Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Scaffold-hopping of Linifanib to Design 6-phenylisoxazolo[3,4-b]pyridin-3-amine Derivatives as FLT3 Inhibitors for Treating Acute Myeloid Leukemia

Author(s): Shi-Han Wu, Yi-Yuan Ma, Li-Jin Yang, Yu-Hao Cao, Zhen-Jiang Tong, Jia-Zhen Wu, Yi-Bo Wang, Jiu-Kai Sha, Ning Ding, Qiao-Li Liang, Liang Chang, Xiao-Long Wang, Jin-Ao Duan, Yan-Cheng Yu, Wei-Chen Dai, Ke Xie, Xue-Jiao Leng, Xin Xue*, Shan-Liang Sun*, Nian-Guang Li* and Zhi-Hao Shi*

Volume 21, Issue 10, 2024

Published on: 22 June, 2023

Page: [1833 - 1846] Pages: 14

DOI: 10.2174/1570180820666230519140242

Price: $65

Abstract

Background: Acute myeloid leukemia (AML) is the most common type of blood cancer. Fmslike tyrosine kinase 3 (FLT3) is a member of the class III receptor tyrosine kinase family. Overexpression of FLT3 was found in 70-100% of patients with acute myeloid leukaemia. FLT3 internal tandem duplication alteration (ITD) and the tyrosine kinase domain (TKD) are the most common molecular alteration in AML, and FLT3 has become a promising drug target for AML.

Objective: A series of 6-phenylisoxazolo[3,4-b]pyridin-3-amine derivatives F1–F15 with amide bonds as FLT3 inhibitors were designed and synthesized in order to find a new lead compound to treat AML.

Methods: We designed an original scaffold-hopping protocol by combing the RECAP tool with the Gilde-Based Core-Hopping tool to design novel FLT3 inhibitors based on Linifanib. Inhibitors assembled were ranked by the docking scores generated by Glide. Compounds undisclosed among the top 10 were selected to design a series of 6-phenylisoxazolo[3,4-b]pyridin-3-amine derivatives as FLT3 inhibitors. The kinase inhibitory activities of the fifteen compounds were assayed on FLT3 and FLT3-ITD. The antitumor activities of the structurally modified compounds F1–F15 were evaluated against MOLM-13 and MV4-11, typical FLT3-dependent human AML cells carrying FLT3-ITD mutants and the FLT3- independent human cervical carcinoma cell line HL-60 (harboring wide-type FLT3).

Results: Structure–activity relationship (SAR) analysis showed that F14 could inhibit FLT3 and FLT3- ITD by 52% and 45.55%, respectively, at the concentration of 1 mΜ. F14 exhibited potent activity against FLT3-dependent human acute myeloid leukemia (AML) cell lines, MOLM-13, and MV4-11 (harboring FLT3-ITD mutant) with IC50 values of 2.558 μM and 1.785 μM, respectively.

Conclusion: F14 could be used as a novel lead compound to further develop FLT3 inhibitors against AML with FLT3-ITD mutant.

[1]
Döhner, H.; Weisdorf, D.J.; Bloomfield, C.D. Acute myeloid leukemia. N. Engl. J. Med., 2015, 373(12), 1136-1152.
[http://dx.doi.org/10.1056/NEJMra1406184] [PMID: 26376137]
[2]
Xu, J.; Ong, E.H.Q.; Hill, J.; Chen, A.; Chai, C.L.L. Design, synthesis and biological evaluation of FLT3 covalent inhibitors with a resorcylic acid core. Bioorg. Med. Chem., 2014, 22(23), 6625-6637.
[http://dx.doi.org/10.1016/j.bmc.2014.10.006] [PMID: 25456387]
[3]
Short, N.J.; Rytting, M.E.; Cortes, J.E. Acute myeloid leukaemia. Lancet, 2018, 392(10147), 593-606.
[http://dx.doi.org/10.1016/S0140-6736(18)31041-9] [PMID: 30078459]
[4]
Meyers, J.; Yu, Y.; Kaye, J.A.; Davis, K.L. Medicare fee-for-service enrollees with primary acute myeloid leukemia: an analysis of treatment patterns, survival, and healthcare resource utilization and costs. Appl. Health Econ. Health Policy, 2013, 11(3), 275-286.
[http://dx.doi.org/10.1007/s40258-013-0032-2] [PMID: 23677706]
[5]
Stirewalt, D.L.; Radich, J.P. The role of FLT3 in haematopoietic malignancies. Nat. Rev. Cancer, 2003, 3(9), 650-665.
[http://dx.doi.org/10.1038/nrc1169] [PMID: 12951584]
[6]
Grimm, S.H.; Gagestein, B.; Keijzer, J.F.; Liu, N.; Wijdeven, R.H.; Lenselink, E.B.; Tuin, A.W.; van den Nieuwendijk, A.M.C.H.; van Westen, G.J.P.; van Boeckel, C.A.A.; Overkleeft, H.S.; Neefjes, J.; van der Stelt, M. Comprehensive structure-activity-relationship of azaindoles as highly potent FLT3 inhibitors. Bioorg. Med. Chem., 2019, 27(5), 692-699.
[http://dx.doi.org/10.1016/j.bmc.2019.01.006] [PMID: 30661740]
[7]
Gilliland, D.G.; Griffin, J.D. The roles of FLT3 in hematopoiesis and leukemia. Blood, 2002, 100(5), 1532-1542.
[http://dx.doi.org/10.1182/blood-2002-02-0492] [PMID: 12176867]
[8]
Lin, W.H.; Hsieh, S.Y.; Yen, S.C.; Chen, C.T.; Yeh, T.K.; Hsu, T.; Lu, C.T.; Chen, C.P.; Chen, C.W.; Chou, L.H.; Huang, Y.L.; Cheng, A.H.; Chang, Y.I.; Tseng, Y.J.; Yen, K.R.; Chao, Y.S.; Hsu, J.T.A.; Jiaang, W.T. Discovery and evaluation of 3-phenyl-1H-5-pyrazolylamine-based derivatives as potent, selective and efficacious inhibitors of FMS-like tyrosine kinase-3 (FLT3). Bioorg. Med. Chem., 2011, 19(14), 4173-4182.
[http://dx.doi.org/10.1016/j.bmc.2011.06.016] [PMID: 21708468]
[9]
Bacher, U.; Haferlach, C.; Kern, W.; Haferlach, T.; Schnittger, S. Prognostic relevance of FLT3-TKD mutations in AML: The combination matters—an analysis of 3082 patients. Blood, 2008, 111(5), 2527-2537.
[http://dx.doi.org/10.1182/blood-2007-05-091215] [PMID: 17965322]
[10]
Whitman, S.P.; Ruppert, A.S.; Radmacher, M.D.; Mrózek, K.; Paschka, P.; Langer, C.; Baldus, C.D.; Wen, J.; Racke, F.; Powell, B.L.; Kolitz, J.E.; Larson, R.A.; Caligiuri, M.A.; Marcucci, G.; Bloomfield, C.D. FLT3 D835/I836 mutations are associated with poor disease-free survival and a distinct gene-expression signature among younger adults with de novo cytogenetically normal acute myeloid leukemia lacking FLT3 internal tandem duplications. Blood, 2008, 111(3), 1552-1559.
[http://dx.doi.org/10.1182/blood-2007-08-107946] [PMID: 17940205]
[11]
Papaemmanuil, E.; Gerstung, M.; Bullinger, L.; Gaidzik, V.I.; Paschka, P.; Roberts, N.D.; Potter, N.E.; Heuser, M.; Thol, F.; Bolli, N.; Gundem, G.; Van Loo, P.; Martincorena, I.; Ganly, P.; Mudie, L.; McLaren, S.; O’Meara, S.; Raine, K.; Jones, D.R.; Teague, J.W.; Butler, A.P.; Greaves, M.F.; Ganser, A.; Döhner, K.; Schlenk, R.F.; Döhner, H.; Campbell, P.J. Genomic classification and prognosis in acute myeloid leukemia. N. Engl. J. Med., 2016, 374(23), 2209-2221.
[http://dx.doi.org/10.1056/NEJMoa1516192] [PMID: 27276561]
[12]
Zhong, Y.; Qiu, R.Z.; Sun, S.L.; Zhao, C.; Fan, T.Y.; Chen, M.; Li, N.G.; Shi, Z.H. Small-molecule fms-like tyrosine kinase 3 inhibitors: an attractive and efficient method for the treatment of acute myeloid leukemia. J. Med. Chem., 2020, 63(21), 12403-12428.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00696] [PMID: 32659083]
[13]
Sun, L.; Liang, C.; Shirazian, S.; Zhou, Y.; Miller, T.; Cui, J.; Fukuda, J.Y.; Chu, J.Y.; Nematalla, A.; Wang, X.; Chen, H.; Sistla, A.; Luu, T.C.; Tang, F.; Wei, J.; Tang, C. Discovery of 5-[5-fluoro-2-oxo-1,2- dihydroindol-(3Z)-ylidenemethyl]-2,4- dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylaminoethyl)amide, a novel tyrosine kinase inhibitor targeting vascular endothelial and platelet-derived growth factor receptor tyrosine kinase. J. Med. Chem., 2003, 46(7), 1116-1119.
[http://dx.doi.org/10.1021/jm0204183] [PMID: 12646019]
[14]
Fiedler, W.; Kayser, S.; Kebenko, M.; Janning, M.; Krauter, J.; Schittenhelm, M.; Götze, K.; Weber, D.; Göhring, G.; Teleanu, V.; Thol, F.; Heuser, M.; Döhner, K.; Ganser, A.; Döhner, H.; Schlenk, R.F. A phase I/II study of sunitinib and intensive chemotherapy in patients over 60 years of age with acute myeloid leukaemia and activating FLT3 mutations. Br. J. Haematol., 2015, 169(5), 694-700.
[http://dx.doi.org/10.1111/bjh.13353] [PMID: 25818407]
[15]
Galanis, A.; Ma, H.; Rajkhowa, T.; Ramachandran, A.; Small, D.; Cortes, J.; Levis, M. Crenolanib is a potent inhibitor of FLT3 with activity against resistance-conferring point mutants. Blood, 2014, 123(1), 94-100.
[http://dx.doi.org/10.1182/blood-2013-10-529313] [PMID: 24227820]
[16]
Kelly, L.M.; Yu, J.C.; Boulton, C.L.; Apatira, M.; Li, J.; Sullivan, C.M.; Williams, I.; Amaral, S.M.; Curley, D.P.; Duclos, N.; Neuberg, D.; Scarborough, R.M.; Pandey, A.; Hollenbach, S.; Abe, K.; Lokker, N.A.; Gilliland, D.G.; Giese, N.A. CT53518, a novel selective FLT3 antagonist for the treatment of acute myelogenous leukemia (AML). Cancer Cell, 2002, 1(5), 421-432.
[http://dx.doi.org/10.1016/S1535-6108(02)00070-3] [PMID: 12124172]
[17]
Dillon, R.; Hills, R.; Freeman, S.; Potter, N.; Jovanovic, J.; Ivey, A.; Kanda, A.S.; Runglall, M.; Foot, N.; Valganon, M.; Khwaja, A.; Cavenagh, J.; Smith, M.; Ommen, H.B.; Overgaard, U.M.; Dennis, M.; Knapper, S.; Kaur, H.; Taussig, D.; Mehta, P.; Raj, K.; Novitzky-Basso, I.; Nikolousis, E.; Danby, R.; Krishnamurthy, P.; Hill, K.; Finnegan, D.; Alimam, S.; Hurst, E.; Johnson, P.; Khan, A.; Salim, R.; Craddock, C.; Spearing, R.; Gilkes, A.; Gale, R.; Burnett, A.; Russell, N.H.; Grimwade, D. Molecular MRD status and outcome after transplantation in NPM1-mutated AML. Blood, 2020, 135(9), 680-688.
[http://dx.doi.org/10.1182/blood.2019002959] [PMID: 31932839]
[18]
Barry, E.V.; Clark, J.J.; Cools, J.; Roesel, J.; Gilliland, D.G. Uniform sensitivity of FLT3 activation loop mutants to the tyrosine kinase inhibitor midostaurin. Blood, 2007, 110(13), 4476-4479.
[http://dx.doi.org/10.1182/blood-2007-07-101238] [PMID: 17827387]
[19]
Lee, L.Y.; Hernandez, D.; Rajkhowa, T.; Smith, S.C.; Raman, J.R.; Nguyen, B.; Small, D.; Levis, M. Preclinical studies of gilteritinib, a next-generation FLT3 inhibitor. Blood, 2017, 129(2), 257-260.
[http://dx.doi.org/10.1182/blood-2016-10-745133] [PMID: 27908881]
[20]
Zhang, W.; Ly, C.; Ishizawa, J.; Mu, H.; Ruvolo, V.; Shacham, S.; Daver, N.; Andreeff, M. Combinatorial targeting of XPO1 and FLT3 exerts synergistic anti-leukemia effects through induction of differentiation and apoptosis in FLT3 -mutated acute myeloid leukemias: From concept to clinical trial. Haematologica, 2018, 103(10), 1642-1653.
[http://dx.doi.org/10.3324/haematol.2017.185082] [PMID: 29773601]
[21]
Wilhelm, S.M.; Carter, C.; Tang, L.; Wilkie, D.; McNabola, A.; Rong, H.; Chen, C.; Zhang, X.; Vincent, P.; McHugh, M.; Cao, Y.; Shujath, J.; Gawlak, S.; Eveleigh, D.; Rowley, B.; Liu, L.; Adnane, L.; Lynch, M.; Auclair, D.; Taylor, I.; Gedrich, R.; Voznesensky, A.; Riedl, B.; Post, L.E.; Bollag, G.; Trail, P.A. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res., 2004, 64(19), 7099-7109.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-1443] [PMID: 15466206]
[22]
Zarrinkar, P.P.; Gunawardane, R.N.; Cramer, M.D.; Gardner, M.F.; Brigham, D.; Belli, B.; Karaman, M.W.; Pratz, K.W.; Pallares, G.; Chao, Q.; Sprankle, K.G.; Patel, H.K.; Levis, M.; Armstrong, R.C.; James, J.; Bhagwat, S.S. AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML). Blood, 2009, 114(14), 2984-2992.
[http://dx.doi.org/10.1182/blood-2009-05-222034] [PMID: 19654408]
[23]
Cortes, J.E.; Khaled, S.; Martinelli, G.; Perl, A.E.; Ganguly, S.; Russell, N.; Krämer, A.; Dombret, H.; Hogge, D.; Jonas, B.A.; Leung, A.Y.H.; Mehta, P.; Montesinos, P.; Radsak, M.; Sica, S.; Arunachalam, M.; Holmes, M.; Kobayashi, K.; Namuyinga, R.; Ge, N.; Yver, A.; Zhang, Y.; Levis, M.J. Quizartinib versus salvage chemotherapy in relapsed or refractory FLT3-ITD acute myeloid leukaemia (QuANTUM-R): A multicentre, randomised, controlled, open-label, phase 3 trial. Lancet Oncol., 2019, 20(7), 984-997.
[http://dx.doi.org/10.1016/S1470-2045(19)30150-0] [PMID: 31175001]
[24]
Yuan, X.; Chen, Y.; Zhang, W.; He, J.; Lei, L.; Tang, M.; Liu, J.; Li, M.; Dou, C.; Yang, T.; Yang, L.; Yang, S.; Wei, Y.; Peng, A.; Niu, T.; Xiang, M.; Ye, H.; Chen, L. Identification of pyrrolo[2,3-d]pyrimidine-based derivatives as potent and orally effective Fms-like tyrosine receptor kinase 3 (FLT3) inhibitors for treating acute myelogenous leukemia. J. Med. Chem., 2019, 62(8), 4158-4173.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00223] [PMID: 30939008]
[25]
Weisberg, E.; Meng, C.; Case, A.E.; Sattler, M.; Tiv, H.L.; Gokhale, P.C.; Buhrlage, S.J.; Liu, X.; Yang, J.; Wang, J.; Gray, N.; Stone, R.M.; Adamia, S.; Dubreuil, P.; Letard, S.; Griffin, J.D. Comparison of effects of midostaurin, crenolanib, quizartinib, gilteritinib, sorafenib and BLU‐285 on oncogenic mutants of KIT, CBL and FLT3 in haematological malignancies. Br. J. Haematol., 2019, 187(4), 488-501.
[http://dx.doi.org/10.1111/bjh.16092] [PMID: 31309543]
[26]
Novatcheva, E.D.; Anouty, Y.; Saunders, I.; Mangan, J.K.; Goodman, A.M. Fms-like tyrosine kinase 3 inhibitors for the treatment of acute myeloid leukemia. Clin. Lymphoma Myeloma Leuk., 2022, 22(3), e161-e184.
[http://dx.doi.org/10.1016/j.clml.2021.09.002] [PMID: 34649791]
[27]
Scholl, S.; Fleischmann, M.; Schnetzke, U.; Heidel, F.H. Molecular mechanisms of resistance to flt3 inhibitors in acute myeloid leukemia: Ongoing challenges and future treatments. Cells, 2020, 9(11), 2493.
[http://dx.doi.org/10.3390/cells9112493] [PMID: 33212779]
[28]
Shi, Z.H.; Liu, F.T.; Tian, H.Z.; Zhang, Y.M.; Li, N.G.; Lu, T. Design, synthesis and structure-activity relationship of diaryl-ureas with novel isoxazol[3,4-b]pyridine-3-amino-structure as multi-target inhibitors against receptor tyrosine kinase. Bioorg. Med. Chem., 2018, 26(16), 4735-4744.
[http://dx.doi.org/10.1016/j.bmc.2018.08.013] [PMID: 30121211]
[29]
Lewell, X.Q.; Judd, D.B.; Watson, S.P.; Hann, M.M. RECAP--retrosynthetic combinatorial analysis procedure: a powerful new technique for identifying privileged molecular fragments with useful applications in combinatorial chemistry. J. Chem. Inf. Comput. Sci., 1998, 38(3), 511-522.
[http://dx.doi.org/10.1021/ci970429i] [PMID: 9611787]
[30]
Albert, D.H.; Tapang, P.; Magoc, T.J.; Pease, L.J.; Reuter, D.R.; Wei, R.Q.; Li, J.; Guo, J.; Bousquet, P.F.; Ghoreishi-Haack, N.S.; Wang, B.; Bukofzer, G.T.; Wang, Y.C.; Stavropoulos, J.A.; Hartandi, K.; Niquette, A.L.; Soni, N.; Johnson, E.F.; McCall, J.O.; Bouska, J.J.; Luo, Y.; Donawho, C.K.; Dai, Y.; Marcotte, P.A.; Glaser, K.B.; Michaelides, M.R.; Davidsen, S.K. Preclinical activity of ABT-869, a multitargeted receptor tyrosine kinase inhibitor. Mol. Cancer Ther., 2006, 5(4), 995-1006.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0410] [PMID: 16648571]
[31]
Chen, J.; Guo, J.; Chen, Z.; Wang, J.; Liu, M.; Pang, X. Linifanib (ABT-869) potentiates the efficacy of chemotherapeutic agents through the suppression of receptor tyrosine kinase-mediated AKT/mTOR signaling pathways in gastric cancer. Sci. Rep., 2016, 6(1), 29382.
[http://dx.doi.org/10.1038/srep29382] [PMID: 27387652]
[32]
Cainap, C.; Qin, S.; Huang, W.T.; Chung, I.J.; Pan, H.; Cheng, Y.; Kudo, M.; Kang, Y.K.; Chen, P.J.; Toh, H.C.; Gorbunova, V.; Eskens, F.A.L.M.; Qian, J.; McKee, M.D.; Ricker, J.L.; Carlson, D.M.; El-Nowiem, S. Linifanib versus Sorafenib in patients with advanced hepatocellular carcinoma: results of a randomized phase III trial. J. Clin. Oncol., 2015, 33(2), 172-179.
[http://dx.doi.org/10.1200/JCO.2013.54.3298] [PMID: 25488963]
[33]
Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem., 2006, 49(21), 6177-6196.
[http://dx.doi.org/10.1021/jm051256o] [PMID: 17034125]
[34]
Smith, C.C.; Zhang, C.; Lin, K.C.; Lasater, E.A.; Zhang, Y.; Massi, E.; Damon, L.E.; Pendleton, M.; Bashir, A.; Sebra, R.; Perl, A.; Kasarskis, A.; Shellooe, R.; Tsang, G.; Carias, H.; Powell, B.; Burton, E.A.; Matusow, B.; Zhang, J.; Spevak, W.; Ibrahim, P.N.; Le, M.H.; Hsu, H.H.; Habets, G.; West, B.L.; Bollag, G.; Shah, N.P. Characterizing and overriding the structural mechanism of the quizartinib-resistant FLT3 “Gatekeeper” F691L mutation with PLX3397. Cancer Discov., 2015, 5(6), 668-679.
[http://dx.doi.org/10.1158/2159-8290.CD-15-0060] [PMID: 25847190]
[35]
Lin, X.D.; Yang, H.W.; Ma, S.; Li, W.W.; Zhang, C.H.; Wang, W.J.; Xiang, R.; Li, L.L.; Yang, S.Y. Discovery of 6-phenylimidazo[2,1-b]thiazole derivatives as a new type of FLT3 inhibitors. Bioorg. Med. Chem. Lett., 2015, 25(20), 4534-4538.
[http://dx.doi.org/10.1016/j.bmcl.2015.08.068] [PMID: 26342867]
[36]
Yamaura, T.; Nakatani, T.; Uda, K.; Ogura, H.; Shin, W.; Kurokawa, N.; Saito, K.; Fujikawa, N.; Date, T.; Takasaki, M.; Terada, D.; Hirai, A.; Akashi, A.; Chen, F.; Adachi, Y.; Ishikawa, Y.; Hayakawa, F.; Hagiwara, S.; Naoe, T.; Kiyoi, H. A novel irreversible FLT3 inhibitor, FF-10101, shows excellent efficacy against AML cells with FLT3 mutations. Blood, 2018, 131(4), 426-438.
[http://dx.doi.org/10.1182/blood-2017-05-786657] [PMID: 29187377]

© 2025 Bentham Science Publishers | Privacy Policy