Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Review Article

Research Progress of BAP1 in Structure, Function, and Cancer

Author(s): Wei-Tao Lu, Meng-Ru Li, Yi-Bo Yang, Yan-Yan Sun and Chun-Ming Dong*

Volume 30, Issue 7, 2023

Published on: 13 June, 2023

Page: [552 - 561] Pages: 10

DOI: 10.2174/0929866530666230526143710

Price: $65

Abstract

Cancer is an important chronic non-communicable disease that endangers human health and has become the main cause of death of residents around the world in the 21st century. At present, most of the mature treatment methods stay at the level of cell and tissue, which is difficult to fundamentally solve the problem of cancer. Therefore, explaining the pathogenesis of cancer at the molecular level becomes the answer to the key problem of cancer regulation. BRCA-associated protein 1 (brca1- associated protein 1) is a kind of ubiquitination enzyme encoded by the BAP1 gene and composed of 729 amino acids. As a carcinogenic protein, BAP1 can affect the cancer cell cycle and proliferation capacity, mutation, and deletion. For example, depending on catalytic activity, it participates in the regulation of intracellular function through transcription, epigenetic, and DNA damage repair. This article mainly reviews the basic structure and function of BAP1 in cells, its role in cancer development, and cancer-related mutants.

Graphical Abstract

[1]
Zaman, M.M.U.; Nomura, T.; Takagi, T.; Okamura, T.; Jin, W.; Shinagawa, T.; Tanaka, Y.; Ishii, S. Ubiquitination-deubiquitination by the TRIM27-USP7 complex regulates tumor necrosis factor alpha-induced apoptosis. Mol. Cell. Biol., 2013, 33(24), 4971-4984.
[http://dx.doi.org/10.1128/MCB.00465-13] [PMID: 24144979]
[2]
Senft, D.; Qi, J.; Ronai, Z.A. Ubiquitin ligases in oncogenic transformation and cancer therapy. Nat. Rev. Cancer, 2018, 18(2), 69-88.
[http://dx.doi.org/10.1038/nrc.2017.105] [PMID: 29242641]
[3]
Komander, D.; Rape, M. The ubiquitin code. Annu. Rev. Biochem., 2012, 81(1), 203-229.
[http://dx.doi.org/10.1146/annurev-biochem-060310-170328] [PMID: 22524316]
[4]
Suresh, H.G.; Pascoe, N.; Andrews, B. The structure and function of deubiquitinases: Lessons from budding yeast. Open Biol., 2020, 10(10), 200279.
[http://dx.doi.org/10.1098/rsob.200279] [PMID: 33081638]
[5]
Jensen, D.E.; Proctor, M.; Marquis, S.T.; Gardner, H.P.; Ha, S.I.; Chodosh, L.A.; Ishov, A.M.; Tommerup, N.; Vissing, H.; Sekido, Y.; Minna, J.; Borodovsky, A.; Schultz, D.C.; Wilkinson, K.D.; Maul, G.G.; Barlev, N.; Berger, S.L.; Prendergast, G.C.; Rauscher, F.J., III BAP1: A novel ubiquitin hydrolase which binds to the BRCA1 RING finger and enhances BRCA1-mediated cell growth suppression. Oncogene, 1998, 16(9), 1097-1112.
[http://dx.doi.org/10.1038/sj.onc.1201861] [PMID: 9528852]
[6]
Wang, A.; Papneja, A.; Hyrcza, M.; Al-Habeeb, A.; Ghazarian, D. Gene of the month: BAP1. J. Clin. Pathol., 2016, 69(9), 750-753.
[http://dx.doi.org/10.1136/jclinpath-2016-203866] [PMID: 27235536]
[7]
Ventii, K.H.; Devi, N.S.; Friedrich, K.L.; Chernova, T.A.; Tighiouart, M.; Van Meir, E.G.; Wilkinson, K.D. BRCA1-associated protein-1 is a tumor suppressor that requires deubiquitinating activity and nuclear localization. Cancer Res., 2008, 68(17), 6953-6962.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0365] [PMID: 18757409]
[8]
Shrestha, R.; Nabavi, N.; Lin, Y.Y.; Mo, F.; Anderson, S.; Volik, S.; Adomat, H.H.; Lin, D.; Xue, H.; Dong, X.; Shukin, R.; Bell, R.H.; McConeghy, B.; Haegert, A.; Brahmbhatt, S.; Li, E.; Oo, H.Z.; Hurtado-Coll, A.; Fazli, L.; Zhou, J.; McConnell, Y.; McCart, A.; Lowy, A.; Morin, G.B.; Chen, T.; Daugaard, M.; Sahinalp, S.C.; Hach, F.; Le Bihan, S.; Gleave, M.E.; Wang, Y.; Churg, A.; Collins, C.C. BAP1 haploinsufficiency predicts a distinct immunogenic class of malignant peritoneal mesothelioma. Genome Med., 2019, 11(1), 8.
[http://dx.doi.org/10.1186/s13073-019-0620-3] [PMID: 30777124]
[9]
Bononi, A.; Giorgi, C.; Patergnani, S.; Larson, D.; Verbruggen, K.; Tanji, M.; Pellegrini, L.; Signorato, V.; Olivetto, F.; Pastorino, S.; Nasu, M.; Napolitano, A.; Gaudino, G.; Morris, P.; Sakamoto, G.; Ferris, L.K.; Danese, A.; Raimondi, A.; Tacchetti, C.; Kuchay, S.; Pass, H.I.; Affar, E.B.; Yang, H.; Pinton, P.; Carbone, M. BAP1 regulates IP3R3-mediated Ca2+ flux to mitochondria suppressing cell transformation. Nature, 2017, 546(7659), 549-553.
[http://dx.doi.org/10.1038/nature22798] [PMID: 28614305]
[10]
Wu, X.; Siggel, M.; Ovchinnikov, S.; Mi, W.; Svetlov, V.; Nudler, E.; Liao, M.; Hummer, G.; Rapoport, T.A. Structural basis of ER-associated protein degradation mediated by the Hrd1 ubiquitin ligase complex. Science, 2020, 368(6489), eaaz2449.
[http://dx.doi.org/10.1126/science.aaz2449] [PMID: 32327568]
[11]
Zhang, Y.; Liu, Y.; Wu, M.; Wang, H.; Wu, L.; Xu, B.; Zhou, W.; Fan, X.; Shao, J.; Yang, T. MicroRNA-664a-5p promotes osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by directly downregulating HMGA2. Biochem. Biophys. Res. Commun., 2020, 521(1), 9-14.
[http://dx.doi.org/10.1016/j.bbrc.2019.09.122] [PMID: 31630797]
[12]
Zhao, C.; Chen, X.; Zang, D.; Lan, X.; Liao, S.; Yang, C.; Zhang, P.; Wu, J.; Li, X.; Liu, N.; Liao, Y.; Huang, H.; Shi, X.; Jiang, L.; Liu, X.; He, Z.; Dou, Q.P.; Wang, X.; Liu, J. A novel nickel complex works as a proteasomal deubiquitinase inhibitor for cancer therapy. Oncogene, 2016, 35(45), 5916-5927.
[http://dx.doi.org/10.1038/onc.2016.114] [PMID: 27086925]
[13]
Tang, A H Abstract B40: SIAH-dependent SMAD2/3/4 ubiquitination and degradation in mediating the K-RAS-TGFβ antagonism during tumorigenesis and metastasis in human pancreatic cancer cells. Cancer Research, 2012, 72(14__Supplement), B40-B.
[http://dx.doi.org/10.1158/1538-7445.PANCA2012-B40]
[14]
Harrigan, J.A.; Jacq, X.; Martin, N.M.; Jackson, S.P. Deubiquitylating enzymes and drug discovery: Emerging opportunities. Nat. Rev. Drug Discov., 2018, 17(1), 57-78.
[http://dx.doi.org/10.1038/nrd.2017.152] [PMID: 28959952]
[15]
Yu, J.; Chen, W-L. [Research advances on ubiquitin C-terminal hydrolase in oncogenesis and progression]. Zhejiang Da Xue Xue Bao Yi Xue Ban, 2015, 44(2), 217-222.
[http://dx.doi.org/10.3785/j.issn.1008-9292.2015.03.016] [PMID: 26038143]
[16]
Louie, B.H.; Kurzrock, R. BAP1: Not just a BRCA1-associated protein. Cancer Treat. Rev., 2020, 90, 102091.
[http://dx.doi.org/10.1016/j.ctrv.2020.102091] [PMID: 32877777]
[17]
Wei, R.; Liu, X.; Yu, W.; Yang, T.; Cai, W.; Liu, J.; Huang, X.; Xu, G.; Zhao, S.; Yang, J.; Liu, S. Deubiquitinases in cancer. Oncotarget, 2015, 6(15), 12872-12889.
[http://dx.doi.org/10.18632/oncotarget.3671] [PMID: 25972356]
[18]
Pan, H.; Jia, R.; Zhang, L.; Xu, S.; Wu, Q.; Song, X.; Zhang, H.; Ge, S.; Leon Xu, X.; Fan, X. BAP1 regulates cell cycle progression through E2F1 target genes and mediates transcriptional silencing via H2A monoubiquitination in uveal melanoma cells. Int. J. Biochem. Cell Biol., 2015, 60, 176-184.
[http://dx.doi.org/10.1016/j.biocel.2015.01.001] [PMID: 25582751]
[19]
Zhou, W.; Wang, X.; Rosenfeld, M.G. Histone H2A ubiquitination in transcriptional regulation and DNA damage repair. Int. J. Biochem. Cell Biol., 2009, 41(1), 12-15.
[http://dx.doi.org/10.1016/j.biocel.2008.09.016] [PMID: 18929679]
[20]
Brugarolas, J. Molecular genetics of clear-cell renal cell carcinoma. J. Clin. Oncol., 2014, 32(18), 1968-1976.
[http://dx.doi.org/10.1200/JCO.2012.45.2003] [PMID: 24821879]
[21]
Mehdi, A.; Riazalhosseini, Y. Epigenome aberrations: Emerging driving factors of the clear cell renal cell carcinoma. Int. J. Mol. Sci., 2017, 18(8), 1774.
[http://dx.doi.org/10.3390/ijms18081774] [PMID: 28812986]
[22]
Riazalhosseini, Y.; Lathrop, M. Precision medicine from the renal cancer genome. Nat. Rev. Nephrol., 2016, 12(11), 655-666.
[http://dx.doi.org/10.1038/nrneph.2016.133] [PMID: 27694978]
[23]
Chen, C; Qin, J; Zhou, Z The BAP1 deubiquitinase promotes triple-negative breast cancer partially by stabilizing the KLF5 transcription factor. Cancer Research, 2015, 75(15_Supplement), 4967.
[http://dx.doi.org/10.1158/1538-7445.AM2015-4967]
[24]
Kumar, R.; Taylor, M.; Miao, B.; Ji, Z.; Njauw, J.C.N.; Jönsson, G.; Frederick, D.T.; Tsao, H. BAP1 has a survival role in cutaneous melanoma. J. Invest. Dermatol., 2015, 135(4), 1089-1097.
[http://dx.doi.org/10.1038/jid.2014.528] [PMID: 25521456]
[25]
Asada, S; Takeda, R; Inoue, D Mutant ASXL1 collaborates with HHEX to promote myeloid leukemogenesis. Cancer Research, 2019, 79(13__Supplement), 4643.
[http://dx.doi.org/10.1158/1538-7445.AM2019-4643]
[26]
Bott, M.; Brevet, M.; Taylor, B.S.; Shimizu, S.; Ito, T.; Wang, L.; Creaney, J.; Lake, R.A.; Zakowski, M.F.; Reva, B.; Sander, C.; Delsite, R.; Powell, S.; Zhou, Q.; Shen, R.; Olshen, A.; Rusch, V.; Ladanyi, M. The nuclear deubiquitinase BAP1 is commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesothelioma. Nat. Genet., 2011, 43(7), 668-672.
[http://dx.doi.org/10.1038/ng.855] [PMID: 21642991]
[27]
Scheuermann, J.C.; de Ayala Alonso, A.G.; Oktaba, K.; Ly-Hartig, N.; McGinty, R.K.; Fraterman, S.; Wilm, M.; Muir, T.W.; Müller, J. Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB. Nature, 2010, 465(7295), 243-247.
[http://dx.doi.org/10.1038/nature08966] [PMID: 20436459]
[28]
Lin, Y.H.; Liang, Y.; Wang, H.; Tung, L.T.; Förster, M.; Subramani, P.G.; Di Noia, J.M.; Clare, S.; Langlais, D.; Nijnik, A. Regulation of B lymphocyte development by histone H2A deubiquitinase BAP1. Front. Immunol., 2021, 12, 626418.
[http://dx.doi.org/10.3389/fimmu.2021.626418] [PMID: 33912157]
[29]
Daou, S.; Hammond-Martel, I.; Mashtalir, N.; Barbour, H.; Gagnon, J.; Iannantuono, N.G.; Nkwe, N.S.; Motorina, A.; Pak, H.; Yu, H.; Wurtele, H.; Milot, E.; Mallette, F.A.; Carbone, M.; Affar, E.B. The BAP1/ASXL2 Histone H2A deubiquitinase complex regulates cell proliferation and is disrupted in cancer. J. Biol. Chem., 2015, 290(48), 28643-28663.
[http://dx.doi.org/10.1074/jbc.M115.661553] [PMID: 26416890]
[30]
Ji, Z.; Mohammed, H.; Webber, A.; Ridsdale, J.; Han, N.; Carroll, J.S.; Sharrocks, A.D. The forkhead transcription factor FOXK2 acts as a chromatin targeting factor for the BAP1-containing histone deubiquitinase complex. Nucleic Acids Res., 2014, 42(10), 6232-6242.
[http://dx.doi.org/10.1093/nar/gku274] [PMID: 24748658]
[31]
Yu, H.; Mashtalir, N.; Daou, S.; Hammond-Martel, I.; Ross, J.; Sui, G.; Hart, G.W.; Rauscher, F.J., III; Drobetsky, E.; Milot, E.; Shi, Y.; Affar, E.B. The ubiquitin carboxyl hydrolase BAP1 forms a ternary complex with YY1 and HCF-1 and is a critical regulator of gene expression. Mol. Cell. Biol., 2010, 30(21), 5071-5085.
[http://dx.doi.org/10.1128/MCB.00396-10] [PMID: 20805357]
[32]
Di Croce, L.; Helin, K. Transcriptional regulation by Polycomb group proteins. Nat. Struct. Mol. Biol., 2013, 20(10), 1147-1155.
[http://dx.doi.org/10.1038/nsmb.2669] [PMID: 24096405]
[33]
Carbone, M.; Yang, H.; Pass, H.I.; Krausz, T.; Testa, J.R.; Gaudino, G. BAP1 and cancer. Nat. Rev. Cancer, 2013, 13(3), 153-159.
[http://dx.doi.org/10.1038/nrc3459] [PMID: 23550303]
[34]
Meas, R.; Mao, P. Histone ubiquitylation and its roles in transcription and DNA damage response. DNA Repair (Amst.), 2015, 36, 36-42.
[http://dx.doi.org/10.1016/j.dnarep.2015.09.016] [PMID: 26422137]
[35]
Dai, F.; Lee, H.; Zhang, Y.; Zhuang, L.; Yao, H.; Xi, Y.; Xiao, Z.D.; You, M.J.; Li, W.; Su, X.; Gan, B. BAP1 inhibits the ER stress gene regulatory network and modulates metabolic stress response. Proc. Natl. Acad. Sci. USA, 2017, 114(12), 3192-3197.
[http://dx.doi.org/10.1073/pnas.1619588114] [PMID: 28275095]
[36]
Ge, Y.Z.; Xu, L.W.; Zhou, C.C.; Lu, T.Z.; Yao, W.T.; Wu, R.; Zhao, Y.C.; Xu, X.; Hu, Z.K.; Wang, M.; Yang, X.B.; Zhou, L.H.; Zhong, B.; Xu, Z.; Li, W.C.; Zhu, J.G.; Jia, R.P. A BAP1 mutation-specific microRNA signature predicts clinical outcomes in clear cell renal cell carcinoma patients with wild-type BAP1. J. Cancer, 2017, 8(13), 2643-2652.
[http://dx.doi.org/10.7150/jca.20234] [PMID: 28900502]
[37]
Ben-Hamo, R.; Efroni, S. MicroRNA-gene association as a prognostic biomarker in cancer exposes disease mechanisms. PLOS Comput. Biol., 2013, 9(11), e1003351.
[http://dx.doi.org/10.1371/journal.pcbi.1003351] [PMID: 24278004]
[38]
Wu, J.; Lu, L.Y.; Yu, X. The role of BRCA1 in DNA damage response. Protein Cell, 2010, 1(2), 117-123.
[http://dx.doi.org/10.1007/s13238-010-0010-5] [PMID: 21203981]
[39]
Yu, H.; Pak, H.; Hammond-Martel, I.; Ghram, M.; Rodrigue, A.; Daou, S.; Barbour, H.; Corbeil, L.; Hébert, J.; Drobetsky, E.; Masson, J.Y.; Di Noia, J.M.; Affar, E.B. Tumor suppressor and deubiquitinase BAP1 promotes DNA double-strand break repair. Proc. Natl. Acad. Sci. USA, 2014, 111(1), 285-290.
[http://dx.doi.org/10.1073/pnas.1309085110] [PMID: 24347639]
[40]
Eletr, Z.M.; Yin, L.; Wilkinson, K.D. BAP1 is phosphorylated at serine 592 in S-phase following DNA damage. FEBS Lett., 2013, 587(24), 3906-3911.
[http://dx.doi.org/10.1016/j.febslet.2013.10.035] [PMID: 24211834]
[41]
Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; Voelkerding, K.; Rehm, H.L. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med., 2015, 17(5), 405-424.
[http://dx.doi.org/10.1038/gim.2015.30] [PMID: 25741868]
[42]
Herrera-Mullar, J.; Horton, C.; Castillo, A.; Laduca, H. Role of SMARCA4 mutations in ovarian carcinoma: Preliminary data from a laboratory-based multigene panel testing cohort. Gynecol. Oncol., 2017, 147(1), 218.
[http://dx.doi.org/10.1016/j.ygyno.2017.07.075]
[43]
Abdel-Rahman, M.H.; Pilarski, R.; Cebulla, C.M.; Massengill, J.B.; Christopher, B.N.; Boru, G.; Hovland, P.; Davidorf, F.H. Germline BAP1 mutation predisposes to uveal melanoma, lung adenocarcinoma, meningioma, and other cancers. J. Med. Genet., 2011, 48(12), 856-859.
[http://dx.doi.org/10.1136/jmedgenet-2011-100156] [PMID: 21941004]
[44]
Testa, J.R.; Cheung, M.; Pei, J.; Below, J.E.; Tan, Y.; Sementino, E.; Cox, N.J.; Dogan, A.U.; Pass, H.I.; Trusa, S.; Hesdorffer, M.; Nasu, M.; Powers, A.; Rivera, Z.; Comertpay, S.; Tanji, M.; Gaudino, G.; Yang, H.; Carbone, M. Germline BAP1 mutations predispose to malignant mesothelioma. Nat. Genet., 2011, 43(10), 1022-1025.
[http://dx.doi.org/10.1038/ng.912] [PMID: 21874000]
[45]
Wiesner, T.; Obenauf, A.C.; Murali, R.; Fried, I.; Griewank, K.G.; Ulz, P.; Windpassinger, C.; Wackernagel, W.; Loy, S.; Wolf, I.; Viale, A.; Lash, A.E.; Pirun, M.; Socci, N.D.; Rütten, A.; Palmedo, G.; Abramson, D.; Offit, K.; Ott, A.; Becker, J.C.; Cerroni, L.; Kutzner, H.; Bastian, B.C.; Speicher, M.R. Germline mutations in BAP1 predispose to melanocytic tumors. Nat. Genet., 2011, 43(10), 1018-1021.
[http://dx.doi.org/10.1038/ng.910] [PMID: 21874003]
[46]
Carbone, M.; Pass, H.I.; Ak, G.; Alexander, H.R., Jr; Baas, P.; Baumann, F.; Blakely, A.M.; Bueno, R.; Bzura, A.; Cardillo, G.; Churpek, J.E.; Dianzani, I.; De Rienzo, A.; Emi, M.; Emri, S.; Felley-Bosco, E.; Fennell, D.A.; Flores, R.M.; Grosso, F.; Hayward, N.K.; Hesdorffer, M.; Hoang, C.D.; Johansson, P.A.; Kindler, H.L.; Kittaneh, M.; Krausz, T.; Mansfield, A.; Metintas, M.; Minaai, M.; Mutti, L.; Nielsen, M.; O’Byrne, K.; Opitz, I.; Pastorino, S.; Pentimalli, F.; de Perrot, M.; Pritchard, A.; Ripley, R.T.; Robinson, B.; Rusch, V.; Taioli, E.; Takinishi, Y.; Tanji, M.; Tsao, A.S.; Tuncer, A.M.; Walpole, S.; Wolf, A.; Yang, H.; Yoshikawa, Y.; Zolondick, A.; Schrump, D.S.; Hassan, R. Medical and surgical care of patients with mesothelioma and their relatives carrying germline BAP1 mutations. J. Thorac. Oncol., 2022, 17(7), 873-889.
[http://dx.doi.org/10.1016/j.jtho.2022.03.014] [PMID: 35462085]
[47]
Ludgate, M.W.; Fullen, D.R.; Lee, J.; Lowe, L.; Bradford, C.; Geiger, J.; Schwartz, J.; Johnson, T.M. The atypical Spitz tumor of uncertain biologic potential. Cancer, 2009, 115(3), 631-641.
[http://dx.doi.org/10.1002/cncr.24047] [PMID: 19123453]
[48]
Haugh, A.M.; Njauw, C.N.; Bubley, J.A.; Verzì, A.E.; Zhang, B.; Kudalkar, E.; VandenBoom, T.; Walton, K.; Swick, B.L.; Kumar, R.; Rana, H.Q.; Cochrane, S.; McCormick, S.R.; Shea, C.R.; Tsao, H.; Gerami, P. Genotypic and phenotypic features of BAP1 cancer syndrome: A report of 8 new families and review of cases in the literature. JAMA Dermatol., 2017, 153(10), 999-1006.
[http://dx.doi.org/10.1001/jamadermatol.2017.2330] [PMID: 28793149]
[49]
Cabaret, O.; Perron, E.; Bressac-de Paillerets, B.; Soufir, N.; de la Fouchardière, A. Occurrence of BAP1 germline mutations in cutaneous melanocytic tumors with loss of BAP1-expression: A pilot study. Genes Chromosomes Cancer, 2017, 56(9), 691-694.
[http://dx.doi.org/10.1002/gcc.22473] [PMID: 28560743]
[50]
Carbone, M.; Ferris, L.K.; Baumann, F.; Napolitano, A.; Lum, C.A.; Flores, E.G.; Gaudino, G.; Powers, A.; Bryant-Greenwood, P.; Krausz, T.; Hyjek, E.; Tate, R.; Friedberg, J.; Weigel, T.; Pass, H.I.; Yang, H. BAP1 cancer syndrome: Malignant mesothelioma, uveal and cutaneous melanoma, and MBAITs. J. Transl. Med., 2012, 10(1), 179.
[http://dx.doi.org/10.1186/1479-5876-10-179] [PMID: 22935333]
[51]
Rucavado, A.; Núñez, J.; Gutiérrez, J.M. Blister formation and skin damage induced by BaP1, a haemorrhagic metalloproteinase from the venom of the snake Bothrops asper. Int. J. Exp. Pathol., 1998, 79(4), 245-254.
[http://dx.doi.org/10.1046/j.1365-2613.1998.00068.x] [PMID: 9797720]
[52]
Masoomian, B.; Shields, J.A.; Shields, C.L. Overview of BAP1 cancer predisposition syndrome and the relationship to uveal melanoma. J. Curr. Ophthalmol., 2018, 30(2), 102-109.
[http://dx.doi.org/10.1016/j.joco.2018.02.005] [PMID: 29988936]
[53]
Singh, N.; Singh, R.; Bowen, R.C.; Abdel-Rahman, M.H.; Singh, A.D. Uveal melanoma in BAP1 tumor predisposition syndrome: Estimation of risk. Am. J. Ophthalmol., 2021, 224, 172-177.
[http://dx.doi.org/10.1016/j.ajo.2020.12.005] [PMID: 33316260]
[54]
Harbour, J.W.; Onken, M.D.; Roberson, E.D.O.; Duan, S.; Cao, L.; Worley, L.A.; Council, M.L.; Matatall, K.A.; Helms, C.; Bowcock, A.M. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science, 2010, 330(6009), 1410-1413.
[http://dx.doi.org/10.1126/science.1194472] [PMID: 21051595]
[55]
Zauderer, M.G.; Bott, M.; McMillan, R.; Sima, C.S.; Rusch, V.; Krug, L.M.; Ladanyi, M. Clinical characteristics of patients with malignant pleural mesothelioma harboring somatic BAP1 mutations. J. Thorac. Oncol., 2013, 8(11), 1430-1433.
[http://dx.doi.org/10.1097/JTO.0b013e31829e7ef9] [PMID: 24128712]
[56]
Sacco, J.J.; Kenyani, J.; Butt, Z.; Carter, R.; Chew, H.Y.; Cheeseman, L.P.; Darling, S.; Denny, M.; Urbé, S.; Clague, M.J.; Coulson, J.M. Loss of the deubiquitylase BAP1 alters class I histone deacetylase expression and sensitivity of mesothelioma cells to HDAC inhibitors. Oncotarget, 2015, 6(15), 13757-13771.
[http://dx.doi.org/10.18632/oncotarget.3765] [PMID: 25970771]
[57]
Song, M.S.; Salmena, L.; Pandolfi, P.P. The functions and regulation of the PTEN tumour suppressor. Nat. Rev. Mol. Cell Biol., 2012, 13(5), 283-296.
[http://dx.doi.org/10.1038/nrm3330] [PMID: 22473468]
[58]
Wu, D.; Hiroshima, K.; Yusa, T.; Ozaki, D.; Koh, E.; Sekine, Y.; Matsumoto, S.; Nabeshima, K.; Sato, A.; Tsujimura, T.; Yamakawa, H.; Tada, Y.; Shimada, H.; Tagawa, M. Usefulness of p16/CDKN2A fluorescence in situ hybridization and BAP1 immunohistochemistry for the diagnosis of biphasic mesothelioma. Ann. Diagn. Pathol., 2017, 26, 31-37.
[http://dx.doi.org/10.1016/j.anndiagpath.2016.10.010] [PMID: 28038708]
[59]
Kluzek, K.; Srebniak, M.I.; Majer, W.; Ida, A.; Milecki, T.; Huminska, K.; van der Helm, R.M.; Silesian, A.; Wrzesinski, T.M.; Wojciechowicz, J.; Beverloo, B.H.; Kwias, Z.; Bluyssen, H.A.R.; Wesoly, J. Genetic characterization of Polish ccRCC patients: Somatic mutation analysis of PBRM1, BAP1 and KDMC5, genomic SNP array analysis in tumor biopsy and preliminary results of chromosome aberrations analysis in plasma cell free DNA. Oncotarget, 2017, 8(17), 28558-28574.
[http://dx.doi.org/10.18632/oncotarget.15331] [PMID: 28212566]
[60]
Guo, G.; Gui, Y.; Gao, S.; Tang, A.; Hu, X.; Huang, Y.; Jia, W.; Li, Z.; He, M.; Sun, L.; Song, P.; Sun, X.; Zhao, X.; Yang, S.; Liang, C.; Wan, S.; Zhou, F.; Chen, C.; Zhu, J.; Li, X.; Jian, M.; Zhou, L.; Ye, R.; Huang, P.; Chen, J.; Jiang, T.; Liu, X.; Wang, Y.; Zou, J.; Jiang, Z.; Wu, R.; Wu, S.; Fan, F.; Zhang, Z.; Liu, L.; Yang, R.; Liu, X.; Wu, H.; Yin, W.; Zhao, X.; Liu, Y.; Peng, H.; Jiang, B.; Feng, Q.; Li, C.; Xie, J.; Lu, J.; Kristiansen, K.; Li, Y.; Zhang, X.; Li, S.; Wang, J.; Yang, H.; Cai, Z.; Wang, J. Frequent mutations of genes encoding ubiquitin-mediated proteolysis pathway components in clear cell renal cell carcinoma. Nat. Genet., 2012, 44(1), 17-19.
[http://dx.doi.org/10.1038/ng.1014] [PMID: 22138691]
[61]
Kroeger, N; Kapur, P; Huang, J MP47-06 brca1 associated protein-1 (bap-1) loss in ccrcc: molecular correlations and validation as a prognostic factor. The Journal of Urology, 2015, 193(4S), e554-e.
[http://dx.doi.org/10.1016/j.juro.2015.02.1526]
[62]
Gerlinger, M; Horswell, S; Larkin, J Intratumor heterogeneity in clear cell renal cell carcinoma (ccRCC): Multi-region sequencing redefines the mutational landscape of ccRCCs. Cancer Research, 2013, 73(8_Supplement), 4603.
[http://dx.doi.org/10.1158/1538-7445.AM2013-4603]
[63]
Yuan, C.; Xiong, Z.; Shi, J.; Peng, J.; Meng, X.; Wang, C.; Hu, W.; Ru, Z.; Xie, K.; Yang, H.; Chen, K.; Zhang, X. Overexpression of PPT2 represses the clear cell renal cell carcinoma progression by reducing epithelial-to-mesenchymal transition. J. Cancer, 2020, 11(5), 1151-1161.
[http://dx.doi.org/10.7150/jca.36477] [PMID: 31956361]
[64]
Huang, H.; Tang, Y.; He, W.; Huang, Q.; Zhong, J.; Yang, Z. Key pathways and genes controlling the development and progression of clear cell renal cell carcinoma (ccRCC) based on gene set enrichment analysis. Int. Urol. Nephrol., 2014, 46(3), 539-553.
[http://dx.doi.org/10.1007/s11255-013-0511-2] [PMID: 23943374]
[65]
Kuznetsov, J N The tumor suppressor BAP1 promotes a developmental switch from pluripotency to differentiation. Cancer Research, 2017, 77(13_Supplement), 1541.
[http://dx.doi.org/10.1158/1538-7445.AM2017-1541]
[66]
Xu, J.Z.; Xia, Q.D.; Lu, J.L.; Xun, Y.; Liu, C-Q.; Sun, J-X.; Li, C.; Hu, J.; Wang, S-G. Identification of BAP1 mutation as a common mutation correlated with tumor mutation burden and immune infiltration in kidney renal clear cell carcinoma. All Life, 2022, 15(1), 470-478.
[http://dx.doi.org/10.1080/26895293.2022.2060310]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy