U.M.; Manzanares, M.A.; Tellechea, A.; Egbuta, C.; Daubriac, J.; Jimenez-Jaramillo, C.; Samra, F.; Fredston-Hermann, A.; Saadipour, K.; Gold, L.I. Calreticulin exploits TGF‐β for extracellular matrix induction engineering a tissue regenerative process. FASEB J., 2020, 34(12), 15849-15874.
[http://dx.doi.org/10.1096/fj.202001161R] [PMID: 33015849]
[104]
Kotian, V.; Sarmah, D.; Kaur, H.; Kesharwani, R.; Verma, G.; Mounica, L.; Veeresh, P.; Kalia, K.; Borah, A.; Wang, X.; Dave, K.R.; Yavagal, D.R.; Bhattacharya, P. Evolving evidence of calreticulin as a pharmacological target in neurological disorders. ACS Chem. Neurosci., 2019, 10(6), 2629-2646.
[http://dx.doi.org/10.1021/acschemneuro.9b00158] [PMID: 31017385]
[105]
Schcolnik-Cabrera, A.; Oldak, B.; Juárez, M.; Cruz-Rivera, M.; Flisser, A.; Mendlovic, F. Calreticulin in phagocytosis and cancer: Opposite roles in immune response outcomes. Apoptosis, 2019, 24(3-4), 245-255.
[http://dx.doi.org/10.1007/s10495-019-01532-0] [PMID: 30929105]
[106]
Labriola, C.A.; Giraldo, A.M.V.; Parodi, A.J.; Caramelo, J.J. Functional cooperation between BiP and calreticulin in the folding maturation of a glycoprotein in Trypanosoma cruzi. Mol. Biochem. Parasitol., 2011, 175(2), 112-117.
[http://dx.doi.org/10.1016/j.molbiopara.2010.10.002] [PMID: 20934456]
[107]
Labriola, C.A.; Conte, I.L.; López Medus, M.; Parodi, A.J.; Caramelo, J.J. Endoplasmic reticulum calcium regulates the retrotranslocation of Trypanosoma cruzi calreticulin to the cytosol. PLoS One, 2010, 5(10), e13141.
[http://dx.doi.org/10.1371/journal.pone.0013141] [PMID: 20957192]
[108]
Ramírez, G.; Valck, C.; Ferreira, V.P.; López, N.; Ferreira, A. Extracellular Trypanosoma cruzi calreticulin in the host–parasite interplay. Trends Parasitol., 2011, 27(3), 115-122.
[http://dx.doi.org/10.1016/j.pt.2010.12.007] [PMID: 21288773]
[109]
Reyes, A.C.; Encina, J.L.R. Trypanosoma cruzi infection: Mechanisms of evasion of immune response. Biol. Trypanosoma. cruzi., 2019, 11, 153-173.
[110]
Ramírez-Toloza, G.; Abello, P.; Ferreira, A. Is the antitumor property of Trypanosoma cruzi infection mediated by its calreticulin? Front. Immunol., 2016, 7, 268.
[http://dx.doi.org/10.3389/fimmu.2016.00268] [PMID: 27462315]
[111]
Ramírez, G.; Valck, C.; Aguilar, L.; Kemmerling, U.; López-Muñoz, R.; Cabrera, G.; Morello, A.; Ferreira, J.; Maya, J.D.; Galanti, N.; Ferreira, A. Roles of Trypanosoma cruzi calreticulin in parasite–host interactions and in tumor growth. Mol. Immunol., 2012, 52(3-4), 133-140.
[http://dx.doi.org/10.1016/j.molimm.2012.05.006] [PMID: 22673211]
[112]
Ferreira, V.; Valck, C.; Sánchez, G.; Gingras, A.; Tzima, S.; Molina, M.C.; Sim, R.; Schwaeble, W.; Ferreira, A. The classical activation pathway of the human complement system is specifically inhibited by calreticulin from Trypanosoma cruzi. J. Immunol., 2004, 172(5), 3042-3050.
[http://dx.doi.org/10.4049/jimmunol.172.5.3042] [PMID: 14978109]
[113]
Venkateswaran, K.; Verma, A.; Bhatt, A.N.; Shrivastava, A.; Manda, K.; Raj, H.G.; Prasad, A.; Len, C.; Parmar, V.S.; Dwarakanath, B.S. Emerging roles of calreticulin in cancer: Implications for therapy. Curr. Protein Pept. Sci., 2018, 19(4), 344-357.
[http://dx.doi.org/10.2174/1389203718666170111123253] [PMID: 28079009]
[114]
Sánchez, D.; Palová-Jelínková, L.; Felsberg, J.; Šimšová, M.; Pekáriková, A.; Pecharová, B.; Swoboda, I.; Mothes, T.; Mulder, C.J.J.; Beneš, Z.; Tlaskalová-Hogenová, H. Tučková, L. Anti-calreticulin immunoglobulin A (IgA) antibodies in refractory coeliac disease. Clin. Exp. Immunol., 2008, 153(3), 351-359.
[http://dx.doi.org/10.1111/j.1365-2249.2008.03701.x] [PMID: 18637103]
[115]
Abello-Cáceres, P.; Pizarro-Bauerle, J.; Rosas, C.; Maldonado, I.; Aguilar-Guzmán, L.; González, C.; Ramírez, G.; Ferreira, J.; Ferreira, A. Does native Trypanosoma cruzi calreticulin mediate growth inhibition of a mammary tumor during infection? BMC Cancer, 2016, 16(1), 731.
[http://dx.doi.org/10.1186/s12885-016-2764-5] [PMID: 27619675]
[116]
Ramírez-Toloza, G.; Ferreira, A. Trypanosoma cruzi evades the complement system as an efficient strategy to survive in the mammalian host: The specific roles of host/parasite molecules and Trypanosoma cruzi calreticulin. Front. Microbiol., 2017, 8, 1667.
[http://dx.doi.org/10.3389/fmicb.2017.01667] [PMID: 28919885]
[117]
López, N.C.; Valck, C.; Ramírez, G.; Rodríguez, M.; Ribeiro, C.; Orellana, J.; Maldonado, I.; Albini, A.; Anacona, D.; Lemus, D.; Aguilar, L.; Schwaeble, W.; Ferreira, A. Antiangiogenic and antitumor effects of Trypanosoma cruzi Calreticulin. PLoS Negl. Trop. Dis., 2010, 4(7), e730.
[http://dx.doi.org/10.1371/journal.pntd.0000730] [PMID: 20625551]
[118]
Ramírez-Toloza, G.; Aguilar-Guzmán, L.; Valck, C.; Abello, P.; Ferreira, A. Is it all that bad when living with an intracellular protozoan? The role of Trypanosoma cruzi calreticulin in angiogenesis and tumor growth. Front. Oncol., 2015, 4, 382.
[http://dx.doi.org/10.3389/fonc.2014.00382] [PMID: 25629005]
[119]
Borges, B.C.; Uehara, I.A.; Dias, L.O.S.; Brígido, P.C.; da Silva, C.V.; Silva, M.J.B. Mechanisms of infectivity and evasion derived from microvesicles cargo produced by Trypanosoma cruzi. Front. Cell. Infect. Microbiol., 2016, 6, 161.
[http://dx.doi.org/10.3389/fcimb.2016.00161] [PMID: 27921011]
[120]
Ferri, G.; Edreira, M.M. All roads lead to cytosol: Trypanosoma cruzi multi-strategic approach to invasion. Front. Cell. Infect. Microbiol., 2021, 11, 634793.
[http://dx.doi.org/10.3389/fcimb.2021.634793] [PMID: 33747982]
[121]
Umarao, P.; Rath, P.P.; Gourinath, S. Cdc42/Rac Interactive binding containing effector proteins in unicellular protozoans with reference to human host: Locks of the Rho signaling. Front. Genet., 2022, 13, 781885.
[http://dx.doi.org/10.3389/fgene.2022.781885] [PMID: 35186026]
[122]
Martins, F.A.; dos Santos, M.A.; Santos, J.G.; da Silva, A.A.; Borges, B.C.; da Costa, M.S.; Tavares, P.C.B.; Teixeira, S.C.; Brígido, R.T.S.; Teixeira, T.L.; Rodrigues, C.C.; Silva, N.S.L.; de Oliveira, R.C.; de Faria, L.C.; Lemes, M.R.; Zanon, R.G.; Tomiosso, T.C.; Machado, J.R.; da Silva, M.V.; Oliveira, C.J.F.; da Silva, C.V. The recombinant form of Trypanosoma cruzi P21 controls infection by modulating host immune response. Front. Immunol., 2020, 11, 1010.
[http://dx.doi.org/10.3389/fimmu.2020.01010] [PMID: 32655546]
[123]
Barbosa, J.S.; Moura, F.B.R.; Ferreira, B.A.; Martins, F.A.; Muniz, E.H.; Gomide, J.A.L.; Silva, C.V.; Ribeiro, D.L.; Araújo, F.A.; Tomiosso, T.C. Recombinant protein rP21 from Trypanosoma cruzi has effect on inflammation, angiogenesis and fibrogenesis in skin wound model C57BL/6 Mouse. Adv. Res., 2021, 22, 28-37.
[http://dx.doi.org/10.9734/air/2021/v22i130285]
[124]
Khare, T.; Bissonnette, M.; Khare, S. CXCL12-CXCR4/CXCR7 axis in colorectal cancer: Therapeutic target in preclinical and clinical studies. Int. J. Mol. Sci., 2021, 22(14), 7371.
[http://dx.doi.org/10.3390/ijms22147371] [PMID: 34298991]
[125]
Shi, Y.; Riese, D.J., II; Shen, J. The role of the CXCL12/CXCR4/CXCR7 chemokine axis in cancer. Front. Pharmacol., 2020, 11, 574667.
[http://dx.doi.org/10.3389/fphar.2020.574667] [PMID: 33363463]
[126]
Bianchi, M.E.; Mezzapelle, R. The chemokine receptor CXCR4 in cell proliferation and tissue regeneration. Front. Immunol., 2020, 11, 2109.
[http://dx.doi.org/10.3389/fimmu.2020.02109] [PMID: 32983169]
[127]
Daniel, S.K.; Seo, Y.D.; Pillarisetty, V.G. The CXCL12-CXCR4/CXCR7 axis as a mechanism of immune resistance in gastrointestinal malignancies. Semin. Cancer Biol., 2020, 65, 176-188.
[http://dx.doi.org/10.1016/j.semcancer.2019.12.007] [PMID: 31874281]
[128]
Cohen-Solal, K.A.; Boregowda, R.K.; Lasfar, A. RUNX2 and the PI3K/AKT axis reciprocal activation as a driving force for tumor progression. Mol. Cancer, 2015, 14(1), 137.
[http://dx.doi.org/10.1186/s12943-015-0404-3] [PMID: 26204939]
[129]
Teixeira, S.C.; Lopes, D.S.; Gimenes, S.N.C.; Teixeira, T.L.; da Silva, M.S.; Brígido, R.T.S.; da Luz, F.A.C.; da Silva, A.A.; Silva, M.A.; Florentino, P.V.; Tavares, P.C.B.; dos Santos, M.A.; Ávila, V.M.R.; Silva, M.J.B.; Elias, M.C.; Mortara, R.A.; da Silva, C.V. Mechanistic insights into the anti-angiogenic activity of Trypanosoma cruzi protein 21 and its potential impact on the onset of chagasic cardiomyopathy. Sci. Rep., 2017, 7(1), 44978.
[http://dx.doi.org/10.1038/srep44978] [PMID: 28322302]
[130]
Teixeira, T.L.; Castilhos, P.; Rodrigues, C.C.; da Silva, A.A.; Brígido, R.T.S.; Teixeira, S.C.; Borges, B.C.; Dos Santos, M.A.; Martins, F.A.; Santos, P.C.F.; Servato, J.P.S.; Silva, M.S.; da Silva, M.J.B.; Elias, M.C.; da Silva, C.V. Experimental evidences that P21 protein controls Trypanosoma cruzi replication and modulates the pathogenesis of infection. Microb. Pathog., 2019, 135, 103618.
[http://dx.doi.org/10.1016/j.micpath.2019.103618] [PMID: 31310832]
[131]
Teixeira, T.L.; Machado, F.C.; Alves da Silva, A.; Teixeira, S.C.; Borges, B.C.; dos Santos, M.A.; Martins, F.A.; Brígido, P.C.; Rodrigues, A.A.; Notário, A.F.O.; Ferreira, B.A.; Servato, J.P.S.; Deconte, S.R.; Lopes, D.S.; Ávila, V.M.R.; Araújo, F.A.; Tomiosso, T.C.; Silva, M.J.B.; da Silva, C.V. Trypanosoma cruzi P21: A potential novel target for chagasic cardiomyopathy therapy. Sci. Rep., 2015, 5(1), 16877.
[http://dx.doi.org/10.1038/srep16877] [PMID: 26574156]
[132]
Wu, A.A.; Drake, V.; Huang, H.S.; Chiu, S.; Zheng, L. Reprogramming the tumor microenvironment: tumor-induced immunosuppressive factors paralyze T cells. OncoImmunology, 2015, 4(7), e1016700.
[http://dx.doi.org/10.1080/2162402X.2015.1016700] [PMID: 26140242]
[133]
Groux-Degroote, S.; Cavdarli, S.; Uchimura, K.; Allain, F.; Delannoy, P. Glycosylation changes in inflammatory diseases. Adv. Protein Chem. Struct. Biol., 2020, 119, 111-156.
[http://dx.doi.org/10.1016/bs.apcsb.2019.08.008] [PMID: 31997767]
[134]
Peixoto, A.; Relvas-Santos, M.; Azevedo, R.; Santos, L.L.; Ferreira, J.A. Protein glycosylation and tumor microenvironment alterations driving cancer hallmarks. Front. Oncol., 2019, 9, 380.
[http://dx.doi.org/10.3389/fonc.2019.00380] [PMID: 31157165]
[135]
Kasprzak, A.; Adamek, A. Mucins: The old, the new and the promising factors in hepatobiliary carcinogenesis. Int. J. Mol. Sci., 2019, 20(6), 1288.
[http://dx.doi.org/10.3390/ijms20061288] [PMID: 30875782]
[136]
Berois, N.; Pittini, A.; Osinaga, E. Targeting tumor glycans for cancer therapy: Successes, limitations, and perspectives. Cancers, 2022, 14(3), 645.
[http://dx.doi.org/10.3390/cancers14030645] [PMID: 35158915]
[137]
Jin, K.T.; Lan, H.R.; Chen, X.Y.; Wang, S.B.; Ying, X.J.; Lin, Y.; Mou, X.Z. Recent advances in carbohydrate-based cancer vaccines. Biotechnol. Lett., 2019, 41(6-7), 641-650.
[http://dx.doi.org/10.1007/s10529-019-02675-5] [PMID: 30993481]
[138]
Mantovani, A.; Romero, P.; Palucka, A.K.; Marincola, F.M. Tumour immunity: Effector response to tumour and role of the microenvironment. Lancet, 2008, 371(9614), 771-783.
[http://dx.doi.org/10.1016/S0140-6736(08)60241-X] [PMID: 18275997]
[139]
Giorgi, M.E.; Lederkremer, R.M. The glycan structure of T. cruzi mucins depends on the host. Insights on the chameleonic galactose. Molecules, 2020, 25(17), 3913.
[http://dx.doi.org/10.3390/molecules25173913] [PMID: 32867240]
[140]
Martins-Teixeira, M.B. Campo, V.L.; Biondo, M.; Sesti-Costa, R.; Carneiro, Z.A.; Silva, J.S.; Carvalho, I. α-Selective glycosylation affords mucin-related GalNAc amino acids and diketopiperazines active on Trypanosoma cruzi. Bioorg. Med. Chem., 2013, 21(7), 1978-1987.
[http://dx.doi.org/10.1016/j.bmc.2013.01.027] [PMID: 23415086]
[141]
Leiria, C. V.; Braga Martins-Teixeira, M.; Carvalho, I. Trypanosoma cruzi invasion into host cells: A complex molecular targets interplay. Mini Rev. Med. Chem., 2016, 16(13), 1084-1097.
[http://dx.doi.org/10.2174/1389557516666160607230238] [PMID: 27281167]
[142]
Nath, S.; Mukherjee, P. MUC1: A multifaceted oncoprotein with a key role in cancer progression. Trends Mol. Med., 2014, 20(6), 332-342.
[http://dx.doi.org/10.1016/j.molmed.2014.02.007] [PMID: 24667139]
[143]
Schirrmacher, V. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment. Int. J. Oncol., 2018, 54(2), 407-419.
[http://dx.doi.org/10.3892/ijo.2018.4661] [PMID: 30570109]
[144]
Anwanwan, D.; Singh, S.K.; Singh, S.; Saikam, V.; Singh, R. Challenges in liver cancer and possible treatment approaches. Biochim. Biophys. Acta Rev. Cancer, 2020, 1873(1), 188314.
[http://dx.doi.org/10.1016/j.bbcan.2019.188314] [PMID: 31682895]
[145]
Duan, X.; Chan, C.; Lin, W. Nanoparticle‐mediated immunogenic cell death enables and potentiates cancer immunotherapy. Angew. Chem. Int. Ed., 2019, 58(3), 670-680.
[http://dx.doi.org/10.1002/anie.201804882] [PMID: 30016571]
[146]
Raza, F.; Zafar, H.; Zhang, S.; Kamal, Z.; Su, J.; Yuan, W.E.; Mingfeng, Q. Recent advances in cell membrane‐derived biomimetic nanotechnology for cancer immunotherapy. Adv. Healthc. Mater., 2021, 10(6), 2002081.
[http://dx.doi.org/10.1002/adhm.202002081] [PMID: 33586322]
[147]
Aikins, M.E.; Xu, C.; Moon, J.J. Engineered nanoparticles for cancer vaccination and immunotherapy. Acc. Chem. Res., 2020, 53(10), 2094-2105.
[http://dx.doi.org/10.1021/acs.accounts.0c00456] [PMID: 33017150]
[148]
Zaheer, T.; Pal, K.; Zaheer, I. Topical review on nano-vaccinology: Biochemical promises and key challenges. Process Biochem., 2021, 100, 237-244.
[http://dx.doi.org/10.1016/j.procbio.2020.09.028] [PMID: 33013180]
[149]
Zhao, Y.; Baldin, A.V.; Isayev, O.; Werner, J.; Zamyatnin, A.A., Jr; Bazhin, A.V. Cancer vaccines: Antigen selection strategy. Vaccines, 2021, 9(2), 85.
[http://dx.doi.org/10.3390/vaccines9020085] [PMID: 33503926]
[150]
Lantier, L.; Poupée-Beaugé, A.; di Tommaso, A.; Ducournau, C.; Epardaud, M.; Lakhrif, Z.; Germon, S.; Debierre-Grockiego, F.; Mévélec, M.N.; Battistoni, A.; Coënon, L.; Deluce-Kakwata-Nkor, N.; Velge-Roussel, F.; Beauvillain, C.; Baranek, T.; Lee, G.S.; Kervarrec, T.; Touzé, A.; Moiré, N.; Dimier-Poisson, I. Neospora caninum: a new class of biopharmaceuticals in the therapeutic arsenal against cancer. J. Immunother. Cancer, 2020, 8(2), e001242.
[http://dx.doi.org/10.1136/jitc-2020-001242] [PMID: 33257408]
[151]
Pereira, I.R.; Vilar-Pereira, G.; Marques, V.; da Silva, A.A.; Caetano, B.; Moreira, O.C.; Machado, A.V.; Bruna-Romero, O.; Rodrigues, M.M.; Gazzinelli, R.T.; Lannes-Vieira, J. A human type 5 adenovirus-based Trypanosoma cruzi therapeutic vaccine re-programs immune response and reverses chronic cardiomyopathy. PLoS Pathog., 2015, 11(1), e1004594.
[http://dx.doi.org/10.1371/journal.ppat.1004594] [PMID: 25617628]
[152]
Aguilar-Guzmán, L.; Lobos-González, L.; Rosas, C.; Vallejos, G.; Falcón, C.; Sosoniuk, E.; Coddou, F.; Leyton, L.; Lemus, D.; Quest, A.F.G.; Ferreira, A. Human survivin and Trypanosoma cruzi calreticulin act in synergy against a murine melanoma in vivo. PLoS One, 2014, 9(4), e95457.
[http://dx.doi.org/10.1371/journal.pone.0095457] [PMID: 24755644]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy