Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Assessment of Anticholinergic and Antidiabetic Properties of Some Natural and Synthetic Molecules: An In vitro and In silico Approach

Author(s): Veysel Çomaklı*, İmdat Aygül, Rüya Sağlamtaş, Müslüm Kuzu, Ramazan Demirdağ, Hülya Akincioğlu, Şevki Adem and İlhami Gülçin

Volume 20, Issue 5, 2024

Published on: 13 June, 2023

Page: [441 - 451] Pages: 11

DOI: 10.2174/1573409919666230518151414

Price: $65

Abstract

Introduction: This study aimed to determine the in vitro and in silico effects of some natural and synthetic molecules on acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and α-glucosidase enzymes.

Background: Alzheimer's disease (AD) and Type II diabetes mellitus (T2DM) are considered the most important diseases of today’s world. However, the side effects of therapeutic agents used in both diseases limit their use. Therefore, developing drugs with high therapeutic efficacy and better pharmacological profile is important.

Objectives: This study sets out to determine the related enzyme inhibitors used in treating AD and T2DM, considered amongst the most important diseases of today’s world.

Methods: In the current study, the in vitro and in silico effects of dienestrol, hesperetin, Lthyroxine, 3,3',5-Triiodo-L-thyronine (T3) and dobutamine molecules on AChE, BChE and α - glycosidase enzyme activities were investigated.

Results: All the molecules showed an inhibitory effect on the enzymes. The IC50 and Ki values of the L-Thyroxine molecule, which showed the strongest inhibition effect for the AChE enzyme, were determined as 1.71 μM and 0.83 ± 0.195 μM, respectively. In addition, dienestrol, T3, and dobutamine molecules showed a more substantial inhibition effect than tacrine. The dobutamine molecule showed the most substantial inhibition effect for the BChE enzyme, and IC50 and Ki values were determined as 1.83 μM and 0.845 ± 0.143 μM, respectively. The IC50 and Ki values for the hesperetin molecule, which showed the strongest inhibition for the α -glycosidase enzyme, were determined as 13.57 μM and 12.33 ± 2.57 μM, respectively.

Conclusion: According to the results obtained, the molecules used in the study may be considered potential inhibitor candidates for AChE, BChE and α-glycosidase.

Graphical Abstract

[1]
Friedli, M.J.; Inestrosa, N.C. Huperzine A and its neuroprotective molecular signaling in alzheimer’s disease. Molecules, 2021, 26(21), 6531.
[http://dx.doi.org/10.3390/molecules26216531] [PMID: 34770940]
[2]
Chiang, T.I.; Yu, Y.H.; Lin, C.H.; Lane, H.Y. Novel biomarkers of alzheimer’s disease: Based upon N-methyl-D-aspartate receptor hypoactivation and oxidative stress. Clin. Psychopharmacol. Neurosci., 2021, 19(3), 423-433.
[http://dx.doi.org/10.9758/cpn.2021.19.3.423] [PMID: 34294612]
[3]
Aras, A.; Türkan, F.; Yildiko, U.; Atalar, M.N.; Kılıç, Ö.; Alma, M.H.; Bursal, E. Biochemical constituent, enzyme inhibitory activity, and molecular docking analysis of an endemic plant species, Thymus migricus. Chem. Pap., 2021, 75(3), 1133-1146.
[http://dx.doi.org/10.1007/s11696-020-01375-z]
[4]
Bartolini, M.; Bertucci, C.; Cavrini, V.; Andrisano, V. β-Amyloid aggregation induced by human acetylcholinesterase: Inhibition studies. Biochem. Pharmacol., 2003, 65(3), 407-416.
[http://dx.doi.org/10.1016/S0006-2952(02)01514-9] [PMID: 12527333]
[5]
Lolak, N.; Akocak, S.; Türkeş, C.; Taslimi, P.; Işık, M.; Beydemir, Ş.; Gülçin, İ.; Durgun, M. Synthesis, characterization, inhibition effects, and molecular docking studies as acetylcholinesterase, α-glycosidase, and carbonic anhydrase inhibitors of novel benzenesulfonamides incorporating 1,3,5-triazine structural motifs. Bioorg. Chem., 2020, 100, 103897.
[http://dx.doi.org/10.1016/j.bioorg.2020.103897] [PMID: 32413628]
[6]
Türkan, F.; Huyut, Z.; Taslimi, P.; Gülçin, İ. The effects of some antibiotics from cephalosporin groups on the acetylcholinesterase and butyrylcholinesterase enzymes activities in different tissues of rats. Arch. Physiol. Biochem., 2019, 125(1), 12-18.
[http://dx.doi.org/10.1080/13813455.2018.1427766] [PMID: 29364753]
[7]
Benazzouz-Touami, A.; Chouh, A.; Halit, S.; Terrachet-Bouaziz, S.; Makhloufi-Chebli, M.; Ighil-Ahriz, K.; Silva, A.M.S. New Coumarin-Pyrazole hybrids: Synthesis, Docking studies and Biological evaluation as potential cholinesterase inhibitors. J. Mol. Struct., 2022, 1249, 131591.
[http://dx.doi.org/10.1016/j.molstruc.2021.131591]
[8]
Domínguez, R.O.; Pagano, M.A.; Marschoff, E.R.; González, S.E.; Repetto, M.G.; Serra, J.A. Alzheimer disease and cognitive impairment associated with diabetes mellitus type 2: Associations and a hypothesis. Neurología, 2014, 29(9), 567-572.
[http://dx.doi.org/10.1016/j.nrleng.2014.10.001] [PMID: 24140159]
[9]
Günsel, A.; Taslimi, P.; Atmaca, G.Y.; Bilgiçli, A.T.; Pişkin, H.; Ceylan, Y.; Erdoğmuş, A.; Yarasir, M.N.; Gülçin, İ. Novel potential metabolic enzymes inhibitor, photosensitizer and antibacterial agents based on water-soluble phthalocyanine bearing imidazole derivative. J. Mol. Struct., 2021, 1237, 130402.
[http://dx.doi.org/10.1016/j.molstruc.2021.130402]
[10]
Deswal, L.; Verma, V.; Devinder, K.; Deswal, Y.; Kumar, A.; Rajnish, K.; Parshad, M.; Bhatia, M. Synthesis, antimicrobial and α-Glucosidase inhibition of new benzimidazole-1,2,3-Triazole-Indoline derivatives: A combined experimental and computational venture. Chem. Pap., 2022, 1, 1-16.
[11]
Gülçin, İ.; Trofimov, B.; Kaya, R.; Taslimi, P.; Sobenina, L.; Schmidt, E.; Petrova, O.; Malysheva, S.; Gusarova, N.; Farzaliyev, V.; Sujayev, A.; Alwasel, S.; Supuran, C.T. Synthesis of nitrogen, phosphorus, selenium and sulfur-containing heterocyclic compounds – Determination of their carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase and α-glycosidase inhibition properties. Bioorg. Chem., 2020, 103, 104171.
[http://dx.doi.org/10.1016/j.bioorg.2020.104171] [PMID: 32891857]
[12]
Gülçin, İ.; Gören, A.C.; Taslimi, P.; Alwasel, S.H.; Kılıc, O.; Bursal, E. Anticholinergic, antidiabetic and antioxidant activities of Anatolian pennyroyal (Mentha pulegium)-analysis of its polyphenol contents by LC-MS/MS. Biocatal. Agric. Biotechnol., 2020, 23, 101441.
[http://dx.doi.org/10.1016/j.bcab.2019.101441]
[13]
Tam, K.Y.; Ju, Y. Pathological mechanisms and therapeutic strategies for Alzheimer’s disease. Neural Regen. Res., 2022, 17(3), 543-549.
[http://dx.doi.org/10.4103/1673-5374.320970] [PMID: 34380884]
[14]
Akocak, S.; Taslimi, P.; Lolak, N.; Işık, M.; Durgun, M.; Budak, Y.; Türkeş, C.; Gülçin, İ.; Beydemir, Ş. Synthesis, characterization, and inhibition study of novel substituted phenylureido sulfaguanidine derivatives as α‐Glycosidase and cholinesterase inhibitors. Chem. Biodivers., 2021, 18(4), e2000958.
[http://dx.doi.org/10.1002/cbdv.202000958] [PMID: 33620128]
[15]
Wierzbicka, A.; Mańkowska‐wierzbicka, D.; Cieślewicz, S.; Stelmach‐mardas, M.; Mardas, M. Interventions preventing vaginitis, vaginal atrophy after brachytherapy or radiotherapy due to malignant tumors of the female reproductive organs-a systematic review. Int J Environ Res Public Health., 2021, 18(8), 3932.
[16]
Carraher, C.E., Jr; Roner, M.R.; Shahi, K.; Barot, G. Structural Consideration in designing organotin polyethers to arrest the growth of breast cancer cells In vitro. Materials, 2011, 4(4), 801-815.
[http://dx.doi.org/10.3390/ma4040801] [PMID: 28879951]
[17]
Hong, X.; Luo, X.; Wang, L.; Gong, D.; Zhang, G. New insights into the inhibition of hesperetin on polyphenol oxidase: Inhibitory kinetics, binding characteristics, conformational change and computational simulation. Foods, 2023, 12(4), 905.
[http://dx.doi.org/10.3390/foods12040905] [PMID: 36832979]
[18]
Finan, B.; Parlee, S.D.; Yang, B. Nuclear hormone and peptide hormone therapeutics for NAFLD and NASH. Mol. Metab., 2021, 46, 101153.
[http://dx.doi.org/10.1016/j.molmet.2020.101153] [PMID: 33359400]
[19]
Mullur, R.; Liu, Y.Y.; Brent, G.A. Thyroid hormone regulation of metabolism. Physiol. Rev., 2014, 94(2), 355-382.
[http://dx.doi.org/10.1152/physrev.00030.2013] [PMID: 24692351]
[20]
Ruffolo, R.R., Jr. The pharmacology of dobutamine. Am. J. Med. Sci., 1987, 294(4), 244-248.
[http://dx.doi.org/10.1097/00000441-198710000-00005] [PMID: 3310640]
[21]
Ellman, G.L.; Courtney, K.D.; Andres, V., Jr.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 1961, 7(2), 88-95.
[http://dx.doi.org/10.1016/0006-2952(61)90145-9] [PMID: 13726518]
[22]
Yiğit, M.; Celepci, D.B.; Taslimi, P.; Yiğit, B.; Çetinkaya, E.; Özdemir, İ.; Aygün, M.; Gülçin, İ. Selenourea and thiourea derivatives of chiral and achiral enetetramines: Synthesis, characterization and enzyme inhibitory properties. Bioorg. Chem., 2022, 120, 105566.
[http://dx.doi.org/10.1016/j.bioorg.2021.105566] [PMID: 34974209]
[23]
Sujayev, A.; Taslimi, P.; Kaya, R.; Safarov, B.; Aliyeva, L.; Farzaliyev, V.; Gulçin, İ. Synthesis, characterization and biological evaluation of N ‐substituted triazinane‐2‐thiones and theoretical–experimental mechanism of condensation reaction. Appl. Organomet. Chem., 2020, 34(2), e5329.
[http://dx.doi.org/10.1002/aoc.5329]
[24]
Zengin, M.; Genc, H.; Taslimi, P.; Kestane, A.; Guclu, E.; Ogutlu, A.; Karabay, O.; Gulçin, İ. Novel thymol bearing oxypropanolamine derivatives as potent some metabolic enzyme inhibitors – Their antidiabetic, anticholinergic and antibacterial potentials. Bioorg. Chem., 2018, 81, 119-126.
[http://dx.doi.org/10.1016/j.bioorg.2018.08.003] [PMID: 30118983]
[25]
Yılmaz, M.A.; Taslimi, P.; Kılıç, Ö.; Gülçin, İ.; Dey, A.; Bursal, E. Unravelling the phenolic compound reserves, antioxidant and enzyme inhibitory activities of an endemic plant species, Achillea pseudoaleppica. J. Biomol. Struct. Dyn., 2023, 41(2), 445-456.
[http://dx.doi.org/10.1080/07391102.2021.2007792] [PMID: 34822320]
[26]
Akıncıoğlu, A.; Göksu, S.; Naderi, A.; Akıncıoğlu, H.; Kılınç, N.; Gülçin, İ. Cholinesterases, carbonic anhydrase inhibitory properties and in silico studies of novel substituted benzylamines derived from dihydrochalcones. Comput. Biol. Chem., 2021, 94, 107565.
[http://dx.doi.org/10.1016/j.compbiolchem.2021.107565] [PMID: 34474201]
[27]
Tao, Y.; Zhang, Y.; Cheng, Y.; Wang, Y. Rapid screening and identification of α-glucosidase inhibitors from mulberry leaves using enzyme-immobilized magnetic beads coupled with HPLC/MS and NMR. Biomed. Chromatogr., 2013, 27(2), 148-155.
[http://dx.doi.org/10.1002/bmc.2761] [PMID: 22674728]
[28]
Burmaoglu, S.; Yilmaz, A.O.; Taslimi, P.; Algul, O.; Kilic, D.; Gulcin, I. Synthesis and biological evaluation of phloroglucinol derivatives possessing α-glycosidase, acetylcholinesterase, butyrylcholinesterase, carbonic anhydrase inhibitory activity. Arch. Pharm., 2018, 351(2), 1700314.
[http://dx.doi.org/10.1002/ardp.201700314] [PMID: 29323749]
[29]
Taslimi, P.; Kandemir, F.M.; Demir, Y.; İleritürk, M.; Temel, Y.; Caglayan, C.; Gulçin, İ. The antidiabetic and anticholinergic effects of chrysin on cyclophosphamide‐induced multiple organ toxicity in rats: Pharmacological evaluation of some metabolic enzyme activities. J. Biochem. Mol. Toxicol., 2019, 33(6), e22313.
[http://dx.doi.org/10.1002/jbt.22313] [PMID: 30801880]
[30]
Kuzu, M.; Aslan, A.; Ahmed, I.; Comakli, V.; Demirdag, R.; Uzun, N. Purification of glucose-6-phosphate dehydrogenase and glutathione reductase enzymes from the gill tissue of Lake Van fish and analyzing the effects of some chalcone derivatives on enzyme activities. Fish Physiol. Biochem., 2016, 42(2), 483-491.
[http://dx.doi.org/10.1007/s10695-015-0153-7] [PMID: 26676512]
[31]
Türkoğlu, E.A.; Kuzu, M.; Ayasan, T.; Inci, H.; Eratak, S.V. Inhibitory effects of some flavonoids on thioredoxin reductase purified from chicken liver. Braz. J. Poult. Sci., 2019, 21(2), eRBCA-2019-0982.
[http://dx.doi.org/10.1590/1806-9061-2018-0982]
[32]
Temel, Y.; Koçyigit, U.M.; Taysı, M.Ş.; Gökalp, F.; Gürdere, M.B.; Budak, Y.; Ceylan, M.; Gülçin, İ.; Çiftci, M. Purification of glutathione S-transferase enzyme from quail liver tissue and inhibition effects of (3a R, 4 S, 7 R, 7a S)-2-(4-((E)-3-(aryl)acryloyl)phenyl)-3a,4,7,7a-tetrahydro-1 H -4,7-methanoisoindole-1,3(2 H)-dione derivatives on the enzyme activity. J. Biochem. Mol. Toxicol., 2018, 32(3), e22034.
[http://dx.doi.org/10.1002/jbt.22034] [PMID: 29350485]
[33]
Metzler, M.; Fischer, L.J. The metabolism of diethylstilbestro. Crit. Rev. Biochem., 1981, 10(3), 171-212.
[http://dx.doi.org/10.3109/10409238109113599]
[34]
Elhennawy, M.G.; Abdelaleem, E.A.; Zaki, A.A.; Mohamed, W.R. Cinnamaldehyde and hesperetin attenuate TNBS‐induced ulcerative colitis in rats through modulation of the JAk2/STAT3/SOCS3 pathway. J. Biochem. Mol. Toxicol., 2021, 35(5), e22730.
[http://dx.doi.org/10.1002/jbt.22730] [PMID: 33522063]
[35]
Ren, H.; Hao, J.; Liu, T.; Zhang, D.; Lv, H.; Song, E.; Zhu, C. Hesperetin suppresses inflammatory responses in lipopolysaccharide-induced RAW 264.7 Cells via the Inhibition of NF-κB and activation of Nrf2/HO-1 pathways. Inflammation, 2016, 39(3), 964-973.
[http://dx.doi.org/10.1007/s10753-016-0311-9] [PMID: 26994999]
[36]
Cho, J. Antioxidant and neuroprotective effects of hesperidin and its aglycone hesperetin. Arch. Pharm. Res., 2006, 29(8), 699-706.
[http://dx.doi.org/10.1007/BF02968255] [PMID: 16964766]
[37]
Svanfelt, J.; Eriksson, J.; Kronberg, L. Analysis of thyroid hormones in raw and treated waste water. J. Chromatogr. A, 2010, 1217(42), 6469-6474.
[http://dx.doi.org/10.1016/j.chroma.2010.08.032] [PMID: 20850122]
[38]
Noda, M. Thyroid hormone in the CNS: Contribution of neuron–glia interaction. Vitam. Horm., 2018, 106, 313-331.
[http://dx.doi.org/10.1016/bs.vh.2017.05.005] [PMID: 29407440]
[39]
Mielgo, V.; Valls i Soler, A.; Rey-Santano, C. Dobutamine in paediatric population: A systematic review in juvenile animal models. PLoS One, 2014, 9(4), e95644.
[http://dx.doi.org/10.1371/journal.pone.0095644] [PMID: 24755688]
[40]
Hu, Q.; Guan, X.Q.; Song, L.L.; Wang, H.N.; Xiong, Y.; Liu, J.L.; Yin, H.; Cao, Y.F.; Hou, J.; Yang, L.; Ge, G.B. Inhibition of pancreatic lipase by environmental xenoestrogens. Ecotoxicol. Environ. Saf., 2020, 192, 110305.
[http://dx.doi.org/10.1016/j.ecoenv.2020.110305] [PMID: 32070782]
[41]
Maitreesophone, P.; Khine, H.E.E.; Nealiga, J.Q.L.; Kongkatitham, V.; Panuthai, P.; Chaotham, C.; Likhitwitayawuid, K.; Sritularak, B. α-Glucosidase and pancreatic lipase inhibitory effects and anti-adipogenic activity of dendrofalconerol B, a bisbibenzyl from Dendrobium harveyanum. S. Afr. J. Bot., 2022, 146, 187-195.
[http://dx.doi.org/10.1016/j.sajb.2021.10.025]
[42]
Türk, E.; Ozan Tekeli, I.; Özkan, H.; Uyar, A.; Cellat, M.; Kuzu, M.; Yavas, I.; Alizadeh Yegani, A.; Yaman, T.; Güvenç, M. The protective effect of esculetin against aluminium chloride-induced reproductive toxicity in rats. Andrologia, 2021, 53(2), e13930.
[http://dx.doi.org/10.1111/and.13930] [PMID: 33368464]
[43]
Taskin, T.; Kahvecioglu, D.; Turkoglu, A.; Dogan, A.; Kuzu, M.; Turkoğlu, A. In vitro biological activities of different extracts from alcea dissecta. Clin. Exp. Heal. Sci., 2022, 12(1), 53-60.
[44]
Gishen, N.Z.; Taddese, S.; Zenebe, T.; Dires, K.; Tedla, A.; Mengiste, B.; Shenkute, D.; Tesema, A.; Shiferaw, Y.; Lulekal, E. In vitro antimicrobial activity of six Ethiopian medicinal plants against Staphylococcus aureus, Escherichia coli and Candida albicans. Eur. J. Integr. Med., 2020, 36, 101121.
[http://dx.doi.org/10.1016/j.eujim.2020.101121]
[45]
Amin Huseen, N.H. Docking Study of naringin binding with COVID-19 main protease enzyme. Iraqi J. Pharm Sci., 2020, 29(2), 231-238.
[http://dx.doi.org/10.31351/vol29iss2pp231-238]
[46]
Rasouli, H.; Hosseini-Ghazvini, S.M.B.; Adibi, H.; Khodarahmi, R. Differential α-amylase/α-glucosidase inhibitory activities of plant-derived phenolic compounds: A virtual screening perspective for the treatment of obesity and diabetes. Food Funct., 2017, 8(5), 1942-1954.
[http://dx.doi.org/10.1039/C7FO00220C] [PMID: 28470323]
[47]
Kuzu, M.; Kandemir, F.M.; Yıldırım, S.; Çağlayan, C.; Küçükler, S. Attenuation of sodium arsenite-induced cardiotoxicity and neurotoxicity with the antioxidant, anti-inflammatory, and antiapoptotic effects of hesperidin. Environ. Sci. Pollut. Res. Int., 2021, 28(9), 10818-10831.
[http://dx.doi.org/10.1007/s11356-020-11327-5] [PMID: 33099738]
[48]
Turk, E.; Kandemir, F.M.; Yildirim, S.; Caglayan, C.; Kucukler, S.; Kuzu, M. Protective effect of hesperidin on sodium arsenite-induced nephrotoxicity and hepatotoxicity in rats. Biol. Trace Elem. Res., 2019, 189(1), 95-108.
[http://dx.doi.org/10.1007/s12011-018-1443-6] [PMID: 30066062]
[49]
Li, B.; Huang, A.L.; Zhang, Y.L.; Li, Z.; Ding, H.W.; Huang, C.; Meng, X.M.; Li, J. Design, synthesis and evaluation of hesperetin derivatives as potential multifunctional anti-alzheimer agents. Molecules, 2017, 22(7), 1067.
[http://dx.doi.org/10.3390/molecules22071067] [PMID: 28672874]
[50]
Chen, D.W.; Du, Z.; Zhang, C.Z.; Zhang, W.H.; Cao, Y.F.; Sun, H.Z.; Zhu, Z.T.; Yang, K.; Liu, Y.Z.; Zhao, Z.W.; Fu, Z.W.; Gu, W.Q.; Yu, Y.; Fang, Z.Z. The inhibition of UDP-glucuronosyltransferases (UGTs) by tetraiodothyronine (T4) and triiodothyronine (T3). Xenobiotica, 2018, 48(3), 250-257.
[http://dx.doi.org/10.1080/00498254.2017.1304593] [PMID: 28285550]
[51]
Fu, A.L.; Zhou, C.Y.; Chen, X. Thyroid hormone prevents cognitive deficit in a mouse model of Alzheimer’s disease. Neuropharmacology, 2010, 58(4-5), 722-729.
[http://dx.doi.org/10.1016/j.neuropharm.2009.12.020] [PMID: 20045708]
[52]
Kizilbay, G.; Karaman, M. Possible inhibition mechanism of dobutamine hydrochloride as potent inhibitor for human glucose-6-phosphate dehydrogenase enzyme. J. Biomol. Struct. Dyn., 2022, 40(1), 204-212.
[http://dx.doi.org/10.1080/07391102.2020.1811155] [PMID: 32835622]
[53]
Hassan, M.; Raza, H.; Abbasi, M.A.; Moustafa, A.A.; Seo, S.Y. The exploration of novel Alzheimer’s therapeutic agents from the pool of FDA approved medicines using drug repositioning, enzyme inhibition and kinetic mechanism approaches. Biomed. Pharmacother., 2019, 109, 2513-2526.
[http://dx.doi.org/10.1016/j.biopha.2018.11.115] [PMID: 30551512]
[54]
Ashrafian, H.; Zadeh, E.H.; Khan, R.H. Review on Alzheimer’s disease: Inhibition of amyloid beta and tau tangle formation. Int. J. Biol. Macromol., 2021, 167, 382-394.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.11.192] [PMID: 33278431]
[55]
Popescu, I.; Yin, G.; Velmurugan, S.; Erickson, J.R.; Despa, F.; Despa, S. Lower sarcoplasmic reticulum Ca2+ threshold for triggering afterdepolarizations in diabetic rat hearts. Heart Rhythm, 2019, 16(5), 765-772.
[http://dx.doi.org/10.1016/j.hrthm.2018.11.001] [PMID: 30414461]
[56]
Sugimoto, H.; Ogura, H.; Arai, Y.; Iimura, Y.; Yamanishi, Y. Research and development of donepezil hydrochloride, a new type of acetylcholinesterase inhibitor. Jpn. J. Pharmacol., 2002, 89(1), 7-20.
[http://dx.doi.org/10.1254/jjp.89.7] [PMID: 12083745]
[57]
Syaifie, P.H.; Widya Hemasita, A.; Nugroho, D.W.; Mardliyati, E.; Anshori, I. In Silico investigation of propolis compounds as potential neuroprotective agent. Biointerface Res. Appl. Chem., 2021, 12(6), 8285-8306.
[http://dx.doi.org/10.33263/BRIAC126.82858306]
[58]
Vitorović-Todorović, M.; Cvijetić, I.; Zloh, M.; Perdih, A. Molecular recognition of acetylcholinesterase and its subnanomolar reversible inhibitor: A molecular simulations study. J. Biomol. Struct. Dyn., 2022, 40(4), 1671-1691.
[http://dx.doi.org/10.1080/07391102.2020.1831960] [PMID: 33047663]
[59]
Aleixandre, A.; Gil, J.V.; Sineiro, J.; Rosell, C.M. Understanding phenolic acids inhibition of α-amylase and α-glucosidase and influence of reaction conditions. Food Chem., 2022, 372, 131231.
[http://dx.doi.org/10.1016/j.foodchem.2021.131231] [PMID: 34624776]
[60]
Li, Y.; Sang, S.; Ren, W.; Pei, Y.; Bian, Y.; Chen, Y.; Sun, H. Inhibition of Histone Deacetylase 6 (HDAC6) as a therapeutic strategy for Alzheimer’s disease: A review (2010-2020). Eur. J. Med. Chem., 2021, 226, 113874.
[http://dx.doi.org/10.1016/j.ejmech.2021.113874] [PMID: 34619465]
[61]
Padhi, S.; Dash, M.; Behera, A. Nanophytochemicals for the treatment of type II diabetes mellitus: A review. Environ. Chem. Lett., 2021, 19(6), 4349-4373.
[http://dx.doi.org/10.1007/s10311-021-01283-y]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy