Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

The Influence of KIR Gene Polymorphisms and KIR-ligand Binding on Outcomes in Hematologic Malignancies following Haploidentical Stem Cell Transplantation: A Comprehensive Review

Author(s): Tahereh Bakhtiari, Mohammad Ahmadvand, Arash Salmaninejad, Afshin Ghaderi, Marjan Yaghmaie, Alireza Sadeghi, Seied Asadollah Mousavi, Tahereh Rostami* and Mazdak Ganjalikhani-Hakemi*

Volume 23, Issue 11, 2023

Published on: 15 June, 2023

Page: [868 - 878] Pages: 11

DOI: 10.2174/1568009623666230523155808

Price: $65

Abstract

Natural killer (NK) cell behavior and function are controlled by a balance between negative or positive signals generated by an extensive array of activating and inhibiting receptors, including killer cell immunoglobulin-like receptor (KIR) proteins, main components of the innate immune system that contribute to initial responses against viral infected-transformed cells through generation of the release of cytokines and cytotoxicity. What is certain is that KIRs are genetically polymorphic and the extent of KIRs diversity within the individuals may have the potential outcomes for hematopoietic stem cell transplantation (HSCT). In this regard, recent studies suggest that KIR is as imperative as its ligand (HLA) in stem cell transplantation for malignant diseases. However, unlike HLA epitope mismatches, which are well-known causes of NK alloreactivity, a complete understanding of KIR genes' role in HSCT remains unclear. Because of genetic variability in KIR gene content, allelic polymorphism, and cell-surface expression among individuals, an appropriate selection of donors based on HLA and KIR profiles is crucial to improve outcomes of stem cell transplantation. In addition, the impact of the KIR/HLA interaction on HSCT outcomes needs to be investigated more comprehensively. The present work aimed to review the NK cell regeneration, KIR gene polymorphisms, and KIRligand binding on outcomes in hematologic malignancies following haploidentical stem cell transplantation. Comprehensive data gathered from the literature can provide new insight into the significance of KIR matching status in transplantations.

Graphical Abstract

[1]
Moffett, A.; Loke, C. Immunology of placentation in eutherian mammals. Nat. Rev. Immunol., 2006, 6(8), 584-594.
[http://dx.doi.org/10.1038/nri1897] [PMID: 16868549]
[2]
Caligiuri, M.A. Human natural killer cells. Blood, 2008, 112(3), 461-469.
[http://dx.doi.org/10.1182/blood-2007-09-077438] [PMID: 18650461]
[3]
Quatrini, L.; Della Chiesa, M.; Sivori, S.; Mingari, M.C.; Pende, D.; Moretta, L. Human NK cells, their receptors and function. Eur. J. Immunol., 2021, 51(7), 1566-1579.
[http://dx.doi.org/10.1002/eji.202049028] [PMID: 33899224]
[4]
Raulet, D.H.; Vance, R.E.; McMahon, C.W. Regulation of the natural killer cell receptor repertoire. Annu. Rev. Immunol., 2001, 19(1), 291-330.
[http://dx.doi.org/10.1146/annurev.immunol.19.1.291] [PMID: 11244039]
[5]
Pererae, M.A.A.S. Human NK cells: From development to effector functions. Innate Immun., 2021, 27(3), 212-229.
[http://dx.doi.org/10.1177/17534259211001512] [PMID: 33761782]
[6]
Falco, M.; Moretta, L.; Moretta, A.; Bottino, C. KIR and KIR ligand polymorphism: A new area for clinical applications? Tissue Antigens, 2013, 82(6), 363-373.
[http://dx.doi.org/10.1111/tan.12262] [PMID: 24498992]
[7]
Ljunggren, H.G.; Kärre, K. In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol. Today, 1990, 11(7), 237-244.
[http://dx.doi.org/10.1016/0167-5699(90)90097-S] [PMID: 2201309]
[8]
Middleton, D.; Gonzelez, F. The extensive polymorphism of KIR genes. Immunology, 2010, 129(1), 8-19.
[http://dx.doi.org/10.1111/j.1365-2567.2009.03208.x] [PMID: 20028428]
[9]
Hamada, S.; Dubois, V.; Koenig, A.; Thaunat, O. Allograft recognition by recipient’s natural killer cells: Molecular mechanisms and role in transplant rejection. HLA, 2021, 98(3), 191-199.
[http://dx.doi.org/10.1111/tan.14332] [PMID: 34050618]
[10]
Cruz-Muñoz, M.E.; Valenzuela-Vázquez, L.; Sánchez-Herrera, J.; Santa-Olalla, T.J. From the “missing self” hypothesis to adaptive NK cells: Insights of NK cell-mediated effector functions in immune surveillance. J. Leukoc. Biol., 2019, 105(5), 955-971.
[http://dx.doi.org/10.1002/JLB.MR0618-224RR] [PMID: 30848847]
[11]
Kärre, K. Natural killer cell recognition of missing self. Nat. Immunol., 2008, 9(5), 477-480.
[http://dx.doi.org/10.1038/ni0508-477] [PMID: 18425103]
[12]
Middleton, D.; Williams, F.; Halfpenny, I.A. KIR genes. Transpl. Immunol., 2005, 14(3-4), 135-142.
[http://dx.doi.org/10.1016/j.trim.2005.03.002] [PMID: 15982555]
[13]
Uhrberg, M.; Valiante, N.M.; Shum, B.P.; Shilling, H.G.; Lienert-Weidenbach, K.; Corliss, B.; Tyan, D.; Lanier, L.L.; Parham, P. Human diversity in killer cell inhibitory receptor genes. Immunity, 1997, 7(6), 753-763.
[http://dx.doi.org/10.1016/S1074-7613(00)80394-5] [PMID: 9430221]
[14]
Gao, F.; Ye, Y.; Gao, Y.; Huang, H.; Zhao, Y. Influence of KIR and NK cell reconstitution in the outcomes of hematopoietic stem cell transplantation. Front. Immunol., 2020, 11, 2022.
[http://dx.doi.org/10.3389/fimmu.2020.02022] [PMID: 32983145]
[15]
Downing, J.; D’Orsogna, L. High-resolution human KIR genotyping. Immunogenetics, 2022, 74(4), 369-379.
[http://dx.doi.org/10.1007/s00251-021-01247-0] [PMID: 35050404]
[16]
Moretta, L.; Biassoni, R.; Bottino, C.; Mingari, M.C.; Moretta, A. Human NK-cell receptors. Immunol. Today, 2000, 21(9), 420-422.
[http://dx.doi.org/10.1016/S0167-5699(00)01673-X] [PMID: 10953091]
[17]
Vilches, C.; Parham, P. KIR: diverse, rapidly evolving receptors of innate and adaptive immunity. Annu. Rev. Immunol., 2002, 20(1), 217-251.
[http://dx.doi.org/10.1146/annurev.immunol.20.092501.134942] [PMID: 11861603]
[18]
Norman, P.J.; Parham, P. Complex interactions: The immunogenetics of human leukocyte antigen and killer cell immunoglobulin-like receptors. In: Seminars in hematology: 2005; Elsevier, 2005; pp. 65-75.
[http://dx.doi.org/10.1053/j.seminhematol.2005.01.007]
[19]
Khakoo, S.I.; Carrington, M. KIR and disease: A model system or system of models? Immunol. Rev., 2006, 214(1), 186-201.
[http://dx.doi.org/10.1111/j.1600-065X.2006.00459.x] [PMID: 17100885]
[20]
Kulkarni, S.; Martin, M.P.; Carrington, M. The Yin and Yang of HLA and KIR in human disease. In: Seminars in immunology: 2008; Elsevier, 2008; pp. 343-352.
[http://dx.doi.org/10.1016/j.smim.2008.06.003]
[21]
Velardi, A. Role of KIRs and KIR ligands in hematopoietic transplantation. Curr. Opin. Immunol., 2008, 20(5), 581-587.
[http://dx.doi.org/10.1016/j.coi.2008.07.004] [PMID: 18675345]
[22]
Hsu, K.C.; Chida, S.; Geraghty, D.E.; Dupont, B. The killer cell immunoglobulin-like receptor (KIR) genomic region: gene-order, haplotypes and allelic polymorphism. Immunol. Rev., 2002, 190(1), 40-52.
[http://dx.doi.org/10.1034/j.1600-065X.2002.19004.x] [PMID: 12493005]
[23]
Norman, P.J.; Carrington, C.V.F.; Byng, M.; Maxwell, L.D.; Curran, M.D.; Stephens, H A F.; Chandanayingyong, D.; Verity, D.H.; Hameed, K.; Ramdath, D.D.; Vaughan, R.W. Natural killer cell immunoglobulin-like receptor (KIR) locus profiles in African and South Asian populations. Genes Immun., 2002, 3(2), 86-95.
[http://dx.doi.org/10.1038/sj.gene.6363836] [PMID: 11960306]
[24]
Toneva, M.; Lepage, V.; Lafay, G.; Dulphy, N.; Busson, M.; Lester, S.; Vu-Trien, A.; Michaylova, A.; Naumova, E.; McCluskey, J.; Charron, D. Genomic diversity of natural killer cell receptor genes in three populations. Tissue Antigens, 2001, 57(4), 358-362.
[http://dx.doi.org/10.1034/j.1399-0039.2001.057004358.x] [PMID: 11380947]
[25]
Pyo, C.W.; Guethlein, L.A.; Vu, Q.; Wang, R.; Abi-Rached, L.; Norman, P.J.; Marsh, S.G.E.; Miller, J.S.; Parham, P.; Geraghty, D.E. Different patterns of evolution in the centromeric and telomeric regions of group A and B haplotypes of the human killer cell Ig-like receptor locus. PLoS One, 2010, 5(12), e15115.
[http://dx.doi.org/10.1371/journal.pone.0015115] [PMID: 21206914]
[26]
Rajagopalan, S.; Long, E.O. Understanding how combinations of HLA and KIR genes influence disease. J. Exp. Med., 2005, 201(7), 1025-1029.
[http://dx.doi.org/10.1084/jem.20050499] [PMID: 15809348]
[27]
Dizaji, A.K.; Velaei, K.; Rafat, A.; Tayefi, N.H.; Movassaghpour, A.A.; Mahdavi, M.; Nozad, C.H. The role of KIR positive NK cells in diseases and its importance in clinical intervention. Int. Immunopharmacol., 2021, 92, 107361.
[http://dx.doi.org/10.1016/j.intimp.2020.107361] [PMID: 33429335]
[28]
Di Santo, J.P. Natural killer cells: Diversity in search of a niche. Nat. Immunol., 2008, 9(5), 473-475.
[http://dx.doi.org/10.1038/ni.f.201] [PMID: 18425102]
[29]
Orr, M.T.; Lanier, L.L. Natural killer cell education and tolerance. Cell, 2010, 142(6), 847-856.
[http://dx.doi.org/10.1016/j.cell.2010.08.031] [PMID: 20850008]
[30]
Lanier, L.L. NK cell receptors. Annu. Rev. Immunol., 1998, 16(1), 359-393.
[http://dx.doi.org/10.1146/annurev.immunol.16.1.359] [PMID: 9597134]
[31]
Jonsson, A.H.; Yokoyama, W.M. Natural killer cell tolerance licensing and other mechanisms. Adv. Immunol., 2009, 101, 27-79.
[http://dx.doi.org/10.1016/S0065-2776(08)01002-X] [PMID: 19231592]
[32]
Pende, D.; Spaggiari, G.M.; Marcenaro, S.; Martini, S.; Rivera, P.; Capobianco, A.; Falco, M.; Lanino, E.; Pierri, I.; Zambello, R.; Bacigalupo, A.; Mingari, M.C.; Moretta, A.; Moretta, L. Analysis of the receptor-ligand interactions in the natural killer–mediated lysis of freshly isolated myeloid or lymphoblastic leukemias: Evidence for the involvement of the Poliovirus receptor (CD155) and Nectin-2 (CD112). Blood, 2005, 105(5), 2066-2073.
[http://dx.doi.org/10.1182/blood-2004-09-3548] [PMID: 15536144]
[33]
Re, F.; Staudacher, C.; Zamai, L.; Vecchio, V.; Bregni, M. Killer cell Ig-like receptors ligand-mismatched, alloreactive natural killer cells lyse primary solid tumors. Cancer, 2006, 107(3), 640-648.
[http://dx.doi.org/10.1002/cncr.22002] [PMID: 16804934]
[34]
Stein, M.N.; Shin, J.; Gudzowaty, O.; Bernstein, A.M.; Liu, J.M. Antibody-dependent cell cytotoxicity to breast cancer targets despite inhibitory KIR signaling. Anticancer Res., 2006, 26(3A), 1759-1763.
[PMID: 16827104]
[35]
Fauriat, C.; Just-Landi, S.; Mallet, F.; Arnoulet, C.; Sainty, D.; Olive, D.; Costello, R.T. Deficient expression of NCR in NK cells from acute myeloid leukemia: evolution during leukemia treatment and impact of leukemia cells in NCRdull phenotype induction. Blood, 2007, 109(1), 323-330.
[http://dx.doi.org/10.1182/blood-2005-08-027979] [PMID: 16940427]
[36]
Costello, R.T.; Sivori, S.; Marcenaro, E.; Lafage-Pochitaloff, M.; Mozziconacci, M.J.; Reviron, D.; Gastaut, J.A.; Pende, D.; Olive, D.; Moretta, A. Defective expression and function of natural killer cell–triggering receptors in patients with acute myeloid leukemia. Blood, 2002, 99(10), 3661-3667.
[http://dx.doi.org/10.1182/blood.V99.10.3661] [PMID: 11986221]
[37]
Szczepanski, M.J.; Szajnik, M.; Welsh, A.; Foon, K.A.; Whiteside, T.L.; Boyiadzis, M. Interleukin-15 enhances natural killer cell cytotoxicity in patients with acute myeloid leukemia by upregulating the activating NK cell receptors. Cancer Immunol. Immunother., 2010, 59(1), 73-79.
[http://dx.doi.org/10.1007/s00262-009-0724-5] [PMID: 19526239]
[38]
Nowbakht, P.; Ionescu, M.C.S.; Rohner, A.; Kalberer, C.P.; Rossy, E.; Mori, L.; Cosman, D.; De Libero, G.; Wodnar-Filipowicz, A. Ligands for natural killer cell–activating receptors are expressed upon the maturation of normal myelomonocytic cells but at low levels in acute myeloid leukemias. Blood, 2005, 105(9), 3615-3622.
[http://dx.doi.org/10.1182/blood-2004-07-2585] [PMID: 15657183]
[39]
Moretta, L.; Locatelli, F.; Pende, D.; Marcenaro, E.; Mingari, M.C.; Moretta, A. Killer Ig–like receptor-mediated control of natural killer cell alloreactivity in haploidentical hematopoietic stem cell transplantation. Blood, 2011, 117(3), 764-771.
[http://dx.doi.org/10.1182/blood-2010-08-264085] [PMID: 20889923]
[40]
Nasrallah, A.G.; Miale, T.D. Decreased natural killer cell activity in children with untreated acute leukemia. Cancer Res., 1983, 43(11), 5580-5585.
[PMID: 6352019]
[41]
Ruggeri, L.; Mancusi, A.; Burchielli, E.; Capanni, M.; Carotti, A.; Aloisi, T.; Aversa, F.; Martelli, M.F.; Velardi, A. NK cell alloreactivity and allogeneic hematopoietic stem cell transplantation. Blood Cells Mol. Dis., 2008, 40(1), 84-90.
[http://dx.doi.org/10.1016/j.bcmd.2007.06.029] [PMID: 17964828]
[42]
Cooley, S.; Weisdorf, D.J.; Guethlein, L.A.; Klein, J.P.; Wang, T.; Le, C.T.; Marsh, S.G.E.; Geraghty, D.; Spellman, S.; Haagenson, M.D.; Ladner, M.; Trachtenberg, E.; Parham, P.; Miller, J.S. Donor selection for natural killer cell receptor genes leads to superior survival after unrelated transplantation for acute myelogenous leukemia. Blood, 2010, 116(14), 2411-2419.
[http://dx.doi.org/10.1182/blood-2010-05-283051] [PMID: 20581313]
[43]
Venstrom, J.M.; Pittari, G.; Gooley, T.A.; Chewning, J.H.; Spellman, S.; Haagenson, M.; Gallagher, M.M.; Malkki, M.; Petersdorf, E.; Dupont, B.; Hsu, K.C. HLA-C-dependent prevention of leukemia relapse by donor activating KIR2DS1. N. Engl. J. Med., 2012, 367(9), 805-816.
[http://dx.doi.org/10.1056/NEJMoa1200503] [PMID: 22931314]
[44]
Forlenza, C.J.; Boudreau, J.E.; Zheng, J.; Le Luduec, J.B.; Chamberlain, E.; Heller, G.; Cheung, N.K.V.; Hsu, K.C. KIR3DL1 allelic polymorphism and HLA-B epitopes modulate response to anti-GD2 monoclonal antibody in patients with neuroblastoma. J. Clin. Oncol., 2016, 34(21), 2443-2451.
[http://dx.doi.org/10.1200/JCO.2015.64.9558] [PMID: 27069083]
[45]
Boudreau, J.E.; Giglio, F.; Gooley, T.A.; Stevenson, P.A.; Le Luduec, J.B.; Shaffer, B.C.; Rajalingam, R.; Hou, L.; Hurley, C.K.; Noreen, H.; Reed, E.F.; Yu, N.; Vierra-Green, C.; Haagenson, M.; Malkki, M.; Petersdorf, E.W.; Spellman, S.; Hsu, K.C. KIR3DL1/HLA-B subtypes govern acute myelogenous leukemia relapse after hematopoietic cell transplantation. J. Clin. Oncol., 2017, 35(20), 2268-2278.
[http://dx.doi.org/10.1200/JCO.2016.70.7059] [PMID: 28520526]
[46]
Marra, J.; Greene, J.; Hwang, J.; Du, J.; Damon, L.; Martin, T.; Venstrom, J.M. KIR and HLA genotypes predictive of low-affinity interactions are associated with lower relapse in autologous hematopoietic cell transplantation for acute myeloid leukemia. J. Immunol., 2015, 194(9), 4222-4230.
[http://dx.doi.org/10.4049/jimmunol.1402124] [PMID: 25810393]
[47]
Shindo, T.; Ureshino, H.; Kojima, H.; Tanaka, H.; Kimura, S. Allelic polymorphisms of KIRs and antitumor immunity against chronic myeloid leukemia. Immunol. Med., 2021, 44(2), 61-68.
[http://dx.doi.org/10.1080/25785826.2020.1796062] [PMID: 32715973]
[48]
Mullighan, C.G.; Petersdorf, E.W. Genomic polymorphism and allogeneic hematopoietic transplantation outcome. Biol. Blood Marrow Transplant., 2006, 12(S1), 19-27.
[http://dx.doi.org/10.1016/j.bbmt.2005.09.014] [PMID: 16399580]
[49]
Thielens, A.; Vivier, E.; Romagné, F. NK cell MHC class I specific receptors (KIR): from biology to clinical intervention. Curr. Opin. Immunol., 2012, 24(2), 239-245.
[http://dx.doi.org/10.1016/j.coi.2012.01.001] [PMID: 22264929]
[50]
Ureshino, H.; Shindo, T.; Kojima, H.; Kusunoki, Y.; Miyazaki, Y.; Tanaka, H.; Saji, H.; Kawaguchi, A.; Kimura, S. Allelic polymorphisms of KIR s and HLA s predict favorable responses to tyrosine kinase inhibitors in CML. Cancer Immunol. Res., 2018, 6(6), 745-754.
[http://dx.doi.org/10.1158/2326-6066.CIR-17-0462] [PMID: 29695383]
[51]
Ureshino, H.; Shindo, T.; Tanaka, H.; Kimura, S. [Chronic myeloid leukemia and NK cell immunity]. Rinsho Ketsueki, 2017, 58(4), 381-388. [Rinsho Ketsueki].
[PMID: 28484170]
[52]
La Nasa, G.; Caocci, G.; Littera, R.; Atzeni, S.; Vacca, A.; Mulas, O.; Langiu, M.; Greco, M.; Orrù, S.; Orrù, N.; Floris, A.; Carcassi, C. Homozygosity for killer immunoglobin-like receptor haplotype A predicts complete molecular response to treatment with tyrosine kinase inhibitors in chronic myeloid leukemia patients. Exp. Hematol., 2013, 41(5), 424-431.
[http://dx.doi.org/10.1016/j.exphem.2013.01.008] [PMID: 23380384]
[53]
Marin, D.; Gabriel, I.H.; Ahmad, S.; Foroni, L.; Lavallade, H.; Clark, R.; O’Brien, S.; Sergeant, R.; Hedgley, C.; Milojkovic, D.; Khorashad, J.S.; Bua, M.; Alsuliman, A.; Khoder, A.; Stringaris, K.; Cooper, N.; Davis, J.; Goldman, J.M.; Apperley, J.F.; Rezvani, K. KIR2DS1 genotype predicts for complete cytogenetic response and survival in newly diagnosed chronic myeloid leukemia patients treated with imatinib. Leukemia, 2012, 26(2), 296-302.
[http://dx.doi.org/10.1038/leu.2011.180] [PMID: 21844874]
[54]
Ali, S.; Sergeant, R.; O’Brien, S.G.; Foroni, L.; Hedgley, C.; Gerrard, G.; Milojkovic, D.; Stringaris, K.; Khoder, A.; Alsuliman, A.; Gilleece, M.; Gabriel, I.H.; Cooper, N.; Goldman, J.M.; Apperley, J.F.; Clark, R.E.; Marin, D.; Rezvani, K. Dasatinib may overcome the negative prognostic impact of KIR2DS1 in newly diagnosed patients with chronic myeloid leukemia. Blood, 2012, 120(3), 697-698.
[http://dx.doi.org/10.1182/blood-2012-04-421016] [PMID: 22822001]
[55]
Yeung, D.T.; Tang, C.; Vidovic, L.; White, D.L.; Branford, S.; Hughes, T.P.; Yong, A.S. KIR2DL5B genotype predicts outcomes in CML patients treated with response-directed sequential imatinib/nilotinib strategy. Blood, 2015, 126(25), 2720-2723.
[http://dx.doi.org/10.1182/blood-2015-07-655589] [PMID: 26500342]
[56]
Habegger de Sorrentino, A.; Sinchi, J.L.; Marinic, K.; López, R.; Iliovich, E. KIR-HLA-A and B alleles of the Bw4 epitope against HIV infection in discordant heterosexual couples in Chaco Argentina. Immunology, 2013, 140(2), 273-279.
[http://dx.doi.org/10.1111/imm.12137] [PMID: 23789883]
[57]
McGeough, C.M.; Berrar, D.; Wright, G.; Mathews, C.; Gilmore, P.; Cunningham, R.T.; Bjourson, A.J. Killer immunoglobulin-like receptor and human leukocyte antigen-C genotypes in rheumatoid arthritis primary responders and non-responders to anti-TNF-α therapy. Rheumatol. Int., 2012, 32(6), 1647-1653.
[http://dx.doi.org/10.1007/s00296-011-1838-6] [PMID: 21373785]
[58]
Anfossi, N.; André, P.; Guia, S.; Falk, C.S.; Roetynck, S.; Stewart, C.A.; Breso, V.; Frassati, C.; Reviron, D.; Middleton, D.; Romagné, F.; Ugolini, S.; Vivier, E. Human NK cell education by inhibitory receptors for MHC class I. Immunity, 2006, 25(2), 331-342.
[http://dx.doi.org/10.1016/j.immuni.2006.06.013] [PMID: 16901727]
[59]
Tanimine, N.; Tanaka, Y.; Kobayashi, T.; Tashiro, H.; Miki, D.; Imamura, M.; Aikata, H.; Tanaka, J.; Chayama, K.; Ohdan, H. Quantitative effect of natural killer-cell licensing on hepatocellular carcinoma recurrence after curative hepatectomy. Cancer Immunol. Res., 2014, 2(12), 1142-1147.
[http://dx.doi.org/10.1158/2326-6066.CIR-14-0091] [PMID: 25135909]
[60]
Du, J.; Lopez-Verges, S.; Pitcher, B.N.; Johnson, J.; Jung, S.H.; Zhou, L.; Hsu, K.; Czuczman, M.S.; Cheson, B.; Kaplan, L.; Lanier, L.L.; Venstrom, J.M. CALGB 150905 (Alliance): rituximab broadens the antilymphoma response by activating unlicensed NK cells. Cancer Immunol. Res., 2014, 2(9), 878-889.
[http://dx.doi.org/10.1158/2326-6066.CIR-13-0158] [PMID: 24958280]
[61]
Sekine, T.; Marin, D.; Cao, K.; Li, L.; Mehta, P.; Shaim, H.; Sobieski, C.; Jones, R.; Oran, B.; Hosing, C.; Rondon, G.; Alsuliman, A.; Paust, S.; Andersson, B.; Popat, U.; Kebriaei, P.; Muftuoglu, M.; Basar, R.; Kondo, K.; Nieto, Y.; Shah, N.; Olson, A.; Alousi, A.; Liu, E.; Sarvaria, A.; Parmar, S.; Armstrong-James, D.; Imahashi, N.; Molldrem, J.; Champlin, R.; Shpall, E.J.; Rezvani, K. Specific combinations of donor and recipient KIR-HLA genotypes predict for large differences in outcome after cord blood transplantation. Blood, 2016, 128(2), 297-312.
[http://dx.doi.org/10.1182/blood-2016-03-706317] [PMID: 27247137]
[62]
Cooley, S.; Trachtenberg, E.; Bergemann, T.L.; Saeteurn, K.; Klein, J.; Le, C.T.; Marsh, S.G.E.; Guethlein, L.A.; Parham, P.; Miller, J.S.; Weisdorf, D.J. Donors with group B KIR haplotypes improve relapse-free survival after unrelated hematopoietic cell transplantation for acute myelogenous leukemia. Blood, 2009, 113(3), 726-732.
[http://dx.doi.org/10.1182/blood-2008-07-171926] [PMID: 18945962]
[63]
Cooley, S; Weisdorf, DJ; Guethlein, LA; Klein, JP; Wang, T; Marsh, SG; Spellman, S; Haagenson, MD; Saeturn, K; Ladner, M Donor killer cell Ig-like receptor B haplotypes, recipient HLA-C1, and HLA-C mismatch enhance the clinical benefit of unrelated transplantation for acute myelogenous leukemia. J. Immunol. Res., 2014, 192(10), 4592-4600.
[64]
Maggs, L. The role of stem cell graft derived natural killer cells in regulating patient outcomes from allogeneic haematopoietic stem cell transplantation; University of Birmingham, 2018.
[65]
Antoun, A.; Vekaria, D.; Salama, R.A.; Pratt, G.; Jobson, S.; Cook, M.; Briggs, D.; Moss, P. The genotype of RAET1L (ULBP6), a ligand for human NKG2D (KLRK1), markedly influences the clinical outcome of allogeneic stem cell transplantation. Br. J. Haematol., 2012, 159(5), 589-598.
[PMID: 23025544]
[66]
Sanchez-Correa, B.; Morgado, S.; Gayoso, I.; Bergua, J.M.; Casado, J.G.; Arcos, M.J.; Bengochea, M.L.; Duran, E.; Solana, R.; Tarazona, R. Human NK cells in acute myeloid leukaemia patients: Analysis of NK cell-activating receptors and their ligands. Cancer Immunol. Immunother., 2011, 60(8), 1195-1205.
[http://dx.doi.org/10.1007/s00262-011-1050-2] [PMID: 21644031]
[67]
Bari, R.; Rujkijyanont, P.; Sullivan, E.; Kang, G.; Turner, V.; Gan, K.; Leung, W. Effect of donor KIR2DL1 allelic polymorphism on the outcome of pediatric allogeneic hematopoietic stem-cell transplantation. J. Clin. Oncol., 2013, 31(30), 3782-3790.
[http://dx.doi.org/10.1200/JCO.2012.47.4007] [PMID: 24043749]
[68]
Giebel, S.; Locatelli, F.; Lamparelli, T.; Velardi, A.; Davies, S.; Frumento, G.; Maccario, R.; Bonetti, F.; Wojnar, J.; Martinetti, M.; Frassoni, F.; Giorgiani, G.; Bacigalupo, A.; Holowiecki, J. Survival advantage with KIR ligand incompatibility in hematopoietic stem cell transplantation from unrelated donors. Blood, 2003, 102(3), 814-819.
[http://dx.doi.org/10.1182/blood-2003-01-0091] [PMID: 12689936]
[69]
Davies, S.M.; Ruggieri, L.; DeFor, T.; Wagner, J.E.; Weisdorf, D.J.; Miller, J.S.; Velardi, A.; Blazar, B.R. Evaluation of KIR ligand incompatibility in mismatched unrelated donor hematopoietic transplants. Blood, 2002, 100(10), 3825-3827.
[http://dx.doi.org/10.1182/blood-2002-04-1197] [PMID: 12393440]
[70]
Bornhäuser, M.; Schwerdtfeger, R.; Martin, H.; Frank, K.H.; Theuser, C.; Ehninger, G. Role of KIR ligand incompatibility in hematopoietic stem cell transplantation using unrelated donors. Blood, 2004, 103(7), 2860-2861.
[http://dx.doi.org/10.1182/blood-2003-11-3893] [PMID: 15033884]
[71]
Miller, J.S.; Cooley, S.; Parham, P.; Farag, S.S.; Verneris, M.R.; McQueen, K.L.; Guethlein, L.A.; Trachtenberg, E.A.; Haagenson, M.; Horowitz, M.M.; Klein, J.P.; Weisdorf, D.J. Missing KIR ligands are associated with less relapse and increased graft-versus-host disease (GVHD) following unrelated donor allogeneic HCT. Blood, 2007, 109(11), 5058-5061.
[http://dx.doi.org/10.1182/blood-2007-01-065383] [PMID: 17317850]
[72]
De Santis, D.; Bishara, A.; Witt, C.S.; Nagler, A.; Brautbar, C.; Slavin, S.; Christiansen, F.T. Natural killer cell HLA-C epitopes and killer cell immunoglobulin-like receptors both influence outcome of mismatched unrelated donor bone marrow transplants. Tissue Antigens, 2005, 65(6), 519-528.
[http://dx.doi.org/10.1111/j.1399-0039.2005.00396.x] [PMID: 15896199]
[73]
Beelen, D.W.; Ottinger, H.D.; Ferencik, S.; Elmaagacli, A.H.; Peceny, R.; Trenschel, R.; Grosse-Wilde, H. Genotypic inhibitory killer immunoglobulin-like receptor ligand incompatibility enhances the long-term antileukemic effect of unmodified allogeneic hematopoietic stem cell transplantation in patients with myeloid leukemias. Blood, 2005, 105(6), 2594-2600.
[http://dx.doi.org/10.1182/blood-2004-04-1441] [PMID: 15536148]
[74]
Cooley, S.; McCullar, V.; Wangen, R.; Bergemann, T.L.; Spellman, S.; Weisdorf, D.J.; Miller, J.S. KIR reconstitution is altered by T cells in the graft and correlates with clinical outcomes after unrelated donor transplantation. Blood, 2005, 106(13), 4370-4376.
[http://dx.doi.org/10.1182/blood-2005-04-1644] [PMID: 16131567]
[75]
Hsu, K.C.; Keever-Taylor, C.A.; Wilton, A.; Pinto, C.; Heller, G.; Arkun, K.; O’Reilly, R.J.; Horowitz, M.M.; Dupont, B. Improved outcome in HLA-identical sibling hematopoietic stem-cell transplantation for acute myelogenous leukemia predicted by KIR and HLA genotypes. Blood, 2005, 105(12), 4878-4884.
[http://dx.doi.org/10.1182/blood-2004-12-4825] [PMID: 15731175]
[76]
Loiseau, P.; Chen, C.; Appert, M-L.; Rocha, V.; Busson, M.; Filion, A.; Lepage, V.; Toubert, A.; Gluckman, E.; Charron, D. The presence and number of activatory KIR (RD) impact the infection and survival status of patients transplanted with an HLA matched sibling donor. Blood, 2004, 104(11), 3339.
[http://dx.doi.org/10.1182/blood.V104.11.3339.3339]
[77]
Leung, W; Iyengar, R; Triplett, B; Turner, V; Behm, FG; Holladay, MS; Houston, J; Handgretinger, R Comparison of killer Ig-like receptor genotyping and phenotyping for selection of allogeneic blood stem cell donors. J. Immunol., 2005, 174(10), 6540-6545.
[http://dx.doi.org/10.4049/jimmunol.174.10.6540]
[78]
Cook, M.A.; Milligan, D.W.; Fegan, C.D.; Darbyshire, P.J.; Mahendra, P.; Craddock, C.F.; Moss, P.A.H.; Briggs, D.C. The impact of donor KIR and patient HLA-C genotypes on outcome following HLA-identical sibling hematopoietic stem cell transplantation for myeloid leukemia. Blood, 2004, 103(4), 1521-1526.
[http://dx.doi.org/10.1182/blood-2003-02-0438] [PMID: 14504099]
[79]
Verheyden, S.; Schots, R.; Duquet, W.; Demanet, C. A defined donor activating natural killer cell receptor genotype protects against leukemic relapse after related HLA-identical hematopoietic stem cell transplantation. Leukemia, 2005, 19(8), 1446-1451.
[http://dx.doi.org/10.1038/sj.leu.2403839] [PMID: 15973456]
[80]
Imai, C.; Iwamoto, S.; Campana, D. Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells. Blood, 2005, 106(1), 376-383.
[http://dx.doi.org/10.1182/blood-2004-12-4797] [PMID: 15755898]
[81]
Pérez-Martínez, A.; Leung, W.; Muñoz, E.; Iyengar, R.; Ramírez, M.; Vicario, J.L.; Lassaletta, Á.; Sevilla, J.; González-Vicent, M.; Madero, L.; Díaz-Pérez, M.Á. KIR-HLA receptor-ligand mismatch associated with a graft-versus-tumor effect in haploidentical stem cell transplantation for pediatric metastatic solid tumors. Pediatr. Blood Cancer, 2009, 53(1), 120-124.
[http://dx.doi.org/10.1002/pbc.21955] [PMID: 19215002]
[82]
Ogonek, J.; Kralj Juric, M.; Ghimire, S.; Varanasi, P.R.; Holler, E.; Greinix, H.; Weissinger, E. Immune reconstitution after allogeneic hematopoietic stem cell transplantation. Front. Immunol., 2016, 7, 507.
[http://dx.doi.org/10.3389/fimmu.2016.00507] [PMID: 27909435]
[83]
Fry, T.J.; Mackall, C.L. Immune reconstitution following hematopoietic progenitor cell transplantation: challenges for the future. Bone Marrow Transplant., 2005, 35(S1), S53-S57.
[http://dx.doi.org/10.1038/sj.bmt.1704848] [PMID: 15812532]
[84]
Pical-Izard, C.; Crocchiolo, R.; Granjeaud, S.; Kochbati, E.; Just-Landi, S.; Chabannon, C.; Frassati, C.; Picard, C.; Blaise, D.; Olive, D.; Fauriat, C. Reconstitution of natural killer cells in HLA-matched HSCT after reduced-intensity conditioning: Impact on clinical outcome. Biol. Blood Marrow Transplant., 2015, 21(3), 429-439.
[http://dx.doi.org/10.1016/j.bbmt.2014.11.681] [PMID: 25579888]
[85]
Minculescu, L.; Marquart, H.V.; Friis, L.S.; Petersen, S.L.; Schiødt, I.; Ryder, L.P.; Andersen, N.S.; Sengeloev, H. Early natural killer cell reconstitution predicts overall survival in T cell–replete allogeneic hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant., 2016, 22(12), 2187-2193.
[http://dx.doi.org/10.1016/j.bbmt.2016.09.006] [PMID: 27664326]
[86]
Nguyen, S.; Dhedin, N.; Vernant, J.P.; Kuentz, M.; Jijakli, A.A.; Rouas-Freiss, N.; Carosella, E.D.; Boudifa, A.; Debré, P.; Vieillard, V. NK-cell reconstitution after haploidentical hematopoietic stem-cell transplantations: Immaturity of NK cells and inhibitory effect of NKG2A override GvL effect. Blood, 2005, 105(10), 4135-4142.
[http://dx.doi.org/10.1182/blood-2004-10-4113] [PMID: 15687235]
[87]
Ullah, M.A.; Hill, G.R.; Tey, S.K. Functional reconstitution of natural killer cells in allogeneic hematopoietic stem cell transplantation. Front. Immunol., 2016, 7, 144.
[http://dx.doi.org/10.3389/fimmu.2016.00144] [PMID: 27148263]
[88]
Keever-Taylor, C.A.; Klein, J.P.; Eastwood, D.; Bredeson, C.; Margolis, D.A.; Burns, W.H.; Vesole, D.H. Factors affecting neutrophil and platelet reconstitution following T cell-depleted bone marrow transplantation: Differential effects of growth factor type and role of CD34+ cell dose. Bone Marrow Transplant., 2001, 27(8), 791-800.
[http://dx.doi.org/10.1038/sj.bmt.1702872] [PMID: 11477435]
[89]
Storek, J.; Geddes, M.; Khan, F.; Huard, B.; Helg, C.; Chalandon, Y.; Passweg, J.; Roosnek, E. Reconstitution of the immune system after hematopoietic stem cell transplantation in humans. Semin. Immunopathol., 2008, 30(4), 425-437.
[http://dx.doi.org/10.1007/s00281-008-0132-5] [PMID: 18949477]
[90]
Björklund, A.T.; Schaffer, M.; Fauriat, C.; Ringdén, O.; Remberger, M.; Hammarstedt, C.; Barrett, A.J.; Ljungman, P.; Ljunggren, H.G.; Malmberg, K.J. NK cells expressing inhibitory KIR for non–self-ligands remain tolerant in HLA-matched sibling stem cell transplantation. Blood, 2010, 115(13), 2686-2694.
[http://dx.doi.org/10.1182/blood-2009-07-229740] [PMID: 20097883]
[91]
Wang, J.W.; Howson, J.M.; Ghansah, T.; Desponts, C.; Ninos, J.M.; May, S.L.; Nguyen, K.H.T.; Toyama-Sorimachi, N.; Kerr, W.G. Influence of SHIP on the NK repertoire and allogeneic bone marrow transplantation. Science, 2002, 295(5562), 2094-2097.
[http://dx.doi.org/10.1126/science.1068438] [PMID: 11896280]
[92]
Jamieson, AM; Isnard, P; Dorfman, JR; Coles, MC; Raulet, DH Turnover and proliferation of NK cells in steady state and lymphopenic conditions. J. Immunol., 2004, 172(2), 864-870.
[http://dx.doi.org/10.4049/jimmunol.172.2.864]
[93]
Prlic, M.; Blazar, B.R.; Farrar, M.A.; Jameson, S.C. In vivo survival and homeostatic proliferation of natural killer cells. J. Exp. Med., 2003, 197(8), 967-976.
[http://dx.doi.org/10.1084/jem.20021847] [PMID: 12695488]
[94]
Sun, J.C.; Beilke, J.N.; Bezman, N.A.; Lanier, L.L. Homeostatic proliferation generates long-lived natural killer cells that respond against viral infection. J. Exp. Med., 2011, 208(2), 357-368.
[http://dx.doi.org/10.1084/jem.20100479] [PMID: 21262959]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy