Generic placeholder image

Current Cancer Therapy Reviews

Editor-in-Chief

ISSN (Print): 1573-3947
ISSN (Online): 1875-6301

Review Article

Involvement of miRNA-337 in Various Cancers

Author(s): Mahsa Fakeri, Shabnam Koulaeizadeh, Seyed Masoud Armandzadeh, Elmira Aboutalebi Vand Beilankouhi, Mohammad Valilo and Mohammad Reza Alivand*

Volume 20, Issue 2, 2024

Published on: 21 August, 2023

Page: [188 - 199] Pages: 12

DOI: 10.2174/1573394719666230518112114

Price: $65

Abstract

microRNAs (miRNA) play a significant role in regulating gene expression at the posttranscriptional level in multicellular organisms, such as mammals. These small non-coding RNAs (snRNA) can be present in plants and even viruses, and make up about 60% of human genes. Many different functions and roles are played by miRNAs, including their role in many diseases and cancers. The results of various studies in recent years on the role of miRNA-337 in cancers have shown that miR-337 acts as a cancer inhibitor and can play a key role in the treatment of various cancers by inhibiting cell invasion. Thus, among the various miRNAs, in this review, we aim to shed light on the function of miR-337 in different types of cancer.

Graphical Abstract

[1]
Ying SY, Chang DC, Lin SL. The microRNA (miRNA): Overview of the RNA genes that modulate gene function. Mol Biotechnol 2008; 38(3): 257-68.
[http://dx.doi.org/10.1007/s12033-007-9013-8] [PMID: 17999201]
[2]
Felekkis K, Touvana E, Stefanou Ch, Deltas C. microRNAs: A newly described class of encoded molecules that play a role in health and disease. Hippokratia 2010; 14(4): 236-40.
[PMID: 21311629]
[3]
Flowers E, Won GY, Fukuoka Y. MicroRNAs associated with exercise and diet: A systematic review. Physiol Genomics 2015; 47(1): 1-11.
[http://dx.doi.org/10.1152/physiolgenomics.00095.2014] [PMID: 25465031]
[4]
Cai Y, Yu X, Hu S, Yu J. A brief review on the mechanisms of miRNA regulation. Genomics Proteomics Bioinformatics 2009; 7(4): 147-54.
[http://dx.doi.org/10.1016/S1672-0229(08)60044-3] [PMID: 20172487]
[5]
Wahid F, Shehzad A, Khan T, Kim YY. MicroRNAs: Synthesis, mechanism, function, and recent clinical trials. Biochim Biophys Acta Mol Cell Res 2010; 1803(11): 1231-43.
[http://dx.doi.org/10.1016/j.bbamcr.2010.06.013] [PMID: 20619301]
[6]
Fabris L, Ceder Y, Chinnaiyan AM, et al. The potential of microRNAs as prostate cancer biomarkers. Eur Urol 2016; 70(2): 312-22.
[http://dx.doi.org/10.1016/j.eururo.2015.12.054] [PMID: 26806656]
[7]
Swarbrick S, Wragg N, Ghosh S, Stolzing A. Systematic review of miRNA as biomarkers in Alzheimer’s disease. Mol Neurobiol 2019; 56(9): 6156-67.
[http://dx.doi.org/10.1007/s12035-019-1500-y] [PMID: 30734227]
[8]
Ling H, Fabbri M, Calin GA. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov 2013; 12(11): 847-65.
[http://dx.doi.org/10.1038/nrd4140] [PMID: 24172333]
[9]
Lorente-Cebrián S, González-Muniesa P, Milagro FI, Martínez JA. MicroRNAs and other non-coding RNAs in adipose tissue and obesity: Emerging roles as biomarkers and therapeutic targets. Clin Sci 2019; 133(1): 23-40.
[http://dx.doi.org/10.1042/CS20180890] [PMID: 30606812]
[10]
Fakeri M, Armandzadeh SM, Olyaei SS, Foruzandeh Z, Alivand MR. The Importance of mir-491-5p in Various Cancers. Curr Mol Med 2023.
[PMID: 36093817]
[11]
Schmidt U, Keck ME, Buell DR. miRNAs and other non-coding RNAs in posttraumatic stress disorder: A systematic review of clinical and animal studies. J Psychiatr Res 2015; 65: 1-8.
[http://dx.doi.org/10.1016/j.jpsychires.2015.03.014] [PMID: 25896120]
[12]
van den Berg NWE, Kawasaki M, Berger WR, et al. MicroRNAs in atrial fibrillation: From expression signatures to functional implications. Cardiovasc Drugs Ther 2017; 31(3): 345-65.
[http://dx.doi.org/10.1007/s10557-017-6736-z] [PMID: 28752208]
[13]
Manetti AC, Maiese A, Paolo MD, et al. MicroRNAs and sepsisinduced cardiac dysfunction: A systematic review. Int J Mol Sci 2020; 22(1): 321.
[http://dx.doi.org/10.3390/ijms22010321] [PMID: 33396834]
[14]
Nahand JS, Taghizadeh-boroujeni S, Karimzadeh M, et al. microRNAs: New prognostic, diagnostic, and therapeutic biomarkers in cervical cancer. J Cell Physiol 2019; 234(10): 17064-99.
[http://dx.doi.org/10.1002/jcp.28457] [PMID: 30891784]
[15]
Abd-Aziz N, Kamaruzman NI, Poh CL. Development of MicroRNAs as potential therapeutics against cancer. J Oncol 2020; 2020: 1-14.
[http://dx.doi.org/10.1155/2020/8029721] [PMID: 32733559]
[16]
Sun X, Jiao X, Pestell TG, et al. MicroRNAs and cancer stem cells: The sword and the shield. Oncogene 2014; 33(42): 4967-77.
[http://dx.doi.org/10.1038/onc.2013.492] [PMID: 24240682]
[17]
Condrat CE, Thompson DC, Barbu MG, et al. miRNAs as biomarkers in disease: Latest findings regarding their role in diagnosis and prognosis. Cells 2020; 9(2): 276.
[http://dx.doi.org/10.3390/cells9020276] [PMID: 31979244]
[18]
Annese T, Tamma R, De Giorgis M, Ribatti D. microRNAs biogenesis, functions and role in tumor angiogenesis. Front Oncol 2020; 10: 581007.
[http://dx.doi.org/10.3389/fonc.2020.581007] [PMID: 33330058]
[19]
Long J, Danesh FR. Promises and challenges of miRNA therapeutics. Am J Physiol Renal Physiol 2022; 323(6): F673-4.
[http://dx.doi.org/10.1152/ajprenal.00251.2022] [PMID: 36264885]
[20]
Shrestha AD, Neupane D, Vedsted P, Kallestrup P. Cervical cancer prevalence, incidence and mortality in low and middle income countries: A systematic review. Asian Pac J Cancer Prev 2018; 19(2): 319-24.
[PMID: 29479954]
[21]
Peirson L, Fitzpatrick-Lewis D, Ciliska D, Warren R. Screening for cervical cancer: A systematic review and meta-analysis. Syst Rev 2013; 2(1): 35.
[http://dx.doi.org/10.1186/2046-4053-2-35] [PMID: 23706117]
[22]
Saei Ghare Naz M, Kariman N, Ebadi A, Ozgoli G, Ghasemi V, Rashidi Fakari F. Educational interventions for cervical cancer screening behavior of women: A systematic review. Asian Pac J Cancer Prev 2018; 19(4): 875-84.
[PMID: 29693331]
[23]
Musa J, Achenbach CJ, O’Dwyer LC, et al. Effect of cervical cancer education and provider recommendation for screening on screening rates: A systematic review and meta-analysis. PLoS One 2017; 12(9): e0183924.
[http://dx.doi.org/10.1371/journal.pone.0183924] [PMID: 28873092]
[24]
Johnson CA, James D, Marzan A, Armaos M. Cervical Cancer: An overview of pathophysiology and management. Semin Oncol Nurs 2019; 35(2): 166-74.
[http://dx.doi.org/10.1016/j.soncn.2019.02.003] [PMID: 30878194]
[25]
Cao XM. Role of miR-337-3p and its target Rap1A in modulating proliferation, invasion, migration and apoptosis of cervical cancer cells. Cancer Biomark 2019; 24(3): 257-67.
[http://dx.doi.org/10.3233/CBM-181225] [PMID: 30883336]
[26]
Dong W, Li B, Wang J, Song Y, Zhang Z, Fu C. MicroRNA-337 inhibits cell proliferation and invasion of cervical cancer through directly targeting specificity protein 1. Tumour Biol 2017; 39(6)
[http://dx.doi.org/10.1177/1010428317711323] [PMID: 28641487]
[27]
Wang J, Chen L. The role of miRNAs in the invasion and metastasis of cervical cancer. Biosci Rep 2019; 39(3): BSR20181377.
[http://dx.doi.org/10.1042/BSR20181377] [PMID: 30833362]
[28]
Meng Q, Li Y, Kong C, Gao X, Jiang X. Circ_0000388 Exerts oncogenic function in cervical cancer cells by regulating miR-337-3p/TCF12 axis. Cancer Biother Radiopharm 2021; 36(1): 58-69.
[http://dx.doi.org/10.1089/cbr.2019.3159] [PMID: 32119786]
[29]
Liu J, Zhu H, Fu L, Xu T. Investigating the underlying mechanisms of circular RNAs and their application in clinical research of cervical cancer. Front Genet 2021; 12: 653051.
[http://dx.doi.org/10.3389/fgene.2021.653051] [PMID: 33841509]
[30]
Correa P. Gastric cancer. Gastroenterol Clin North Am 2013; 42(2): 211-7.
[http://dx.doi.org/10.1016/j.gtc.2013.01.002] [PMID: 23639637]
[31]
Guggenheim DE, Shah MA. Gastric cancer epidemiology and risk factors. J Surg Oncol 2013; 107(3): 230-6.
[http://dx.doi.org/10.1002/jso.23262] [PMID: 23129495]
[32]
Karimi P, Islami F, Anandasabapathy S, Freedman ND, Kamangar F. Gastric cancer: Descriptive epidemiology, risk factors, screening, and prevention. Cancer Epidemiol Biomarkers Prev 2014; 23(5): 700-13.
[http://dx.doi.org/10.1158/1055-9965.EPI-13-1057] [PMID: 24618998]
[33]
Wang Z, Yao L, Li Y, et al. miR 337 3p inhibits gastric tumor metastasis by targeting ARHGAP10. Mol Med Rep 2020; 21(2): 705-19.
[PMID: 31789419]
[34]
Wang Z, Wang J, Yang Y, et al. Loss of has-miR-337-3p expression is associated with lymph node metastasis of human gastric cancer. J Exp Clin Cancer Res 2013; 32(1): 76.
[http://dx.doi.org/10.1186/1756-9966-32-76] [PMID: 24422944]
[35]
Zheng L, Jiao W, Mei H, et al. miRNA-337-3p inhibits gastric cancer progression through repressing myeloid zinc finger 1-facilitated expression of matrix metalloproteinase 14. Oncotarget 2016; 7(26): 40314-28.
[http://dx.doi.org/10.18632/oncotarget.9739] [PMID: 27259238]
[36]
Kong S, Liu J, Zhang B, Lv F, Yu Y, Qin T. MicroRNA 337 3p impedes breast cancer progression by targeting cyclin dependent kinase 1. Oncol Lett 2021; 23(1): 15.
[http://dx.doi.org/10.3892/ol.2021.13133] [PMID: 34820014]
[37]
Ishiguro H, Kimura M, Takeyama H. Role of microRNAs in gastric cancer. World J Gastroenterol 2014; 20(19): 5694-9.
[http://dx.doi.org/10.3748/wjg.v20.i19.5694] [PMID: 24914330]
[38]
Ashrafizadeh M, Rafiei H, Mohammadinejad R, Farkhondeh T, Samarghandian S. Wnt-regulating microRNAs role in gastric cancer malignancy. Life Sci 2020; 250: 117547.
[http://dx.doi.org/10.1016/j.lfs.2020.117547] [PMID: 32173311]
[39]
Besancenot R, Roos-Weil D, Tonetti C, et al. JAK2 and MPL protein levels determine TPO-induced megakaryocyte proliferation vs differentiation. Blood 2014; 124(13): 2104-15.
[http://dx.doi.org/10.1182/blood-2014-03-559815] [PMID: 25143485]
[40]
Zheng W, Li J, Zhou X, Cui L, Wang Y. The lncRNA XIST promotes proliferation, migration and invasion of gastric cancer cells by targeting miR-337. Arab J Gastroenterol 2020; 21(3): 199-206.
[http://dx.doi.org/10.1016/j.ajg.2020.07.010] [PMID: 32830093]
[41]
Akram M, Iqbal M, Daniyal M, Khan AU. Awareness and current knowledge of breast cancer. Biol Res 2017; 50(1): 33.
[http://dx.doi.org/10.1186/s40659-017-0140-9] [PMID: 28969709]
[42]
Fahad Ullah M. Breast cancer: Current perspectives on the disease status. Adv Exp Med Biol 2019; 1152: 51-64.
[http://dx.doi.org/10.1007/978-3-030-20301-6_4] [PMID: 31456179]
[43]
Barzaman K, Karami J, Zarei Z, et al. Breast cancer: Biology, biomarkers, and treatments. Int Immunopharmacol 2020; 84: 106535.
[http://dx.doi.org/10.1016/j.intimp.2020.106535] [PMID: 32361569]
[44]
Khodabandeh Z, Valilo M, Velaei K, Pirpour Tazehkand A. The potential role of nicotine in breast cancer initiation, development, angio-genesis, invasion, metastasis, and resistance to therapy. Breast Cancer 2022; 29(5): 778-89.
[http://dx.doi.org/10.1007/s12282-022-01369-7] [PMID: 35583594]
[45]
Fattahi M, Sheervalilou R, Hoseinpour N, et al. The correlation between Twist 1 and 2 promoter methylation status and clinicopathologic characteristics of patients with breast cancer. Gene Rep 2020; 20: 100741.
[http://dx.doi.org/10.1016/j.genrep.2020.100741]
[46]
Thomas M, Kelly ED, Abraham J, Kruse M. Invasive lobular breast cancer: A review of pathogenesis, diagnosis, management, and future directions of early stage disease. Semin Oncol 2019; 46(2): 121-32.
[http://dx.doi.org/10.1053/j.seminoncol.2019.03.002] [PMID: 31239068]
[47]
Jones JL. Overdiagnosis and overtreatment of breast cancer: Progression of ductal carcinoma in situ: the pathological perspective. Breast Cancer Res 2006; 8(2): 204.
[http://dx.doi.org/10.1186/bcr1397] [PMID: 16677423]
[48]
Vogel VG, Qu Y, Wong M, Mitchell B, Mershon JL. Incidence of invasive breast cancer in postmenopausal women after discontinuation of long-term raloxifene administration. Clin Breast Cancer 2009; 9(1): 45-50.
[http://dx.doi.org/10.3816/CBC.2009.n.008] [PMID: 19299240]
[49]
Maghsoodi MS, Khosroshahi NS, Beilankouhi EAV, Valilo M, Feizi MAH. VEGF-634G > C (rs2010963) gene polymorphism and high risk of breast cancer in the northwest of Iran. Indian Journal of Gynecologic Oncology 2023; 21(1): 6.
[http://dx.doi.org/10.1007/s40944-022-00648-7]
[50]
Dossus L, Benusiglio PR. Lobular breast cancer: Incidence and genetic and non-genetic risk factors. Breast Cancer Res 2015; 17(1): 37.
[http://dx.doi.org/10.1186/s13058-015-0546-7] [PMID: 25848941]
[51]
Burstein HJ, Somerfield MR, Barton DL, et al. Endocrine treatment and targeted therapy for hormone receptor–positive, human epidermal growth factor receptor 2–Negative metastatic breast cancer: ASCO guideline update. J Clin Oncol 2021; 39(35): 3959-77.
[http://dx.doi.org/10.1200/JCO.21.01392] [PMID: 34324367]
[52]
Du P, Zeng H, Xiao Y, et al. Chronic stress promotes EMT-mediated metastasis through activation of STAT3 signaling pathway by miR-337-3p in breast cancer. Cell Death Dis 2020; 11(9): 761.
[http://dx.doi.org/10.1038/s41419-020-02981-1] [PMID: 32934214]
[53]
Chen C, Pan Y, Bai L, et al. MicroRNA-3613-3p functions as a tumor suppressor and represents a novel therapeutic target in breast cancer. Breast Cancer Res 2021; 23(1): 12.
[http://dx.doi.org/10.1186/s13058-021-01389-9] [PMID: 33494814]
[54]
Marengo A, Rosso C, Bugianesi E. Liver Cancer: Connections with obesity, fatty liver, and cirrhosis. Annu Rev Med 2016; 67(1): 103-17.
[http://dx.doi.org/10.1146/annurev-med-090514-013832] [PMID: 26473416]
[55]
Liu CY, Chen KF, Chen PJ. Treatment of liver cancer. Cold Spring Harb Perspect Med 2015; 5(9): a021535.
[http://dx.doi.org/10.1101/cshperspect.a021535] [PMID: 26187874]
[56]
Zuo XL, Chen ZQ, Wang JF, Wang JG, Liang LH, Cai J. miR-337-3p suppresses the proliferation and invasion of hepatocellular carcinoma cells through targeting JAK2. Am J Cancer Res 2018; 8(4): 662-74.
[PMID: 29736311]
[57]
Cheng C, Zhang H, Dai Z, Zheng J. Circular RNA circVRK1 suppresses the proliferation, migration and invasion of osteosarcoma cells by regulating zinc finger protein ZNF652 expression via microRNA miR-337-3p. Bioengineered 2021; 12(1): 5411-27.
[http://dx.doi.org/10.1080/21655979.2021.1965695] [PMID: 34424826]
[58]
Cui H, Song R, Wu J, Wang W, Chen X, Yin J. MicroRNA-337 regulates the PI3K/AKT and Wnt/β-catenin signaling pathways to inhibit hepatocellular carcinoma progression by targeting high-mobility group AT-hook 2. Am J Cancer Res 2018; 8(3): 405-21.
[PMID: 29636997]
[59]
Morishita A, Oura K, Tadokoro T, Fujita K, Tani J, Masaki T. MicroRNAs in the pathogenesis of hepatocellular carcinoma: A review. Cancers 2021; 13(3): 514.
[http://dx.doi.org/10.3390/cancers13030514] [PMID: 33572780]
[60]
Romaszko A, Doboszyńska A. Multiple primary lung cancer: A literature review. Adv Clin Exp Med 2018; 27(5): 725-30.
[http://dx.doi.org/10.17219/acem/68631] [PMID: 29790681]
[61]
Nasim F, Sabath BF, Eapen GA. Lung cancer. Med Clin North Am 2019; 103(3): 463-73.
[http://dx.doi.org/10.1016/j.mcna.2018.12.006] [PMID: 30955514]
[62]
Bade BC, Dela Cruz CS. Lung cancer 2020. Clin Chest Med 2020; 41(1): 1-24.
[http://dx.doi.org/10.1016/j.ccm.2019.10.001] [PMID: 32008623]
[63]
Wu X, Piper-Hunter MG, Crawford M, et al. MicroRNAs in the pathogenesis of lung cancer. J Thorac Oncol 2009; 4(8): 1028-34.
[http://dx.doi.org/10.1097/JTO.0b013e3181a99c77] [PMID: 19474765]
[64]
Du L, Subauste MC, DeSevo C, et al. miR-337-3p and its targets STAT3 and RAP1A modulate taxane sensitivity in non-small cell lung cancers. PLoS One 2012; 7(6): e39167.
[http://dx.doi.org/10.1371/journal.pone.0039167] [PMID: 22723956]
[65]
Sen M, Kindsfather A, Danilova L, et al. PTPRT epigenetic silencing defines lung cancer with STAT3 activation and can direct STAT3 targeted therapies. Epigenetics 2020; 15(6-7): 604-17.
[http://dx.doi.org/10.1080/15592294.2019.1676597] [PMID: 31595832]
[66]
Li Q, Huang Q, Cheng S, Wu S, Sang H, Hou J. Circ_ZNF124 promotes non-small cell lung cancer progression by abolishing miR-337-3p mediated downregulation of JAK2/STAT3 signaling pathway. Cancer Cell Int 2019; 19(1): 291.
[http://dx.doi.org/10.1186/s12935-019-1011-y] [PMID: 31754348]
[67]
Wefel JS, Ryan CJ, Van J, Jackson JC, Morgans AK. Assessment and management of cognitive function in patients with prostate cancer treated with second-generation androgen receptor pathway inhibitors. CNS Drugs 2022; 36(5): 419-49.
[http://dx.doi.org/10.1007/s40263-022-00913-5] [PMID: 35522374]
[68]
Grozescu T, Popa F. Prostate cancer between prognosis and adequate/proper therapy. J Med Life 2017; 10(1): 5-12.
[PMID: 28255369]
[69]
Kaler J, Hussain A, Haque A, Naveed H, Patel S. A comprehensive review of pharmaceutical and surgical interventions of prostate cancer. Cureus 2020; 12(11): e11617.
[http://dx.doi.org/10.7759/cureus.11617] [PMID: 33240734]
[70]
Raval AD, Madhavan S, Mattes MD, Sambamoorthi U. Types of chronic conditions combinations and initial cancer treatment among elderly Medicare beneficiaries with localised prostate cancer. Int J Clin Pract 2016; 70(7): 606-18.
[http://dx.doi.org/10.1111/ijcp.12838] [PMID: 27291866]
[71]
Litwin MS, Tan HJ. The diagnosis and treatment of prostate cancer. JAMA 2017; 317(24): 2532-42.
[http://dx.doi.org/10.1001/jama.2017.7248] [PMID: 28655021]
[72]
Wang G, Zhao D, Spring DJ, DePinho RA. Genetics and biology of prostate cancer. Genes Dev 2018; 32(17-18): 1105-40.
[http://dx.doi.org/10.1101/gad.315739.118] [PMID: 30181359]
[73]
Merriel SWD, Funston G, Hamilton W. Prostate cancer in primary care. Adv Ther 2018; 35(9): 1285-94.
[http://dx.doi.org/10.1007/s12325-018-0766-1] [PMID: 30097885]
[74]
Desai K, McManus JM, Sharifi N. Hormonal therapy for prostate cancer. Endocr Rev 2021; 42(3): 354-73.
[http://dx.doi.org/10.1210/endrev/bnab002] [PMID: 33480983]
[75]
Ashrafizadeh M, Paskeh MDA, Mirzaei S, et al. Targeting autophagy in prostate cancer: Preclinical and clinical evidence for therapeutic response. J Exp Clin Cancer Res 2022; 41(1): 105.
[http://dx.doi.org/10.1186/s13046-022-02293-6] [PMID: 35317831]
[76]
Wang H, Xu H, Duan Y, Chen L. MicroRNA-337-3p suppresses cell viability, apoptosis, and autophagy by modulating PPARγ expression in androgen-dependent human prostate cancer. All Life 2020; 13(1): 171-82.
[http://dx.doi.org/10.1080/26895293.2020.1736188]
[77]
Rastrelli M, Tropea S, Rossi CR, Alaibac M. Melanoma: Epidemiology, risk factors, pathogenesis, diagnosis and classification. In Vivo 2014; 28(6): 1005-11.
[PMID: 25398793]
[78]
Miller AJ, Mihm MC Jr. Melanoma. N Engl J Med 2006; 355(1): 51-65.
[http://dx.doi.org/10.1056/NEJMra052166] [PMID: 16822996]
[79]
Coit DG, Andtbacka R, Bichakjian CK, et al. Melanoma. J Natl Compr Canc Netw 2009; 7(3): 250-75.
[http://dx.doi.org/10.6004/jnccn.2009.0020] [PMID: 19401060]
[80]
Domingues B, Lopes J, Soares P, Pópulo H. Melanoma treatment in review. ImmunoTargets Ther 2018; 7: 35-49.
[http://dx.doi.org/10.2147/ITT.S134842] [PMID: 29922629]
[81]
Xiao W, Yao E, Zheng W, Tian F, Tian L. miR-337 can be a key negative regulator in melanoma. Cancer Biol Ther 2017; 18(6): 392-9.
[http://dx.doi.org/10.1080/15384047.2017.1323581] [PMID: 28498028]
[82]
Ghafouri-Fard S, Gholipour M, Taheri M. MicroRNA signature in melanoma: Biomarkers and therapeutic targets. Front Oncol 2021; 11: 608987.
[http://dx.doi.org/10.3389/fonc.2021.608987] [PMID: 33968718]
[83]
Mungenast F, Thalhammer T. Estrogen biosynthesis and action in ovarian cancer. Front Endocrinol 2014; 5: 192.
[http://dx.doi.org/10.3389/fendo.2014.00192] [PMID: 25429284]
[84]
Jayson GC, Kohn EC, Kitchener HC, Ledermann JA. Ovarian cancer. Lancet 2014; 384(9951): 1376-88.
[http://dx.doi.org/10.1016/S0140-6736(13)62146-7] [PMID: 24767708]
[85]
Berek JS, Hacker N, Lagasse L. Cytoreductive surgery for ovarian cancer.In: Ovarian cancer. 1985; p. 53-67.
[86]
Zhang Z, Zhang L, Wang B, et al. MiR-337–3p suppresses proliferation of epithelial ovarian cancer by targeting PIK3CA and PIK3CB. Cancer Lett 2020; 469: 54-67.
[http://dx.doi.org/10.1016/j.canlet.2019.10.021] [PMID: 31629932]
[87]
Kamisawa T, Wood LD, Itoi T, Takaori K. Pancreatic cancer. Lancet 2016; 388(10039): 73-85.
[http://dx.doi.org/10.1016/S0140-6736(16)00141-0] [PMID: 26830752]
[88]
Michaud DS. Epidemiology of pancreatic cancer. Minerva Chir 2004; 59(2): 99-111.
[PMID: 15238885]
[89]
Mizrahi JD, Surana R, Valle JW, Shroff RT. Pancreatic cancer. Lancet 2020; 395(10242): 2008-20.
[http://dx.doi.org/10.1016/S0140-6736(20)30974-0] [PMID: 32593337]
[90]
Hussain SP. Pancreatic cancer: Current progress and future challenges. Int J Biol Sci 2016; 12(3): 270-2.
[http://dx.doi.org/10.7150/ijbs.14950] [PMID: 26929733]
[91]
Smolarz B, Durczyński A, Romanowicz H, Hogendorf P. The role of microRNA in pancreatic cancer. Biomedicines 2021; 9(10): 1322.
[http://dx.doi.org/10.3390/biomedicines9101322] [PMID: 34680441]
[92]
Zhang R, Leng H, Huang J, et al. miR-337 regulates the proliferation and invasion in pancreatic ductal adenocarcinoma by targeting HOXB7. Diagn Pathol 2014; 9(1): 171.
[http://dx.doi.org/10.1186/s13000-014-0171-2] [PMID: 25183455]
[93]
Shi J, Su Q, Han F, Chen W, Zhang D, Xu B. MiR-337 suppresses pancreatic cancer development via STAT3/Wnt/β-catenin axis. Anticancer Drugs 2021; 32(7): 681-92.
[PMID: 33587353]
[94]
Longhi A, Errani C, Gonzales-Arabio D, Ferrari C, Mercuri M. Osteosarcoma in patients older than 65 years. J Clin Oncol 2008; 26(33): 5368-73.
[http://dx.doi.org/10.1200/JCO.2007.14.9104] [PMID: 18809616]
[95]
Whelan J, Patterson D, Perisoglou M, et al. The role of interferons in the treatment of osteosarcoma. Pediatr Blood Cancer 2010; 54(3): 350-4.
[http://dx.doi.org/10.1002/pbc.22136] [PMID: 19902521]
[96]
Meyers PA, Gorlick R. Osteosarcoma. Pediatr Clin North Am 1997; 44(4): 973-89.
[http://dx.doi.org/10.1016/S0031-3955(05)70540-X] [PMID: 9286295]
[97]
Chen R, Wang G, Zheng Y, Hua Y, Cai Z. Long non-coding RNAs in osteosarcoma. Oncotarget 2017; 8(12): 20462-75.
[http://dx.doi.org/10.18632/oncotarget.14726] [PMID: 28103585]
[98]
Huang YF, Lu L, Shen HL, Lu XX. Retracted: LncRNA SNHG4 promotes osteosarcoma proliferation and migration by sponging miR‐377‐3p. Mol Genet Genomic Med 2020; 8(8): e1349.
[http://dx.doi.org/10.1002/mgg3.1349] [PMID: 32537941]
[99]
Stintzing S. Management of colorectal cancer. F1000Prime Rep 2014; 6: 108.
[http://dx.doi.org/10.12703/P6-108] [PMID: 25580262]
[100]
Launoy G, Le Coutour X, Gignoux M, Pottier D, Dugleux G. Influence of rural environment on diagnosis, treatment, and prognosis of colorectal cancer. J Epidemiol Community Health 1992; 46(4): 365-7.
[http://dx.doi.org/10.1136/jech.46.4.365] [PMID: 1431708]
[101]
Rawla P, Sunkara T, Barsouk A. Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors. Prz Gastroenterol 2019; 14(2): 89-103.
[http://dx.doi.org/10.5114/pg.2018.81072] [PMID: 31616522]
[102]
Kim SY, Lee YH, Bae YS. miR-186, miR-216b, miR-337-3p, and miR-760 cooperatively induce cellular senescence by targeting α subunit of protein kinase CKII in human colorectal cancer cells. Biochem Biophys Res Commun 2012; 429(3-4): 173-9.
[http://dx.doi.org/10.1016/j.bbrc.2012.10.117] [PMID: 23137536]
[103]
Pidíková P, Herichová I. miRNA clusters with up-regulated expression in colorectal cancer. Cancers 2021; 13(12): 2979.
[http://dx.doi.org/10.3390/cancers13122979] [PMID: 34198662]
[104]
Liu X, Wang Y, Zhao J. MicroRNA-337 inhibits colorectal cancer progression by directly targeting KRAS and suppressing the AKT and ERK pathways. Oncol Rep 2017; 38(5): 3187-96.
[http://dx.doi.org/10.3892/or.2017.5997] [PMID: 29048669]
[105]
Vogelzang NJ, Stadler WM. Kidney cancer. Lancet 1998; 352(9141): 1691-6.
[http://dx.doi.org/10.1016/S0140-6736(98)01041-1] [PMID: 9853456]
[106]
Linehan WM, Zbar B. Focus on kidney cancer. Cancer Cell 2004; 6(3): 223-8.
[http://dx.doi.org/10.1016/j.ccr.2004.09.006] [PMID: 15380513]
[107]
Zhuang Q, Shen J, Chen Z, et al. MiR-337-3p suppresses the proliferation and metastasis of clear cell renal cell carcinoma cells via modulating Capn4. Cancer Biomark 2018; 23(4): 515-25.
[http://dx.doi.org/10.3233/CBM-181645] [PMID: 30452399]
[108]
Banelli B, Forlani A, Allemanni G, Morabito A, Pistillo MP, Romani M. MicroRNA in glioblastoma: An overview. Int J Genomics 2017; 2017: 1-16.
[http://dx.doi.org/10.1155/2017/7639084] [PMID: 29234674]
[109]
Chen M, Medarova Z, Moore A. Role of microRNAs in glioblastoma. Oncotarget 2021; 12(17): 1707-23.
[http://dx.doi.org/10.18632/oncotarget.28039] [PMID: 34434499]
[110]
Wang B, Sun F, Dong N, et al. MicroRNA-7 directly targets insulin-like growth factor 1 receptor to inhibit cellular growth and glucose metabolism in gliomas. Diagn Pathol 2014; 9(1): 211.
[http://dx.doi.org/10.1186/s13000-014-0211-y] [PMID: 25394492]
[111]
Jiang L, Liu X, Chen Z, et al. MicroRNA-7 targets IGF1R (insulin-like growth factor 1 receptor) in tongue squamous cell carcinoma cells. Biochem J 2010; 432(1): 199-207.
[http://dx.doi.org/10.1042/BJ20100859] [PMID: 20819078]
[112]
Liu Z, Liu Y, Li L, et al. MiR-7-5p is frequently downregulated in glioblastoma microvasculature and inhibits vascular endothelial cell proliferation by targeting RAF1. Tumour Biol 2014; 35(10): 10177-84.
[http://dx.doi.org/10.1007/s13277-014-2318-x] [PMID: 25027403]
[113]
Li Y, Guessous F, Zhang Y, et al. MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Res 2009; 69(19): 7569-76.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-0529] [PMID: 19773441]
[114]
Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 2005; 65(14): 6029-33.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0137] [PMID: 16024602]
[115]
Gabriely G, Wurdinger T, Kesari S, et al. MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol 2008; 28(17): 5369-80.
[http://dx.doi.org/10.1128/MCB.00479-08] [PMID: 18591254]
[116]
Wang S, Olson EN. AngiomiRs—Key regulators of angiogenesis. Curr Opin Genet Dev 2009; 19(3): 205-11.
[http://dx.doi.org/10.1016/j.gde.2009.04.002] [PMID: 19446450]
[117]
Smits M, Wurdinger T, Hof B, et al. Myc‐associated zinc finger protein (MAZ) is regulated by miR‐125b and mediates VEGF‐induced angiogenesis in glioblastoma. FASEB J 2012; 26(6): 2639-47.
[http://dx.doi.org/10.1096/fj.11-202820] [PMID: 22415301]
[118]
Würdinger T, Tannous BA, Saydam O, et al. miR-296 regulates growth factor receptor overexpression in angiogenic endothelial cells. Cancer Cell 2008; 14(5): 382-93.
[http://dx.doi.org/10.1016/j.ccr.2008.10.005] [PMID: 18977327]
[119]
Ujifuku K, Mitsutake N, Takakura S, et al. miR-195, miR-455-3p and miR-10a* are implicated in acquired temozolomide resistance in glioblastoma multiforme cells. Cancer Lett 2010; 296(2): 241-8.
[http://dx.doi.org/10.1016/j.canlet.2010.04.013] [PMID: 20444541]
[120]
Slaby O, Lakomy R, Fadrus P, et al. MicroRNA-181 family predicts response to concomitant chemoradiotherapy with temozolomide in glioblastoma patients. Neoplasma 2010; 57(3): 264-9.
[http://dx.doi.org/10.4149/neo_2010_03_264] [PMID: 20353279]
[121]
Li W-Q, Li Y-M, Tao B-B, et al. Downregulation of ABCG2 expression in glioblastoma cancer stem cells with miRNA-328 may decrease their chemoresistance. Med Sci Monit 2010; 16(10): HY27-30.
[PMID: 20885358]
[122]
Gao J, Chen Q, Zhao Y, Hou R. lncRNA CRNDE is upregulated in glioblastoma multiforme and facilitates cancer progression through targeting miR-337-3p and ELMOD2 axis. OncoTargets Ther 2020; 13: 9225-34.
[http://dx.doi.org/10.2147/OTT.S249887] [PMID: 32982309]
[123]
Tao W, Jia Z, Mengshi W, Wei L, Feng L. Circular RNA circFANCL motivates the glioma progression via the action on the miR-337-3p/HMGB1 signal axis. Minerva Med 2020.
[http://dx.doi.org/10.23736/S0026-4806.20.06639-2] [PMID: 32683852]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy