Generic placeholder image

Current HIV Research

Editor-in-Chief

ISSN (Print): 1570-162X
ISSN (Online): 1873-4251

Research Article

Prevalence of Transmitted Drug Resistance among HIV-1 Patients in the Aegean Region: Results from the Western Part of Turkey

Author(s): Ruchan Sertoz, Duygu Tekin*, Selda Erensoy, Servet Biceroglu, Figen Kaptan, Sukran Köse, Hulya Ozkan, Banu Cetin, Melda Türken and Deniz Gokengin

Volume 21, Issue 2, 2023

Published on: 22 June, 2023

Page: [109 - 116] Pages: 8

DOI: 10.2174/1570162X21666230525145529

Price: $65

Abstract

Objectives: This study aimed to analyze the antiretroviral drug resistance in antiretroviral treatment-naïve HIV-positive patients in the Aegean Region of Turkey from 2012 to 2019.

Methods: The study included 814 plasma samples from treatment-naïve HIV-positive patients. Drug resistance analysis was performed by Sanger sequencing (SS) between 2012-2017 and by next-generation sequencing sequencing (NGS) between 2018-2019. SS was used to analyze resistance mutations in the protease (PR) and reverse transcriptase (RT) gene regions using a ViroSeq HIV-1 Genotyping System. PCR products were analyzed with an ABI3500 GeneticAnalyzer (Applied Biosystems). The sequencing of the HIV genome in the PR, RT, and integrase gene regions was carried out using MiSeq NGS technology. Drug resistance mutations and subtypes were interpreted using the Stanford University HIV-1 drug resistance database.

Results: Transmitted drug resistance (TDR) mutation was detected in 34/814 (4.1 %) samples. Nonnucleoside reverse transcriptase inhibitor (NNRTI), nucleoside reverse transcriptase inhibitor (NRTI), and protease inhibitor (PI) mutations were identified in 1.4 % (n =12), 2.4 % (n =20), and 0.3 % (n = 3) of samples, respectively. The most common subtypes were B (53.1 %), A (10.9%), CRF29_BF (10.6%), and B + CRF02_AG (8,2%). The most common TDR mutations were E138A (3.4%), T215 revertants (1.7%), M41L (1.5%), and K103N (1.1%).

Conclusion: Transmitted drug resistance rate in the Aegean Region is compatible with national and regional data. Routine surveillance of resistance mutations may guide the safe and correct selection of initial drug combinations for antiretroviral therapy. The identification of HIV-1 subtypes and recombinant forms in Turkey may contribute to international molecular epidemiological data.

Next »
Graphical Abstract

[1]
Cohen MS, Chen YQ, McCauley M, et al. Prevention of HIV-1 infection with early antiretroviral therapy. N Engl J Med 2011; 365(6): 493-505.
[http://dx.doi.org/10.1056/NEJMoa1105243] [PMID: 21767103]
[2]
Grinsztejn B, Hosseinipour MC, Ribaudo HJ, et al. Effects of early versus delayed initiation of antiretroviral treatment on clinical outcomes of HIV-1 infection: results from the phase 3 HPTN 052 randomised controlled trial. Lancet Infect Dis 2014; 14(4): 281-90.
[http://dx.doi.org/10.1016/S1473-3099(13)70692-3] [PMID: 24602844]
[3]
Günthard HF, Saag MS, Benson CA, et al. Antiretroviral drugs for treatment and prevention of HIV infection in adults. JAMA 2016; 316(2): 191-210.
[http://dx.doi.org/10.1001/jama.2016.8900] [PMID: 27404187]
[4]
EACS guidelines version 8.2. 2017. Available from: http://www.eascsociety.org
[5]
World Health Organization. 2016 Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection: recommendations for a public health approach. (2nd ed.), Geneva, Switzerland: World Health Organization 2016.
[6]
Wittkop L, Günthard HF, de Wolf F, et al. Effect of transmitted drug resistance on virological and immunological response to initial combination antiretroviral therapy for HIV (EuroCoord-CHAIN joint project): A European multicohort study. Lancet Infect Dis 2011; 11(5): 363-71.
[http://dx.doi.org/10.1016/S1473-3099(11)70032-9] [PMID: 21354861]
[7]
Rhee SY, Blanco JL, Jordan MR, et al. Geographic and temporal trends in the molecular epidemiology and genetic mechanisms of transmitted HIV-1 drug resistance: An individual-patient- and sequence-level meta-analysis. PLoS Med 2015; 12(4): e1001810.
[http://dx.doi.org/10.1371/journal.pmed.1001810] [PMID: 25849352]
[8]
Hofstra LM, Sauvageot N, Albert J, et al. Transmission of HIV drug resistance and the predicted effect on current first-line regimens in Europe. Clin Infect Dis 2016; 62(5): 655-63.
[http://dx.doi.org/10.1093/cid/civ963] [PMID: 26620652]
[10]
Erdinc FS, Dokuzoguz B, Unal S, et al. Temporal trends in the epidemiology of HIV in Turkey. Curr HIV Res 2020; 18(4): 258-66.
[http://dx.doi.org/10.2174/1570162X18666200427223823] [PMID: 32342820]
[11]
Yaylalı E, Gökengin D, Korten V. Modelling the future of HIV in Turkey: Disease implications of improving prevention, diagnosis and treatment. J Int AIDS Soc 2020; 23: 96-7.
[12]
Guliyeva G, Akyol D, Pullukçu H, Mermut G, Gökengin D. Antiretroviral treatment and virologic success in the Ege University cohort: Changes in time. IUSTI Europe Congress. Talinn, Estonia. 2019; p. 48.
[13]
Gokengin D, Tabak F, Korten V, Lazarus JV, Unal S. The HIV treatment cascade in Turkey. HepHIV 2019 Bucharest Conference, . Bucharest, Romania 2019; pp. 4-9.
[14]
Gökengin D, Çimen C. Çağatay A, et al. HIV cascade of care in Turkey: data from the HIV-TR cohort. PE6/22 HIV Med 20(S9) Special Issue. Abstracts of the 17th European AIDS Conference. Basel, Switzerland 2019; pp. 112-3.
[16]
Sayan M, Sargin F, Inan D, et al. HIV-1 transmitted drug resistance mutations in newly diagnosed antiretroviral-naive patients in Turkey. AIDS Res Hum Retroviruses 2016; 32(1): 26-31.
[http://dx.doi.org/10.1089/aid.2015.0110] [PMID: 26414663]
[17]
Sayan M. Kumbasar Karaosmanoğlu H, Mete B, et al. Molecular epidemiological analysis of hiv-1 pol gene sequences isolated in Istanbul, Turkey. Mikrobiyol Bul 2013; 47(1): 87-97.
[http://dx.doi.org/10.5578/mb.4099] [PMID: 23390906]
[18]
Sayan M, Willke A, Ozgunes N. Sargın F. HIV-1 subtypes and primary antiretroviral resistance mutations in antiretroviral therapy naive HIV-1 infected individuals in Turkey. Jpn J Infect Dis 2013; 66(4): 306-11.
[http://dx.doi.org/10.7883/yoken.66.306] [PMID: 23883841]
[19]
Dudley DM, Bailey AL, Mehta SH, et al. Cross-clade simultaneous HIV drug resistance genotyping for reverse transcriptase, protease, and integrase inhibitor mutations by Illumina MiSeq. Retrovirology 2014; 11(1): 122.
[http://dx.doi.org/10.1186/s12977-014-0122-8] [PMID: 25533166]
[20]
Tekin D, Gokengin D, Onay H, Erensoy S, Sertoz R. Investigation of drug resistance against protease, reverse transcriptase, and integrase inhibitors by next‐generation sequencing in HIV‐positive patients. J Med Virol 2021; 93(6): 3627-33.
[http://dx.doi.org/10.1002/jmv.26582] [PMID: 33026651]
[21]
Wensing AM, Calvez V, Günthard HF, et al. 2017 update of the drug resistance mutations in HIV-1. Top Antivir Med 2016; 24(4): 132-3.
[PMID: 28208121]
[22]
Vermeiren H, Van Craenenbroeck E, Alen P, Bacheler L, Picchio G, Lecocq P. Prediction of HIV-1 drug susceptibility phenotype from the viral genotype using linear regression modeling. J Virol Methods 2007; 145(1): 47-55.
[http://dx.doi.org/10.1016/j.jviromet.2007.05.009] [PMID: 17574687]
[23]
Hamers RL, Rinke de Wit TF, Holmes CB. HIV drug resistance in low-income and middle-income countries. Lancet HIV 2018; 5(10): e588-96.
[http://dx.doi.org/10.1016/S2352-3018(18)30173-5] [PMID: 30193863]
[24]
Colafigli M, Torti C, Trecarichi EM, et al. Evolution of transmitted HIV-1 drug resistance in HIV-1-infected patients in Italy from 2000 to 2010. Clin Microbiol Infect 2012; 18(8): E299-304.
[http://dx.doi.org/10.1111/j.1469-0691.2012.03847.x] [PMID: 22536753]
[25]
Chilton DN, Castro H, Lattimore S, et al. HIV type-1 drug resistance in antiretroviral treatment-naive adults infected with non-B subtype virus in the United Kingdom. Antivir Ther 2010; 15(7): 985-91.
[http://dx.doi.org/10.3851/IMP1658] [PMID: 21041913]
[26]
Gupta RK, Gregson J, Parkin N, et al. HIV-1 drug resistance before initiation or re-initiation of first-line antiretroviral therapy in low-income and middle-income countries: A systematic review and meta-regression analysis. Lancet Infect Dis 2018; 18(3): 346-55.
[http://dx.doi.org/10.1016/S1473-3099(17)30702-8] [PMID: 29198909]
[27]
Korten V, Gökengin D, Eren G, et al. Trends and factors associated with modification or discontinuation of the initial antiretroviral regimen during the first year of treatment in the Turkish HIV-TR Cohort, 2011-2017. AIDS Res Ther 2021; 18(1): 4.
[http://dx.doi.org/10.1186/s12981-020-00328-6] [PMID: 33422112]
[28]
Calvez V, Marcelin AG, Vingerhoets J, Hill A, Hadacek B, Moecklinghoff C. Systematic review to determine the prevalence of transmitted drug resistance mutations to rilpivirine in HIV-infected treatment-naive persons. Antivir Ther 2016; 21(5): 405-12.
[http://dx.doi.org/10.3851/IMP3024] [PMID: 26761642]
[29]
Paraskevis D, Kostaki E, Magiorkinis G, et al. Prevalence of drug resistance among HIV-1 treatment-naive patients in Greece during 2003-2015: Transmitted drug resistance is due to onward transmissions. Infect Genet Evol 2017; 54: 183-91.
[http://dx.doi.org/10.1016/j.meegid.2017.07.003] [PMID: 28688977]
[30]
Ji H, Patterson A, Taylor T, et al. Prevalence of primary drug resistance against HIV-1 integrase inhibitors in Canada. J Acquir Immune Defic Syndr 2018; 78(1): e1-3.
[http://dx.doi.org/10.1097/QAI.0000000000001649] [PMID: 29424788]
[31]
Alvarez M, Casas P, de Salazar A, et al. Surveillance of transmitted drug resistance to integrase inhibitors in Spain: implications for clinical practice. J Antimicrob Chemother 2019; 74(6): 1693-700.
[http://dx.doi.org/10.1093/jac/dkz067] [PMID: 30838386]
[32]
Modica S, Rossetti B, Lombardi F, et al. Prevalence and determinants of resistance mutations in HIV-1-infected patients exposed to integrase inhibitors in a large Italian cohort. HIV Med 2019; 20(2): 137-46.
[http://dx.doi.org/10.1111/hiv.12692] [PMID: 30461149]
[33]
Saladini F, Giannini A, Boccuto A, Tiezzi D, Vicenti I, Zazzi M. The HIV-1 integrase E157Q polymorphism per se does not alter susceptibility to raltegravir and dolutegravir in vitro. AIDS 2017; 31(16): 2307-9.
[http://dx.doi.org/10.1097/QAD.0000000000001616] [PMID: 28832412]
[34]
Charpentier C, Malet I, Andre-Garnier E, et al. Phenotypic analysis of HIV-1 E157Q integrase polymorphism and impact on virological outcome in patients initiating an integrase inhibitor-based regimen. J Antimicrob Chemother 2018; 73(4): 1039-44.
[http://dx.doi.org/10.1093/jac/dkx511] [PMID: 29342281]
[35]
Hemelaar J, Elangovan R, Yun J, et al. Global and regional molecular epidemiology of HIV-1, 1990-2015: A systematic review, global survey, and trend analysis. Lancet Infect Dis 2019; 19(2): 143-55.
[http://dx.doi.org/10.1016/S1473-3099(18)30647-9] [PMID: 30509777]
[36]
Yılmaz G, Midilli K, Türkoğlu S, et al. Genetic subtypes of human immunodeficiency virus type 1 (HIV-1) in Istanbul, Turkey. Int J Infect Dis 2006; 10(4): 286-90.
[http://dx.doi.org/10.1016/j.ijid.2005.06.011] [PMID: 16516519]
[37]
Alpsar D, Agacfidan A, Lübke N, et al. Molecular epidemiology of HIV in a cohort of men having sex with men from Istanbul. Med Microbiol Immunol 2013; 202(3): 251-5.
[http://dx.doi.org/10.1007/s00430-012-0285-7] [PMID: 23296905]
[38]
Schülter E, Oette M, Balduin M, et al. HIV prevalence and route of transmission in Turkish immigrants living in North-Rhine Westphalia, Germany. Med Microbiol Immunol 2011; 200(4): 219-23.
[http://dx.doi.org/10.1007/s00430-011-0193-2] [PMID: 21461764]
[39]
Stanojevic M, Alexiev I, Beshkov D, et al. HIV 1 molecular epidemiology in the Balkans: A melting pot for high genetic diversity. AIDS Rev 2012; 14(1): 28-36.
[PMID: 22297502]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy