Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

UBR5 Significantly Correlates with Osteosarcomas Prognosis and Immune Exhaustion Characteristic in the Tumor Microenvironment

Author(s): Hai lin, Liyan Zhang, Bin Liu and Guopeng Cui*

Volume 24, Issue 1, 2024

Published on: 21 June, 2023

Page: [69 - 79] Pages: 11

DOI: 10.2174/1568009623666230529140739

Abstract

Background: Ubiquitin ligases (E3s) play an important role in multiple cancers.

Methods: The open-accessed expression profile and clinical information was downloaded from the TARGET database. The analysis was performed using R software.

Results: In this study, we comprehensively investigated the role of E3s in osteosarcomas (OS). We found that among all these E3s, UBR5 is a risk factor for OS. Considering that UBR5 has not been reported in previous studies focused on OS, we selected it for further analysis. Interestingly, we found that UBR5 had no significant effect on immune cell infiltration but a remarkable effect on immune function. Moreover, we divided the patients into “immune activation” and “immune exhaustion” types. KM survival curves indicated that the patients in the “immune exhaustion” types had a worse survival performance.

Further, we identified the molecules involved in immune function and significantly correlated with UBR5. The biological enrichment analysis and prognosis model were then conducted based on these genes. Results indicated that the patients in the high-risk group had a worse survival performance, and underlying biological differences between high and low-risk patients were also explored. Ultimately, the effect pattern of UBR5 in pan-cancer was also explored.

Conclusion: In summary, our study comprehensively explored the role of UBR5 in OS, as well as its effect on the immune microenvironment, which might be an underlying therapy target.

[1]
Ritter, J.; Bielack, S.S. Osteosarcoma. Ann. Oncol., 2010, 21(Suppl. 7), vii320-vii325.
[http://dx.doi.org/10.1093/annonc/mdq276] [PMID: 20943636]
[2]
Kansara, M.; Teng, M.W.; Smyth, M.J.; Thomas, D.M. Translational biology of osteosarcoma. Nat. Rev. Cancer, 2014, 14(11), 722-735.
[http://dx.doi.org/10.1038/nrc3838] [PMID: 25319867]
[3]
Chen, C.; Xie, L.; Ren, T.; Huang, Y.; Xu, J.; Guo, W. Immunotherapy for osteosarcoma: Fundamental mechanism, rationale, and recent breakthroughs. Cancer Lett., 2021, 500, 1-10.
[http://dx.doi.org/10.1016/j.canlet.2020.12.024] [PMID: 33359211]
[4]
Unni, K.K.; Dahlin, D.C.; McLeod, R.A.; Pritchard, D.J. Intraosseous well-differentiated osteosarcoma. Cancer, 1977, 40(3), 1337-1347.
[http://dx.doi.org/10.1002/1097-0142(197709)40:3<1337:AID-CNCR2820400351>3.0.CO;2-X] [PMID: 269000]
[5]
Popovic, D.; Vucic, D.; Dikic, I. Ubiquitination in disease pathogenesis and treatment. Nat. Med., 2014, 20(11), 1242-1253.
[http://dx.doi.org/10.1038/nm.3739] [PMID: 25375928]
[6]
Shaid, S.; Brandts, C.H.; Serve, H.; Dikic, I. Ubiquitination and selective autophagy. Cell Death Differ., 2013, 20(1), 21-30.
[http://dx.doi.org/10.1038/cdd.2012.72] [PMID: 22722335]
[7]
van Wijk, S.J.L.; Fulda, S.; Dikic, I.; Heilemann, M. Visualizing ubiquitination in mammalian cells. EMBO Rep., 2019, 20(2), e46520.
[http://dx.doi.org/10.15252/embr.201846520] [PMID: 30665942]
[8]
Wiener, R.; Zhang, X.; Wang, T.; Wolberger, C. The mechanism of OTUB1-mediated inhibition of ubiquitination. Nature, 2012, 483(7391), 618-622.
[http://dx.doi.org/10.1038/nature10911] [PMID: 22367539]
[9]
Paolino, M.; Choidas, A.; Wallner, S.; Pranjic, B.; Uribesalgo, I.; Loeser, S.; Jamieson, A.M.; Langdon, W.Y.; Ikeda, F.; Fededa, J.P.; Cronin, S.J.; Nitsch, R.; Schultz-Fademrecht, C.; Eickhoff, J.; Menninger, S.; Unger, A.; Torka, R.; Gruber, T.; Hinterleitner, R.; Baier, G.; Wolf, D.; Ullrich, A.; Klebl, B.M.; Penninger, J.M. The E3 ligase Cbl-b and TAM receptors regulate cancer metastasis via natural killer cells. Nature, 2014, 507(7493), 508-512.
[http://dx.doi.org/10.1038/nature12998] [PMID: 24553136]
[10]
Singh, S.; Kumar, S.; Srivastava, R.K.; Nandi, A.; Thacker, G.; Murali, H.; Kim, S.; Baldeon, M.; Tobias, J.; Blanco, M.A.; Saffie, R.; Zaidi, M.R.; Sinha, S.; Busino, L.; Fuchs, S.Y.; Chakrabarti, R. Loss of ELF5–FBXW7 stabilizes IFNGR1 to promote the growth and metastasis of triple-negative breast cancer through interferon-γ signalling. Nat. Cell Biol., 2020, 22(5), 591-602.
[http://dx.doi.org/10.1038/s41556-020-0495-y] [PMID: 32284542]
[11]
Yang, Z.; Hu, N.; Wang, W.; Hu, W.; Zhou, S.; Shi, J.; Li, M.; Jing, Z.; Chen, C.; Zhang, X.; Yang, R.; Fu, X.; Wang, X. Loss of FBXW7 correlates with increased IDH1 expression in glioma and enhances idh1-mutant cancer cell sensitivity to radiation. Cancer Res., 2022, 82(3), 497-509.
[http://dx.doi.org/10.1158/0008-5472.CAN-21-0384] [PMID: 34737211]
[12]
He, Y.; Zhou, J.; Wan, Q. The E3 ligase HUWE1 mediates TGFBR2 ubiquitination and promotes gastric cancer cell proliferation, migration, and invasion. Invest. New Drugs, 2021, 39(3), 713-723.
[http://dx.doi.org/10.1007/s10637-020-01041-x] [PMID: 33405091]
[13]
Shi, Y.; Wang, X.; Xu, Z.; He, Y.; Guo, C.; He, L.; Huan, C.; Cai, C.; Huang, J.; Zhang, J.; Li, Y.; Zeng, C.; Zhang, X.; Wang, L.; Ke, Y.; Cheng, H. PDLIM5 inhibits STUB1-mediated degradation of SMAD3 and promotes the migration and invasion of lung cancer cells. J. Biol. Chem., 2020, 295(40), 13798-13811.
[http://dx.doi.org/10.1074/jbc.RA120.014976] [PMID: 32737199]
[14]
Hänzelmann, S.; Castelo, R.; Guinney, J. GSVA: Gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics, 2013, 14(1), 7.
[http://dx.doi.org/10.1186/1471-2105-14-7] [PMID: 23323831]
[15]
Hu, J.; Yu, A.; Othmane, B.; Qiu, D.; Li, H.; Li, C.; Liu, P.; Ren, W.; Chen, M.; Gong, G.; Guo, X.; Zhang, H.; Chen, J.; Zu, X. Siglec15 shapes a non-inflamed tumor microenvironment and predicts the molecular subtype in bladder cancer. Theranostics, 2021, 11(7), 3089-3108.
[http://dx.doi.org/10.7150/thno.53649] [PMID: 33537076]
[16]
Chen, B.; Khodadoust, M.S.; Liu, C.L.; Newman, A.M.; Alizadeh, A.A. Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol. Biol., 2018, 1711, 243-259.
[http://dx.doi.org/10.1007/978-1-4939-7493-1_12] [PMID: 29344893]
[17]
Wilkerson, M.D.; Hayes, D.N. ConsensusClusterPlus: A class discovery tool with confidence assessments and item tracking. Bioinformatics, 2010, 26(12), 1572-1573.
[http://dx.doi.org/10.1093/bioinformatics/btq170] [PMID: 20427518]
[18]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[19]
Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[20]
Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; Mesirov, J.P. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA, 2005, 102(43), 15545-15550.
[http://dx.doi.org/10.1073/pnas.0506580102] [PMID: 16199517]
[21]
Zils, K.; Bielack, S.; Wilhelm, M.; Werner, M.; Schwarz, R.; Windhager, R.; Hofmann-Wackersreuther, G.; Andus, T.; Kager, L.; Kuehne, T.; Reichardt, P.; von Kalle, T. Osteosarcoma of the mobile spine. Ann. Oncol., 2013, 24(8), 2190-2195.
[http://dx.doi.org/10.1093/annonc/mdt154] [PMID: 23613478]
[22]
Song, M.; Yeku, O.O.; Rafiq, S.; Purdon, T.; Dong, X.; Zhu, L.; Zhang, T.; Wang, H.; Yu, Z.; Mai, J.; Shen, H.; Nixon, B.; Li, M.; Brentjens, R.J.; Ma, X. Tumor derived UBR5 promotes ovarian cancer growth and metastasis through inducing immunosuppressive macrophages. Nat. Commun., 2020, 11(1), 6298.
[http://dx.doi.org/10.1038/s41467-020-20140-0] [PMID: 33293516]
[23]
Chen, L.; Yuan, R.; Wen, C.; Liu, T.; Feng, Q.; Deng, X.; Du, Y.; Peng, X. E3 ubiquitin ligase UBR5 promotes pancreatic cancer growth and aerobic glycolysis by downregulating FBP1 via destabilization of C/EBPα. Oncogene, 2021, 40(2), 262-276.
[http://dx.doi.org/10.1038/s41388-020-01527-1] [PMID: 33122826]
[24]
Wu, B.; Song, M.; Dong, Q.; Xiang, G.; Li, J.; Ma, X.; Wei, F. UBR5 promotes tumor immune evasion through enhancing IFN-γ-induced PDL1 transcription in triple negative breast cancer. Theranostics, 2022, 12(11), 5086-5102.
[http://dx.doi.org/10.7150/thno.74989] [PMID: 35836797]
[25]
Yang, Y.; Zhao, J.; Mao, Y.; Lin, G.; Li, F.; Jiang, Z. UBR5 over-expression contributes to poor prognosis and tamoxifen resistance of ERa+ breast cancer by stabilizing β-catenin. Breast Cancer Res. Treat., 2020, 184(3), 699-710.
[http://dx.doi.org/10.1007/s10549-020-05899-6] [PMID: 32914356]
[26]
Wang, K.; Tang, J.; Liu, X.; Wang, Y.; Chen, W.; Zheng, R. UBR5 regulates proliferation and radiosensitivity in human laryngeal carcinoma via the p38/MAPK signaling pathway. Oncol. Rep., 2020, 44(2), 685-697.
[http://dx.doi.org/10.3892/or.2020.7620] [PMID: 32468011]
[27]
De Serres, S.A.; Sayegh, M.H.; Najafian, N. Immunosuppressive drugs and Tregs: A critical evaluation! Clin. J. Am. Soc. Nephrol., 2009, 4(10), 1661-1669.
[http://dx.doi.org/10.2215/CJN.03180509] [PMID: 19696218]
[28]
Feng, X.; Zhang, L.; Acharya, C.; An, G.; Wen, K.; Qiu, L.; Munshi, N.C.; Tai, Y.T.; Anderson, K.C. Targeting CD38 suppresses induction and function of T regulatory cells to mitigate immunosuppression in multiple myeloma. Clin. Cancer Res., 2017, 23(15), 4290-4300.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-3192] [PMID: 28249894]

© 2025 Bentham Science Publishers | Privacy Policy