Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Design, Docking, Synthesis, and In vitro Evaluation of Potent Antitubercular Agents Targeting DNA Gyrase

Author(s): Manjiri D. Bhosale, Asha B. Thomas*, Kiran B. Lokhande, Kakumani V. Swamy, Soumya Basu and Sohan S. Chitlange

Volume 21, Issue 11, 2024

Published on: 03 July, 2023

Page: [2072 - 2092] Pages: 21

DOI: 10.2174/1570180820666230523155640

Price: $65

Abstract

Background: Tuberculosis caused by Mycobacterium tuberculosis has been reported to infect about two-third of the global population and to continuously develop multidrug resistance. DNA gyrase, a type II topoisomerase, is a promising target of the quinolone class of drugs in the treatment of tuberculosis.

Objective: The present study is focused on the design and synthesis of newer nitrogen heterocyclics containing indole, n-methyl piperazine, piperidine, and pyrrolidine ring structures.

Methods: Initially designed compounds were evaluated for their affinity to the DNA gyrase target. The molecular docking performed using FlexX indicated compounds IIb5 (1-(R)-(4-hydroxyphenyl)(4- methylpiperazin-1-yl)methyl)-3-((S)-(4-hydroxyphenyl)(4-methylpiperazin-1-yl)methyl)urea and IIc5 ((1-(R)-(4-hydroxyphenyl)(4-methylpiperazin-1-yl)methyl)-3-((S)-(4-hydroxyphenyl)(4-methylpiperazin- 1-yl)methyl) thiourea to exhibit promising binding affinity (dock score of -15.01 and -13.77) respectively when compared to the reference MFX moxifloxacin (dock score -4.40) with the target 5BS8 (DNA gyrase). Further, the best 10 compounds were synthesized by one-pot synthesis employing the reaction of indole/N-methyl piperazine/piperidine/pyrrolidine with N-substituted benzaldehydes in the presence of acetamide/urea/thiourea to afford the compounds in 54.60% to 85.47% yield. The synthesized compounds were suitably characterized using chromatographic and spectroscopic tools.

Results: In the microplate Alamar Blue assay (MABA), compounds IIb1, IIIc2, IIIb1, and IIb5 exhibited good minimum inhibitory concentrations of 1.6 μg/mL, 3.12 μg/mL, and 12.5 μg/mL, respectively, when compared to the standard rifampicin with 0.8 μg/mL inhibitory concentration. The MTB gyrase supercoiling assay performed using Mycobacterium tuberculosis gyrase supercoiling assay kit demonstrated compound IIb5 at a concentration of 300 μg/mL to show gyrase inhibition in comparison to MFX at 60 μg/mL. In the MTT assay performed using the human breast cancer cell line MCF-7, compounds IIc2, IIb5, and IIb1 showed IC50 values of 2.57 μM, 12.54 μM, and 12.75 μM, respectively, compared to doxorubicin (1.10 μM) at 7-48 hrs and 72 hrs of the study.

Conclusion: Based on these observations, N-methyl piperazine class of compounds can serve as a lead/pharmacophore for the rational design of potent molecules against MTB gyrase to combat the growing issue of MDR-TB.

[1]
Global TB Report. Tuberculosis, World Health Organization. 2022. https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2022
[2]
India TB Report. Available from: https://tbcindia.gov.in/showfile.php?lid=3538
[3]
Tuberculosis; World Health Organization: Geneva. 2011. Available from: http://www.who.int/tb/research/en/
[4]
Floyd, K.; Glaziou, P.; Houben, R.M.G.J.; Sumner, T.; White, R.G.; Raviglione, M. Global tuberculosis targets and milestones set for 2016–2035: Definition and rationale. Int. J. Tuberc. Lung Dis., 2018, 22(7), 723-730.
[http://dx.doi.org/10.5588/ijtld.17.0835] [PMID: 29914597]
[5]
World Health Organization. Resolution WHA67.1. Global strategy and targets for tuberculosis prevention, care and control after 2015. Geneva. 2014. Available from: http://apps.who.int/gb/ebwha/pdf_files/WHA67/A67_R1-en.pdf
[6]
International statistical classification of diseases and health related problems (The) ICD-10. Geneva: World Health Organization. 2016. Available from: https://icd.who.int/browse10/2016/en
[7]
Global tuberculosis report 2020. Geneva, World Health Organization. 2020. Available from: https://www.who.int/publications/i/item/9789240013131
[8]
GBD results tool. Global Health Data Exchange 2020. Available from: http://ghdx.healthdata.org/gbd-results-tool
[9]
World Health Organization. Coronavirus (COVID-19) dashboard. Geneva Available from: https://covid19.who.int/
[10]
Glaziou, P. Predicted impact of the COVID-19 pandemic on global tuberculosis deaths in 2020. MedRxiv, 2020, 2020, 20079582.
[http://dx.doi.org/10.1101/2020.04.28.20079582]
[11]
World Health Organization. Tuberculosis. 2011. Available from: http://www.who.int/tb/research/en/
[12]
Ma, Z.; Lienhardt, C.; McIlleron, H.; Nunn, A.J.; Wang, X. Global tuberculosis drug development pipeline: The need and the reality. Lancet, 2010, 375(9731), 2100-2109.
[http://dx.doi.org/10.1016/S0140-6736(10)60359-9] [PMID: 20488518]
[13]
Bemer-Melchior, P.; Bryskier, A.; Drugeon, H.B. Comparison of the in vitro activities of rifapentine and rifampicin against Mycobacterium tuberculosis complex. J. Antimicrob. Chemother., 2000, 46(4), 571-576.
[http://dx.doi.org/10.1093/jac/46.4.571]
[14]
Mitchison, D.A. Mechanisms of the action of drugs in the short-course chemotherapy. Bull. Int. Union Tuberc., 1985, 60(1-2), 36-40.
[15]
Iseman, M.D.; Madsen, L.A. Drug-resistant tuberculosis. Clin. Chest Med., 1989, 10, 341-353.
[16]
Heifets, L.; Lindholm-Levy, P. Pyrazinamide sterilizing activity in vitro against semidormant Mycobacterium tuberculosis bacterial populations. Am. Rev. Respir. Dis., 1992, 145(5), 1223-1225.
[http://dx.doi.org/10.1164/ajrccm/145.5.1223] [PMID: 1586071]
[17]
Champoux, J.J.; Topoisomerases, D.N.A. DNA topoisomerases: Structure, function, and mechanism. Annu. Rev. Biochem., 2001, 70(1), 369-413.
[http://dx.doi.org/10.1146/annurev.biochem.70.1.369] [PMID: 11395412]
[18]
Corbett, K.D.; Berger, J.M. Structure, molecular mechanisms, and evolutionary relationships in DNA topoisomerases. Annu. Rev. Biophys. Biomol. Struct., 2004, 33(1), 95-118.
[http://dx.doi.org/10.1146/annurev.biophys.33.110502.140357] [PMID: 15139806]
[19]
Levine, C.; Hiasa, H.; Marians, K.J. DNA gyrase and topoisomerase IV: Biochemical activities, physiological roles during chromosome replication, and drug sensitivities. Biochim. Biophys. Acta Gene Struct. Expr., 1998, 1400(1-3), 29-43.
[http://dx.doi.org/10.1016/S0167-4781(98)00126-2] [PMID: 9748489]
[20]
Corbett, K.D.; Shultzaberger, R.K.; Berger, J.M. The C-terminal domain of DNA gyrase A adopts a DNA-bending β-pinwheel fold. Proc. Natl. Acad. Sci. USA, 2004, 101(19), 7293-7298.
[http://dx.doi.org/10.1073/pnas.0401595101] [PMID: 15123801]
[21]
Hooper, D.C. Mechanisms of fluoroquinolone resistance. Drug Resist. Updat., 1999, 2(1), 38-55.
[http://dx.doi.org/10.1054/drup.1998.0068] [PMID: 11504468]
[22]
Anderson, V.; Osheroff, N. Type II topoisomerases as targets for quinolone antibacterials: Turning Dr. Jekyll into Mr. Hyde. Curr. Pharm. Des., 2001, 7(5), 337-353.
[http://dx.doi.org/10.2174/1381612013398013] [PMID: 11254893]
[23]
Drlica, K.; Hiasa, H.; Kerns, R.; Malik, M.; Mustaev, A.; Zhao, X. Quinolones: Action and resistance updated. Curr. Top. Med. Chem., 2009, 9(11), 981-998.
[http://dx.doi.org/10.2174/156802609789630947] [PMID: 19747119]
[24]
Maruri, F.; Sterling, T.R.; Kaiga, A.W.; Blackman, A.; van der Heijden, Y.F.; Mayer, C.; Cambau, E.; Aubry, A. A systematic review of gyrase mutations associated with fluoroquinolone-resistant Mycobacterium tuberculosis and a proposed gyrase numbering system. J. Antimicrob. Chemother., 2012, 67(4), 819-831.
[http://dx.doi.org/10.1093/jac/dkr566] [PMID: 22279180]
[25]
Aldred, K.J.; Kerns, R.J.; Osheroff, N. Mechanism of quinolone action and resistance. Biochemistry, 2014, 53(10), 1565-1574.
[http://dx.doi.org/10.1021/bi5000564] [PMID: 24576155]
[26]
Hooper, D.C.; Jacoby, G.A. Mechanisms of drug resistance: Quinolone resistance. Ann. N. Y. Acad. Sci., 2015, 1354(1), 12-31.
[http://dx.doi.org/10.1111/nyas.12830] [PMID: 26190223]
[27]
Takiff, H.; Guerrero, E. Current prospects for the fluoroquinolones as first-line tuberculosis therapy. Antimicrob. Agents Chemother., 2011, 55, 5421-5429.
[http://dx.doi.org/10.1128/AAC.00695-11]
[28]
Asif M., Siddiqui, Anees, Husain, Asif. Quinolone derivatives as antitubercular drugs. Med. Chem. Res., 2013, 22, 1029-1042.
[http://dx.doi.org/10.1007/s00044-012-0101-3]
[29]
Cheepsattayakorn, A.; Cheepsattayakorn, R. Prospects for new drugs and regimens in the treatment of tuberculosis. J. R. Coll. Physicians, 2008, 38, 207-211.
[30]
Gillespie, S.H. The role of moxifloxacin in tuberculosis therapy. Eur. Respir. Rev., 2016, 25(139), 19-28.
[http://dx.doi.org/10.1183/16000617.0085-2015] [PMID: 26929417]
[31]
Gillespie, S.H.; Crook, A.M.; McHugh, T.D.; Mendel, C.M.; Meredith, S.K.; Murray, S.R.; Pappas, F.; Phillips, P.P.J.; Nunn, A.J. Four-month moxifloxacin-based regimens for drug-sensitive tuberculosis. N. Engl. J. Med., 2014, 371(17), 1577-1587.
[http://dx.doi.org/10.1056/NEJMoa1407426] [PMID: 25196020]
[32]
Maxwell, A. DNA gyrase as a drug target. Trends Microbiol., 1997, 5(3), 102-109.
[http://dx.doi.org/10.1016/S0966-842X(96)10085-8]
[33]
Khisimuzi, M.; Zhenkun, M. Mycobacterium tuberculosis DNA gyrase as a target for drug discovery. Infect. Disord. Drug Targets, 2007, 7(2), 159-168.
[http://dx.doi.org/10.2174/187152607781001763] [PMID: 17970226]
[34]
Reece, R.J.; Maxwell, A. DNA gyrase: Structure and function. Crit. Rev. Biochem. Mol. Biol., 1991, 26(3-4), 335-375.
[http://dx.doi.org/10.3109/10409239109114072] [PMID: 1657531]
[35]
Wigley, D.B. Structure and mechanism of DNA gyrase. Nucleic Acids and Molecular Biology, 1995, 9, 165-176.
[http://dx.doi.org/10.1007/978-3-642-79488-9_8]
[36]
Blower, A. Crystal structure and stability of gyrase–fluoroquinolone cleaved complexes from Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. U S A., 2016, 113(7), 1706-1713.
[37]
Vasoya, S.L.; Chovatia, P.T.; Purohit, D.H.; Joshi, H.S. Green chemistry approach to the synthesis of potentially bioactive aminobenzylated Mannich bases through active hydrogen compounds. J. Serb. Chem. Soc., 2005, 70(10), 1163-1167.
[http://dx.doi.org/10.2298/JSC0510163V]
[38]
Chande, M.S.; Verma, R.S.; Barve, P.A.; Khanwelkar, R.R.; Vaidya, R.B.; Ajaikumar, K.B. Facile synthesis of active antitubercular, cytotoxic and antibacterial agents: A Michael addition approach. Eur. J. Med. Chem., 2005, 40(11), 1143-1148.
[http://dx.doi.org/10.1016/j.ejmech.2005.06.004] [PMID: 16040160]
[39]
Sharma, V.; Kumar, P.; Pathak, D. Biological importance of the indole nucleus in recent years: A comprehensive review. J. Heterocycl. Chem., 2010, 47, 491.
[40]
He, X.; Alian, A.; Ortiz de Montellano, P.R. Inhibition of the Mycobacterium tuberculosis enoyl acyl carrier protein reductase InhA by arylamides. Bioorg. Med. Chem., 2007, 15(21), 6649-6658.
[http://dx.doi.org/10.1016/j.bmc.2007.08.013] [PMID: 17723305]
[41]
Bogatcheva, E.; Hanrahan, C.; Chen, P.; Gearhart, J.; Sacksteder, K.; Einck, L.; Nacy, C.; Protopopova, M. Discovery of dipiperidines as new antitubercular agents. Bioorg. Med. Chem. Lett., 2010, 20(1), 201-205.
[http://dx.doi.org/10.1016/j.bmcl.2009.10.135] [PMID: 19917527]
[42]
Carr, W.; Kurbatova, E.; Starks, A.; Goswami, N.; Allen, L.; Winston, C. Interim Guidance: 4-Month Rifapentine-Moxifloxacin regimen for the treatment of drug-susceptible pulmonary tuberculosis-United States, 2022. MMWR Morb. Mortal. Wkly. Rep., 2022, 71(8), 285-289.
[http://dx.doi.org/10.15585/mmwr.mm7108a1] [PMID: 35202353]
[43]
Behr, M.A.; Kaufmann, E.; Duffin, J.; Edelstein, P.H.; Ramakrishnan, L. Latent tuberculosis: Two centuries of confusion. Am. J. Respir. Crit. Care Med., 2021, 204(2), 142-148.
[http://dx.doi.org/10.1164/rccm.202011-4239PP] [PMID: 33761302]
[44]
Peloquin, C.A.; Davies, G.R. The treatment of tuberculosis. Clin. Pharmacol. Ther., 2021, 110(6), 1455-1466.
[http://dx.doi.org/10.1002/cpt.2261] [PMID: 33837535]
[45]
Court, R.; Centner, C.M.; Chirehwa, M.; Wiesner, L.; Denti, P.; de Vries, N.; Harding, J.; Gumbo, T.; Maartens, G.; McIlleron, H. Neuropsychiatric toxicity and cycloserine concentrations during treatment for multidrug-resistant tuberculosis. Int. J. Infect. Dis., 2021, 105, 688-694.
[http://dx.doi.org/10.1016/j.ijid.2021.03.001] [PMID: 33684562]
[46]
Dooley, K.E.; Rosenkranz, S.L.; Conradie, F.; Moran, L.; Hafner, R.; von Groote-Bidlingmaier, F.; Lama, J.R.; Shenje, J.; De Los Rios, J.; Comins, K.; Morganroth, J.; Diacon, A.H.; Cramer, Y.S.; Donahue, K.; Maartens, G.; Alli, O.; Gottesman, J.; Guevara, M.; Hikuam, C.; Hovind, L.; Karlsson, M.; McClaren, J.; McIlleron, H.; Murtaugh, W.; Rolls, B.; Shahkolahi, A.; Stone, L.; Tegha, G.; Tenai, J.; Upton, C.; Wimbish, C. QT effects of bedaquiline, delamanid, or both in patients with rifampicin-resistant tuberculosis: A phase 2, open-label, randomised, controlled trial. Lancet Infect. Dis., 2021, 21(7), 975-983.
[http://dx.doi.org/10.1016/S1473-3099(20)30770-2] [PMID: 33587897]
[47]
Nefzi, A.; Appel, J.; Arutyunyan, S.; Houghten, R.A. Parallel synthesis of chiral pentaamines and pyrrolidine containing bis-heterocyclic libraries. Multiple scaffolds with multiple building blocks: A double diversity for the identification of new antitubercular compounds. Bioorg. Med. Chem. Lett., 2009, 19(17), 5169-5175.
[http://dx.doi.org/10.1016/j.bmcl.2009.07.010] [PMID: 19632841]
[48]
Abele, E.; Abele, R.; Dzenitis, O.; Lukevics, E. Indole and Isatin Oximes: Synthesis, reactions, and biological activity. Chem. Heterocycl. Compd., 2003, 39(1), 3-35.
[http://dx.doi.org/10.1023/A:1023008422464]
[49]
Hiari, Y.M.A.; Qaisi, A.M.; Abadelah, M.M.; Voelter, W. FurChemie, 2006, 137, 243.
[50]
Panwar, H.; Verma, R.S.; Srivastava, V.K.; Kumar, A. Indian J. Chem., 2006, 45B, 2099.
[51]
Hong, B.C.; Jiang, Y.F.; Chang, Y.L.; Lee, S.J. Synthesis and Cytotoxicity Studies of Cyclohepta[b]indoles, Benzo[6,7]Cyclohepta[1,2-b]Indoles, Indeno[1,2-b]Indoles, and Benzo[a] Carbazoles. J. Chin. Chem. Soc., 2006, 53(3), 647-662.
[http://dx.doi.org/10.1002/jccs.200600086]
[52]
Merino, I.; Monge, A.; Font, M.; Irujo, J.J.M.; Alberdi, E.; Santiago, E.; Prieto, I.; Lasarte, J.J.; Sarobe, P.; Borra’s, F. I. Synthesis and anti-HIV-1 activities of new pyrimido[5,4-b]indoles. II Farmaco, 30 Apr, 1999, 54, 255-264.
[http://dx.doi.org/10.1016/S0014-827X(99)00035-X] [PMID: 10384720]
[53]
Enein, H.Y.A.; Kruk, I.; Lichszteld, K.; Michalska, T.; Kiadna, A.; Marczynski, S.; Olgen, S. Scavenging of reactive oxygen species by N-substituted indole-2 and 3-carboxamides. Luminescence, 2004, 19, 1.
[http://dx.doi.org/10.1002/bio.748] [PMID: 14981640]
[54]
Karalı, N.; Gürsoy, A.; Kandemirli, F.; Shvets, N.; Kaynak, F.B.; Özbey, S.; Kovalishyn, V.; Dimoglo, A. Synthesis and structure–antituberculosis activity relationship of 1H-indole-2,3-dione derivatives. Bioorg. Med. Chem., 2007, 15(17), 5888-5904.
[http://dx.doi.org/10.1016/j.bmc.2007.05.063] [PMID: 17561405]
[55]
Prasanthi, G. Synthesis and evaluation of substituted mannich bases of piperazine as anti-tubercular agents. J. Glob. Trends Pharm. Sci., 2014, 5(2), 1496-1498.
[56]
Advanced organic chemistry. Reactions, Mechanisms, and Structure, 3rd ed; John Wiley & Sons: New York, NY, USA, 1985.
[57]
Belinelo, V.J.; Reis, G.T.; Stefani, G.M.; Ferreira-Alves, D.L.; Piló-Veloso, D. Synthesis of 6alpha,7beta-dihydroxyvouacapan-17beta-oic acid derivatives. Part IV: Mannich base derivatives and its activities on the electrically stimulated Guinea-pig ileum preparation. J. Braz. Chem. Soc., 2002, 13(6), 830-837.
[http://dx.doi.org/10.1590/S0103-50532002000600016]
[58]
Joshi, S.; Khosla, N.; Tiwari, P. In vitro study of some medicinally important Mannich bases derived from antitubercular agent. Bioorg. Med. Chem., 2004, 12(3), 571-576.
[http://dx.doi.org/10.1016/j.bmc.2003.11.001] [PMID: 14738966]
[59]
Dai, H-G.; Li, J-T. T-S Li. Efficient and practical synthesis of mannich bases related to gramine mediated by zinc chloride. Synth. Commun., 2006, 36, 1829-1835.
[http://dx.doi.org/10.1080/00397910600602503]
[60]
Hassan Mohamed, A.; Galal H., S; El-Nagar Abeer, M.; Hussien Aziza, M. Synthesis of Some Novel Urea, Thiourea and Amide Derivatives through Three Components one pot Reaction and their Antitumor Activity; Chemical and Process Engineering Research, 2014, p. 23.
[61]
Release, S. 2018-1: Protein Preparation Wizard; Schrodinger, LLC: New York, NY, 2018.
[62]
DuBay, K.H.; Hall, M.L.; Hughes, T.F.; Wu, C.; Reichman, D.R.; Friesner, R.A. Accurate force field development for modeling conjugated polymers. J. Chem. Theory Comput., 2012, 8(11), 4556-4569.
[http://dx.doi.org/10.1021/ct300175w] [PMID: 26605615]
[63]
Schrodinger Release 2018-1: Maestro; Schrodinger, LLC: New York, NY, 2018.
[64]
Chem Axon, L. Marvin Sketch 5114, 2012, Marvin(https://chemaxon.com/)
[65]
Rarey, M.; Kramer, B.; Lengauer, T.; Klebe, G. A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol., 1996, 261(3), 470-489.
[http://dx.doi.org/10.1006/jmbi.1996.0477] [PMID: 8780787]
[66]
Bursulaya, B.D.; Totrov, M.; Abagyan, R.; Brooks, C.L., III Comparative study of several algorithms for flexible ligand docking. J. Comput. Aided Mol. Des., 2003, 17(11), 755-763.
[http://dx.doi.org/10.1023/B:JCAM.0000017496.76572.6f] [PMID: 15072435]
[67]
Bowers, K. J., Chow, David E., Huafeng, X., Ron, O. D., Michael, P.E. et al. Scalable algorithms for molecular dynamics simulations on commodity clusters. Proceedings of the ACM/IEEE Conference on Supercomputing (SC06)., 2006, p. Page 84.
[http://dx.doi.org/10.1145/1188455.1188544]
[68]
Release, S. 2017-4: Desmond Molecular Dynamics System, D. E. Shaw Research, New York, NY; Maestro-Desmond Interoperability Tools; Schrodinger, LLC: New York, NY, 2017.
[69]
Hutchinson, E.G.; Thornton, J.M. PROMOTIF-a program to identify and analyze structural motifs in proteins. Protein Sci., 1996, 5(2), 212-220.
[70]
Collins, L.; Franzblau, S.G. Microplate alamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium. Antimicrob. Agents Chemother., 1997, 41(5), 1004-1009.
[http://dx.doi.org/10.1128/AAC.41.5.1004] [PMID: 9145860]
[71]
Al-Nasiry, S.; Geusens, N.; Hanssens, M.; Luyten, C.; Pijnenborg, R. The use of Alamar Blue assay for quantitative analysis of viability, migration and invasion of choriocarcinoma cells. Hum. Reprod., 2007, 22(5), 1304-1309.
[http://dx.doi.org/10.1093/humrep/dem011] [PMID: 17307808]
[72]
Vanitha, J.D.; Paramasivan, C.N. Evaluation of microplate Alamar blue assay for drug susceptibility testing of Mycobacterium avium complex isolates. Diagn. Microbiol. Infect. Dis., 2004, 49(3), 179-182.
[http://dx.doi.org/10.1016/j.diagmicrobio.2004.04.003] [PMID: 15246507]
[73]
Leonard, B.; Coronel, J.; Siedner, M.; Grandjean, L.; Caviedes, L.; Navarro, P.; Gilman, R.H.; Moore, D.A.J. Inter- and intra-assay reproducibility of microplate Alamar blue assay results for isoniazid, rifampicin, ethambutol, streptomycin, ciprofloxacin, and capreomycin drug susceptibility testing of Mycobacterium tuberculosis. J. Clin. Microbiol., 2008, 46(10), 3526-3529.
[http://dx.doi.org/10.1128/JCM.02083-07] [PMID: 18701659]
[74]
Kumar, M.; Khan, I.A.; Verma, V.; Qazi, G.N. Microplate nitrate reductase assay versus Alamar Blue assay for MIC determination of Mycobacterium tuberculosis. Int. J. Tuberc. Lung Dis., 2005, 9(8), 939-941.
[PMID: 16104645]
[75]
Brigitta, K. Antimicrobial activity, in vitro anticancer effect (MCF-7 breast cancer cell line), antiangiogenic and immunomodulatory potentials of Populus nigra L. buds extract. BMC Complement. Med. Ther., 2022, 22(1), 74.
[76]
Saravanan, R. Anti-oxidant, anti-bacterial and anti-cancer activity of menthapiperita against Mcf-7 cells, July 2013. J. Pharmacogn. Phytochem., 2013, 2(2), 140-152.
[77]
Al-Ghorbani, M.; Moustafa, A.G.; Baashen, M. Piperazine heterocycles as potential anticancer agents: A review. Pharm. Chem. J., 2022, 56, 29-37.
[http://dx.doi.org/10.1007/s11094-022-02597-z]
[78]
Kaplan, M.H.; Armstrong, D.; Rosen, P. Tuberculosis complicating neoplastic disease. A review of 201 cases. Cancer, 1974, 33(3), 850-858.
[http://dx.doi.org/10.1002/1097-0142(197403)33:3<850::AID-CNCR2820330334>3.0.CO;2-H] [PMID: 4592905]
[79]
Honeyborne, I.; Lipman, M.; Zumla, A.; McHugh, T.D. The changing treatment landscape for MDR/XDR-TB — Can current clinical trials revolutionise and inform a brave new world? Int. J. Infect. Dis., 2019, 80, S23-S28.
[http://dx.doi.org/10.1016/j.ijid.2019.02.006] [PMID: 30776547]
[80]
Zelmer, A.; Carroll, P.; Andreu, N.; Hagens, K.; Mahlo, J.; Redinger, N.; Robertson, B.D.; Wiles, S.; Ward, T.H.; Parish, T.; Ripoll, J.; Bancroft, G.J.; Schaible, U.E. A new in vivo model to test anti-tuberculosis drugs using fluorescence imaging. J. Antimicrob. Chemother., 2012, 67(8), 1948-1960.
[http://dx.doi.org/10.1093/jac/dks161] [PMID: 22635525]
[81]
Yeware, A.; Akhtar, S.; Sarkar, D. Probes and techniques used in active and the hypoxia-based dormant state of an antitubercular drug screening assay. Medic. Drug Discov., 2022, 13, 100115.
[http://dx.doi.org/10.1016/j.medidd.2021.100115]
[82]
Yeware, A.; Agrawal, S.; Sarkar, D. A high content screening assay for identifying inhibitors against active and dormant state intracellular Mycobacterium tuberculosis. J. Microbiol. Methods, 2019, 164, 105687.
[http://dx.doi.org/10.1016/j.mimet.2019.105687] [PMID: 31415793]
[83]
Silva-Miranda, M.; Ekaza, E.; Breiman, A.; Asehnoune, K.; Barros-Aguirre, D.; Pethe, K.; Ewann, F.; Brodin, P.; Ballell-Pages, L.; Altare, F. High-content screening technology combined with a human granuloma model as a new approach to evaluate the activities of drugs against Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2015, 59(1), 693-697.
[http://dx.doi.org/10.1128/AAC.03705-14] [PMID: 25348525]

© 2024 Bentham Science Publishers | Privacy Policy