Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Targets and Mechanisms of Xuebijing in the Treatment of Acute Kidney Injury Associated with Sepsis: A Network Pharmacology-based Study

Author(s): Jing Wang*, Chengyu Luo, Mengling Luo, Siwen Zhou and Guicheng Kuang

Volume 20, Issue 6, 2024

Published on: 08 June, 2023

Page: [752 - 763] Pages: 12

DOI: 10.2174/1573409919666230519121138

Price: $65

Abstract

Introduction: Sepsis is a state of the systemic inflammatory response of the host induced by infection, frequently affecting numerous organs and producing varied degrees of damage. The most typical consequence of sepsis is sepsis-associated acute kidney injury(SA-AKI). Xuebijing is developed based on XueFuZhuYu Decoction. Five Chinese herbal extracts, including Carthami Flos, Radix Paeoniae Rubra, Chuanxiong Rhizoma, Radix Salviae, and Angelicae Sinensis Radix, make up the majority of the mixture. It has properties that are anti-inflammatory and anti-oxidative stress. Xuebijing is an effective medication for the treatment of SA-AKI, according to clinical research. But its pharmacological mechanism is still not completely understood.

Methods: First, the composition and target information of Carthami Flos, Radix Paeoniae Rubra, Chuanxiong Rhizoma, Radix Salviae, and Angelicae Sinensis Radix were collected from the TCMSP database, while the therapeutic targets of SA-AKI were exported from the gene card database. To do a GO and KEGG enrichment analysis, we first screened the key targets using a Venn diagram and Cytoscape 3.9.1. To assess the binding activity between the active component and the target, we lastly used molecular docking.

Results: For Xuebijing, a total of 59 active components and 267 corresponding targets were discovered, while for SA-AKI, a total of 1,276 targets were connected. There were 117 targets in all that was shared by goals for active ingredients and objectives for diseases. The TNF signaling pathway and the AGE-RAGE pathway were later found to be significant pathways for the therapeutic effects of Xuebijing by GO analysis and KEGG pathway analysis. Quercetin, luteolin, and kaempferol were shown to target and modulate CXCL8, CASP3, and TNF, respectively, according to molecular docking results.

Conclusion: This study predicts the mechanism of action of the active ingredients of Xuebijing in the treatment of SA-AKI, which provides a basis for future applications of Xuebijing and studies targeting the mechanism.

Graphical Abstract

[1]
Poston, J.T.; Koyner, J.L. Sepsis associated acute kidney injury. BMJ, 2019, 364, k4891.
[http://dx.doi.org/10.1136/bmj.k4891] [PMID: 30626586]
[2]
Shankar-Hari, M.; Phillips, G.S.; Levy, M.L.; Seymour, C.W.; Liu, V.X.; Deutschman, C.S.; Angus, D.C.; Rubenfeld, G.D.; Singer, M. Developing a new definition and assessing new clinical criteria for septic shock. JAMA, 2016, 315(8), 775-787.
[http://dx.doi.org/10.1001/jama.2016.0289] [PMID: 26903336]
[3]
Ilaria, G.; Kianoush, K.; Ruxandra, B.; Francesca, M.; Mariarosa, C.; Davide, G.; Claudio, R. Clinical adoption of Nephrocheck® in the early detection of acute kidney injury. Ann. Clin. Biochem., 2021, 58(1), 6-15.
[http://dx.doi.org/10.1177/0004563220970032] [PMID: 33081495]
[4]
Hoste, E.A.J.; Bagshaw, S.M.; Bellomo, R.; Cely, C.M.; Colman, R.; Cruz, D.N.; Edipidis, K.; Forni, L.G.; Gomersall, C.D.; Govil, D.; Honoré, P.M.; Joannes-Boyau, O.; Joannidis, M.; Korhonen, A.M.; Lavrentieva, A.; Mehta, R.L.; Palevsky, P.; Roessler, E.; Ronco, C.; Uchino, S.; Vazquez, J.A.; Vidal Andrade, E.; Webb, S.; Kellum, J.A. Epidemiology of acute kidney injury in critically ill patients: The multinational AKI-EPI study. Intensive Care Med., 2015, 41(8), 1411-1423.
[http://dx.doi.org/10.1007/s00134-015-3934-7] [PMID: 26162677]
[5]
Peerapornratana, S.; Manrique-Caballero, C.L.; Gómez, H.; Kellum, J.A. Acute kidney injury from sepsis: Current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney Int., 2019, 96(5), 1083-1099.
[http://dx.doi.org/10.1016/j.kint.2019.05.026] [PMID: 31443997]
[6]
Chen, Y.; Jin, S.; Teng, X.; Hu, Z.; Zhang, Z.; Qiu, X.; Tian, D.; Wu, Y. Hydrogen sulfide attenuates LPS-Induced acute kidney injury by inhibiting inflammation and oxidative stress. Oxid. Med. Cell. Longev., 2018, 2018, 1-10.
[http://dx.doi.org/10.1155/2018/6717212] [PMID: 29636853]
[7]
Prowle, J.R.; Bellomo, R. Sepsis-associated acute kidney injury: Macrohemodynamic and microhemodynamic alterations in the renal circulation. Semin. Nephrol., 2015, 35(1), 64-74.
[http://dx.doi.org/10.1016/j.semnephrol.2015.01.007] [PMID: 25795500]
[8]
Hasson, D.C.; Watanabe-Chailland, M.; Romick-Rosendale, L.; Koterba, A.; Miner, D.S.; Lahni, P.; Ma, Q.; Goldstein, S.L.; Devarajan, P.; Standage, S.W. Choline supplementation attenuates experimental sepsis-associated acute kidney injury. Am. J. Physiol. Renal Physiol., 2022, 323(3), F255-F271.
[http://dx.doi.org/10.1152/ajprenal.00033.2022] [PMID: 35834274]
[9]
Grondman, I.; Pirvu, A.; Riza, A.; Ioana, M.; Netea, M.G. Biomarkers of inflammation and the etiology of sepsis. Biochem. Soc. Trans., 2020, 48(1), 1-14.
[http://dx.doi.org/10.1042/BST20190029] [PMID: 32049312]
[10]
Gomez, H.; Ince, C.; De Backer, D.; Pickkers, P.; Payen, D.; Hotchkiss, J.; Kellum, J.A. A unified theory of sepsis-induced acute kidney injury: Inflammation, microcirculatory dysfunction, bioenergetics, and the tubular cell adaptation to injury. Shock, 2014, 41(1), 3-11.
[http://dx.doi.org/10.1097/SHK.0000000000000052] [PMID: 24346647]
[11]
Toro, J.; Manrique-Caballero, C.L.; Gómez, H Metabolic Reprogramming and Host Tolerance: A Novel Concept to Understand Sepsis-Associated AKI. J. Clin. Med., 2021, 10(18), 4184.
[http://dx.doi.org/10.3390/jcm10184184]
[12]
Chen, H.; Busse, L.W. Novel therapies for acute kidney injury. Kidney Int. Rep., 2017, 2(5), 785-799.
[http://dx.doi.org/10.1016/j.ekir.2017.06.020] [PMID: 29270486]
[13]
Pickkers, P.; Darmon, M.; Hoste, E.; Joannidis, M.; Legrand, M.; Ostermann, M.; Prowle, J.R.; Schneider, A.; Schetz, M. Acute kidney injury in the critically ill: An updated review on pathophysiology and management. Intensive Care Med., 2021, 47(8), 835-850.
[http://dx.doi.org/10.1007/s00134-021-06454-7] [PMID: 34213593]
[14]
Huang, H.; Ji, L.; Song, S.; Wang, J.; Wei, N.; Jiang, M.; Bai, G.; Luo, G. Identification of the major constituents in Xuebijing injection by HPLC-ESI-MS. Phytochem. Anal., 2011, 22(4), 330-338.
[http://dx.doi.org/10.1002/pca.1284] [PMID: 21500296]
[15]
Jiang, M.; Zhou, M.; Han, Y.; Xing, L.; Zhao, H.; Dong, L.; Bai, G.; Luo, G. Identification of NF-κB Inhibitors in Xuebijing injection for sepsis treatment based on bioactivity-integrated UPLC-Q/TOF. J. Ethnopharmacol., 2013, 147(2), 426-433.
[http://dx.doi.org/10.1016/j.jep.2013.03.032] [PMID: 23524166]
[16]
Parker, S.; May, B.; Zhang, C.; Zhang, A.L.; Lu, C.; Xue, C.C. A pharmacological review of bioactive constituents of Paeonia lactiflora Pallas and Paeonia veitchii Lynch. Phytother. Res., 2016, 30(9), 1445-1473.
[http://dx.doi.org/10.1002/ptr.5653] [PMID: 27279421]
[17]
Yang, X.W.; Li, Y.H.; Zhang, H.; Zhao, Y.F.; Ding, Z.B.; Yu, J.Z.; Liu, C.Y.; Liu, J.C.; Jiang, W.J.; Feng, Q.J.; Xiao, B.G.; Ma, C.G. Safflower Yellow regulates microglial polarization and inhibits inflammatory response in LPS-stimulated Bv2 cells. Int. J. Immunopathol. Pharmacol., 2016, 29(1), 54-64.
[http://dx.doi.org/10.1177/0394632015617065] [PMID: 26634402]
[18]
Yao, D.; Wang, Z.; Miao, L.; Wang, L. Effects of extracts and isolated compounds from safflower on some index of promoting blood circulation and regulating menstruation. J. Ethnopharmacol., 2016, 191, 264-272.
[http://dx.doi.org/10.1016/j.jep.2016.06.009] [PMID: 27286914]
[19]
Hong, Q.; Ma, Z.C.; Huang, H.; Wang, Y.G.; Tan, H.L.; Xiao, C.R.; Liang, Q.D.; Zhang, H.T.; Gao, Y. Antithrombotic activities of ferulic acid via intracellular cyclic nucleotide signaling. Eur. J. Pharmacol., 2016, 777, 1-8.
[http://dx.doi.org/10.1016/j.ejphar.2016.01.005] [PMID: 26948317]
[20]
Zhang, R.; Yu, S.; Bai, H.; Ning, K. TCM-Mesh: The database and analytical system for network pharmacology analysis for TCM preparations. Sci. Rep., 2017, 7(1), 2821.
[http://dx.doi.org/10.1038/s41598-017-03039-7] [PMID: 28588237]
[21]
Zhou, Z.; Chen, B.; Chen, S.; Lin, M.; Chen, Y.; Jin, S.; Chen, W.; Zhang, Y. Applications of network pharmacology in traditional chinese medicine research. Evid. Based Complement. Alternat. Med., 2020, 2020, 1-7.
[http://dx.doi.org/10.1155/2020/1646905] [PMID: 32148533]
[22]
Sousa, S.F.; Fernandes, P.A.; Ramos, M.J. Protein-ligand docking: Current status and future challenges. Proteins, 2006, 65(1), 15-26.
[http://dx.doi.org/10.1002/prot.21082] [PMID: 16862531]
[23]
Manrique-Caballero, C.L.; Del Rio-Pertuz, G.; Gomez, H. Sepsis-associated acute kidney injury. Crit. Care Clin., 2021, 37(2), 279-301.
[http://dx.doi.org/10.1016/j.ccc.2020.11.010] [PMID: 33752856]
[24]
Ronco, C.; Bellomo, R.; Kellum, J.A. Acute kidney injury. Lancet, 2019, 394(10212), 1949-1964.
[http://dx.doi.org/10.1016/S0140-6736(19)32563-2] [PMID: 31777389]
[25]
Kellum, J.A.; Romagnani, P.; Ashuntantang, G.; Ronco, C.; Zarbock, A.; Anders, H.J. Acute kidney injury. Nat. Rev. Dis. Primers, 2021, 7(1), 52.
[http://dx.doi.org/10.1038/s41572-021-00284-z] [PMID: 34267223]
[26]
Li, C.; Wang, P.; Zhang, L.; Li, M.; Lei, X.; Liu, S.; Feng, Z.; Yao, Y.; Chang, B.; Liu, B.; Shang, H. Efficacy and safety of Xuebijing injection (a Chinese patent) for sepsis: A metaanalysis of randomized controlled trials. J Ethnopharmacol., 2018, 224, 512-521.
[http://dx.doi.org/10.1016/j.jep.2018.05.043]
[27]
Mo, Z.Z.; Lin, Z.X.; Su, Z.R.; Zheng, L.; Li, H.L.; Xie, J.H.; Xian, Y.F.; Yi, T.G.; Huang, S.Q.; Chen, J.P. Angelica sinensis Supercritical Fluid CO 2 extract attenuates D-Galactose-Induced liver and kidney impairment in mice by suppressing oxidative stress and inflammation. J. Med. Food, 2018, 21(9), 887-898.
[http://dx.doi.org/10.1089/jmf.2017.4061] [PMID: 30109956]
[28]
Chien, L.H.; Wu, C.T.; Deng, J.S.; Jiang, W.P.; Huang, W.C.; Huang, G.J. Salvianolic acid C protects against cisplatin-induced acute kidney injury through attenuation of inflammation, oxidative stress and apoptotic effects and activation of the CaMKK-AMPK-Sirt1-associated signaling pathway in mouse models. Antioxidants, 2021, 10(10), 1620.
[http://dx.doi.org/10.3390/antiox10101620] [PMID: 34679755]
[29]
Van Doorn, K.J.; Spapen, H.; Geers, C.; Diltoer, M.; Shabana, W. Sepsis-related acute kidney injury: A protective effect of drotrecogin alfa (activated) treatment? Acta Anaesthesiol. Scand., 2008, 52(9), 1259-1264.
[http://dx.doi.org/10.1111/j.1399-6576.2008.01738.x] [PMID: 18823466]
[30]
Wang, Y.; Zhang, H.; Chen, Q.; Jiao, F.; Shi, C.; Pei, M.; Lv, J.; Zhang, H.; Wang, L.; Gong, Z. TNF‐α/HMGB1 inflammation signalling pathway regulates pyroptosis during liver failure and acute kidney injury. Cell Prolif., 2020, 53(6), e12829.
[http://dx.doi.org/10.1111/cpr.12829] [PMID: 32419317]
[31]
Fatani, S.H.; Alkhatib, K.H.; Badr, H.; ALrefai, A.A. Association of TNF-α-308 (G >A) (rs1800629) Gene Polymorphism with adverse outcomes of Sepsis in critically Ill patients. DNA Cell Biol., 2020, 39(9), 1723-1729.
[http://dx.doi.org/10.1089/dna.2020.5468] [PMID: 32700971]
[32]
Li, J.; Gui, Y.; Ren, J.; Liu, X.; Feng, Y.; Zeng, Z.; He, W.; Yang, J.; Dai, C. Metformin protects against cisplatin-induced tubular cell apoptosis and acute kidney injury via AMPKα-regulated autophagy induction. Sci. Rep., 2016, 6(1), 23975.
[http://dx.doi.org/10.1038/srep23975] [PMID: 27052588]
[33]
Zhang, W.; Qi, R.; Li, T.; Zhang, X.; Shi, Y.; Xu, M.; Zhu, T. Kidney organoids as a novel platform to evaluate lipopolysaccharide-induced oxidative stress and apoptosis in acute kidney injury. Front. Med., 2021, 8, 766073.
[http://dx.doi.org/10.3389/fmed.2021.766073] [PMID: 34912825]
[34]
Ying, J.; Wu, J.; Zhang, Y.; Han, Y.; Qian, X.; Yang, Q.; Chen, Y.; Chen, Y.; Zhu, H. Ligustrazine suppresses renal NMDAR1 and caspase-3 expressions in a mouse model of sepsis-associated acute kidney injury. Mol. Cell. Biochem., 2020, 464(1-2), 73-81.
[http://dx.doi.org/10.1007/s11010-019-03650-4] [PMID: 31732832]
[35]
Liu, J.; Yang, C.; Zhang, W.; Su, H.; Liu, Z.; Pan, Q.; Liu, H. Disturbance of mitochondrial dynamics and mitophagy in sepsis-induced acute kidney injury. Life Sci., 2019, 235, 116828.
[http://dx.doi.org/10.1016/j.lfs.2019.116828] [PMID: 31479679]
[36]
Lin, Q.; Li, S.; Jiang, N.; Jin, H.; Shao, X.; Zhu, X.; Wu, J.; Zhang, M.; Zhang, Z.; Shen, J.; Zhou, W.; Gu, L.; Lu, R.; Ni, Z. Inhibiting NLRP3 inflammasome attenuates apoptosis in contrast-induced acute kidney injury through the upregulation of HIF1A and BNIP3-mediated mitophagy. Autophagy, 2021, 17(10), 2975-2990.
[http://dx.doi.org/10.1080/15548627.2020.1848971] [PMID: 33345685]
[37]
Xu, X.; Wang, J.; Yang, R.; Dong, Z.; Zhang, D. Genetic or pharmacologic inhibition of EGFR ameliorates sepsis-induced AKI. Oncotarget, 2017, 8(53), 91577-91592.
[http://dx.doi.org/10.18632/oncotarget.21244]
[38]
Bolisetty, S.; Zarjou, A.; Agarwal, A. Heme oxygenase 1 as a therapeutic target in acute kidney injury. Am. J. Kidney Dis., 2017, 69(4), 531-545.
[http://dx.doi.org/10.1053/j.ajkd.2016.10.037] [PMID: 28139396]
[39]
Yan, X.; Cheng, X.; He, X.; Zheng, W.; Yuan, X.; Chen, H. HO-1 overexpressed mesenchymal stem cells ameliorate sepsis-associated acute kidney injury by activating JAK/stat3 pathway. Cell. Mol. Bioeng., 2018, 11(6), 509-518.
[http://dx.doi.org/10.1007/s12195-018-0540-0] [PMID: 31719896]
[40]
Shu, Y.; Yang, Y.; Zhao, Y.; Ma, L.; Fu, P.; Wei, T.; Zhang, L. Melittin inducing the apoptosis of renal tubule epithelial cells through upregulation of Bax/Bcl-2 expression and activation of TNF- α signaling pathway. BioMed Res. Int., 2019, 2019, 1-13.
[http://dx.doi.org/10.1155/2019/9450368] [PMID: 31772938]
[41]
Yu, W.; Tao, M.; Zhao, Y.; Hu, X.; Wang, M. 4′-Methoxyresveratrol alleviated AGE-induced inflammation via RAGE-mediated NF-κB and NLRP3 inflammasome pathway. Molecules, 2018, 23(6), 1447.
[http://dx.doi.org/10.3390/molecules23061447] [PMID: 29903983]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy