Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Immunotherapy in Combination with Chemotherapy for Triple-negative Breast Cancer

Author(s): Melendez Solano Elizabeth, Stevens Barrón Jazmín Cristina and Chapa González Christian*

Volume 24, Issue 4, 2024

Published on: 06 September, 2023

Page: [431 - 439] Pages: 9

DOI: 10.2174/1389557523666230517152538

Price: $65

Abstract

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that lacks estrogen and progesterone receptors and does not overexpress the human epidermal growth factor receptor 2 (HER2). Previous treatment options for TNBC were limited to chemotherapy alone, resulting in a poor patient prognosis. In 2018, an estimated 2.1 million new cases of breast cancer were diagnosed globally, with the incidence increasing by 0.5% annually from 2014 to 2018. The exact prevalence of TNBC is difficult to determine because it is based on the absence of certain receptors and overexpression of HER2. Treatment options for TNBC include surgery, chemotherapy, radiation therapy, and targeted therapy. The available evidence suggests that combination immunotherapy using PD-1/PD-L1 inhibitors may be a promising treatment option for metastatic TNBC. In this review, we evaluated the efficacy and safety of different immunotherapies regimens for the treatment of TNBC. In many clinical trials, the overall response rate and survival were better in patients treated with these drug combinations than those treated with chemotherapy alone. Although definitive treatments are not within reach, efforts to gain a deeper understanding of combination immunotherapy have the potential to overcome the urge for safe and effective treatments.

Graphical Abstract

[1]
Tsang, J.Y.; Tse, G.M. Update on triple-negative breast cancers – highlighting subtyping update and treatment implication. Histopathology, 2023, 82(1), 17-35.
[http://dx.doi.org/10.1111/his.14784] [PMID: 36468263]
[2]
Ensenyat-Mendez, M.; Llinàs-Arias, P.; Orozco, J.I.J.; Íñiguez-Muñoz, S.; Salomon, M.P.; Sesé, B.; DiNome, M.L.; Marzese, D.M. Current triple-negative breast cancer subtypes: Dissecting the most aggressive form of breast cancer. Front. Oncol., 2021, 11, 681476.
[http://dx.doi.org/10.3389/fonc.2021.681476] [PMID: 34221999]
[3]
Thongchot, S.; Jamjuntra, P.; Prasopsiri, J.; Thuwajit, P.; Sawasdee, N.; Poungvarin, N.; Warnnissorn, M.; Sa-Nguanraksa, D.; O-Charoenrat, P.; Yenchitsomanus, P.T; Thuwajit, C. Establishment and characterization of novel highly aggressive HER2 positive and triple negative breast cancer cell lines. Oncol. Rep., 2021, 46(6), 254.
[http://dx.doi.org/10.3892/or.2021.8205] [PMID: 34651665]
[4]
Martínez-Gregorio, H.; Rojas-Jiménez, E.; Mejía-Gómez, J.C.; Díaz-Velásquez, C.; Quezada-Urban, R.; Vallejo-Lecuona, F.; de la Cruz-Montoya, A.; Porras-Reyes, F.I.; Pérez-Sánchez, V.M.; Maldonado-Martínez, H.A.; Robles-Estrada, M.; Bargalló-Rocha, E.; Cabrera-Galeana, P.; Ramos-Ramírez, M.; Chirino, Y.I.; Alonso Herrera, L.; Terrazas, L.I.; Frecha, C.; Oliver, J.; Perdomo, S.; Vaca-Paniagua, F. The evolution of clinically aggressive triple-negative breast cancer shows a large mutational diversity and early metastasis to lymph nodes. Cancers , 2021, 13(20), 5091.
[http://dx.doi.org/10.3390/cancers13205091] [PMID: 34680239]
[5]
Mireștean, C.C.; Volovăț, C.; Iancu, R.I; Iancu, D.P.T Radiomics in triple negative breast cancer: New horizons in an aggressive subtype of the disease. J. Clin. Med., 2022, 11(3), 616.
[http://dx.doi.org/10.3390/jcm11030616] [PMID: 35160069]
[6]
Oshi, M.; Patel, A.; Wu, R.; Le, L.; Tokumaru, Y.; Yamada, A.; Yan, L.; Matsuyama, R.; Ishikawa, T.; Endo, I.; Takabe, K. Enhanced immune response outperform aggressive cancer biology and is associated with better survival in triple-negative breast cancer. NPJ Breast Cancer, 2022, 8(1), 92.
[http://dx.doi.org/10.1038/s41523-022-00466-2] [PMID: 35945417]
[7]
Bissanum, R.; Kamolphiwong, R.; Navakanitworakul, R.; Kanokwiroon, K. Integrated bioinformatic analysis of potential biomarkers of poor prognosis in triple-negative breast cancer. Transl. Cancer Res., 2022, 11(9), 3039-3049.
[http://dx.doi.org/10.21037/tcr-22-662] [PMID: 36237261]
[8]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(1), 7-33.
[http://dx.doi.org/10.3322/caac.21708] [PMID: 35020204]
[9]
Karamouzis, M.V.; Badra, F.A.; Papavassiliou, A.G. Breast cancer: The upgraded role of HER-3 and HER-4. Int. J. Biochem. Cell Biol., 2007, 39(5), 851-856.
[http://dx.doi.org/10.1016/j.biocel.2006.11.017] [PMID: 17254832]
[10]
Karamouzis, M.V.; Likaki-Karatza, E.; Ravazoula, P.; Badra, F.A.; Koukouras, D.; Tzorakoleftherakis, E.; Papavassiliou, A.G.; Kalofonos, H.P. Non-palpable breast carcinomas: Correlation of mammographically detected malignant-appearing microcalcifications and molecular prognostic factors. Int. J. Cancer, 2002, 102(1), 86-90.
[http://dx.doi.org/10.1002/ijc.10654] [PMID: 12353238]
[11]
Shin, S.U.; Lee, J.; Kim, J.H.; Kim, W.H.; Song, S.E.; Chu, A.; Kim, H.S.; Han, W.; Ryu, H.S.; Moon, W.K. Gene expression profiling of calcifications in breast cancer. Sci. Rep., 2017, 7, 11427.
[http://dx.doi.org/10.1038/s41598-017-11331-9]
[12]
Atezolizumab Combo approved for PD-L1–positive TNBC. Cancer Discov., 2019, 9(5), OF2.
[http://dx.doi.org/10.1158/2159-8290.CD-NB2019-038] [PMID: 30894361]
[13]
Cao, Y.; Chen, C.; Tao, Y.; Lin, W.; Wang, P. Immunotherapy for Triple-Negative breast cancer. Pharmaceutics, 2021, 13(12), 2003.
[http://dx.doi.org/10.3390/pharmaceutics13122003] [PMID: 34959285]
[14]
Jia, H.; Truica, C.I.; Wang, B.; Wang, Y.; Ren, X.; Harvey, H.A.; Song, J.; Yang, J.M. Immunotherapy for triple-negative breast cancer: Existing challenges and exciting prospects. Drug Resist. Updat., 2017, 32, 1-15.
[http://dx.doi.org/10.1016/j.drup.2017.07.002] [PMID: 29145974]
[15]
Li, Z.; Qiu, Y.; Lu, W.; Jiang, Y.; Wang, J. Immunotherapeutic interventions of triple negative breast cancer. J. Transl. Med., 2018, 16(1), 147.
[http://dx.doi.org/10.1186/s12967-018-1514-7] [PMID: 29848327]
[16]
Katz, H.; Alsharedi, M. Immunotherapy in triple-negative breast cancer. Med. Oncol., 2018, 35(1), 13.
[http://dx.doi.org/10.1007/s12032-017-1071-6] [PMID: 29255938]
[17]
Tolba, M.F.; Omar, H.A. Immunotherapy, an evolving approach for the management of triple negative breast cancer: Converting non-responders to responders. Crit. Rev. Oncol. Hematol., 2018, 122, 202-207.
[http://dx.doi.org/10.1016/j.critrevonc.2018.01.005] [PMID: 29373180]
[18]
Sugie, T. Immunotherapy for metastatic breast cancer. Chin. Clin. Oncol, 2018, 7(3), 28.
[http://dx.doi.org/10.21037/cco.2018.05.05] [PMID: 30056730]
[19]
Emens, L.A. Breast cancer immunotherapy: Facts and hopes. Clin. Cancer Res., 2018, 24(3), 511-520.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-3001] [PMID: 28801472]
[20]
Eisenstein, M. Immunotherapy offers a promising bet against brain cancer. Nature, 2018, 561(7724), S42-S44.
[http://dx.doi.org/10.1038/d41586-018-06705-6] [PMID: 30258155]
[21]
Caliman, E.; Fancelli, S.; Petroni, G.; Gatta Michelet, M.R.; Cosso, F.; Ottanelli, C.; Mazzoni, F.; Voltolini, L.; Pillozzi, S.; Antonuzzo, L. Challenges in the treatment of small cell lung cancer in the era of immunotherapy and molecular classification. Lung Cancer, 2023, 175, 88-100.
[http://dx.doi.org/10.1016/j.lungcan.2022.11.014] [PMID: 36493578]
[22]
Huang, Z.; Su, W.; Lu, T.; Wang, Y.; Dong, Y.; Qin, Y.; Liu, D.; Sun, L.; Jiao, W. First-Line Immune-Checkpoint Inhibitors in Non-Small Cell Lung Cancer: Current landscape and future progress. Front. Pharmacol., 2020, 11, 578091.
[http://dx.doi.org/10.3389/fphar.2020.578091] [PMID: 33117170]
[23]
Glode, A.E.; May, M.B. Immune checkpoint inhibitors: Significant advancements in non–small cell lung cancer treatment. Am. J. Health Syst. Pharm., 2021, 78(9), 769-780.
[http://dx.doi.org/10.1093/ajhp/zxab041] [PMID: 33580648]
[24]
Tuli, H.S.; Sak, K.; Iqubal, A.; Choudhary, R.; Adhikary, S.; Kaur, G.; Kumar, P.; Garg, V.K. Recent advances in immunotherapy for the treatment of Malignant Melanoma. Curr. Pharm. Des., 2022, 28(29), 2363-2374.
[http://dx.doi.org/10.2174/1381612828666220727124639] [PMID: 35894458]
[25]
Filin, I.Y.; Mayasin, Y.P.; Kharisova, C.B.; Gorodilova, A.V.; Kitaeva, K.V.; Chulpanova, D.S.; Solovyeva, V.V.; Rizvanov, A.A. 2023, Cell immunotherapy against Melanoma: Clinical trials review. Int. J. Mol. Sci., 2023, 24(3), 2413.
[26]
Ganesh, K. Optimizing immunotherapy for colorectal cancer. Nat. Rev. Gastroenterol. Hepatol., 2022, 19(2), 93-94.
[27]
Cohen, R.; Pellat, A.; Boussion, H.; Svrcek, M.; Lopez-Trabada, D.; Trouilloud, I.; Afchain, P.; André, T. Immunotherapy and metastatic colorectal cancers with microsatellite instability or mismatch repair deficiency. Bull. Cancer, 2019, 106(2), 137-142.
[http://dx.doi.org/10.1016/j.bulcan.2018.09.004] [PMID: 30327191]
[28]
Overman, M.J. Immunotherapy in colorectal cancer with mismatch repair deficiency. Clin. Adv. Hematol. Oncol., 2019, 17(5), 265-267.
[PMID: 31188802]
[29]
Agyemang, A.F.; Lele, S. The use of immunotherapy for treatment of Gynecologic Malignancies.Ovarian Cancer; Exon Publications:Brisbane (AU);; , 2022.
[http://dx.doi.org/10.36255/exon-publications-ovarian-cancerimmunotherapy]
[30]
Riley, R.S.; June, C.H.; Langer, R.; Mitchell, M.J. Delivery technologies for cancer immunotherapy. Nat. Rev. Drug Discov., 2019, 18(3), 175-196.
[31]
He, R.; Yuan, X.; Chen, Z.; Zheng, Y. Combined immunotherapy for metastatic triple-negative breast cancer based on PD-1/PD-L1 immune checkpoint blocking. Int. Immunopharmacol., 2022, 113(Pt B), 109444.
[http://dx.doi.org/10.1016/j.intimp.2022.109444] [PMID: 36402069]
[32]
Mittal, N.; Singh, S.; Mittal, R.; Kaushal, J.; Kaushal, V. Immune checkpoint inhibitors as neoadjuvant therapy in early triple-negative breast cancer: A systematic review and meta-analysis. J. Cancer Res. Ther., 2022, 18(6), 1754-1765.
[http://dx.doi.org/10.4103/jcrt.jcrt_1867_20] [PMID: 36412440]
[33]
Emens, L.A.; Adams, S.; Barrios, C.H.; Diéras, V.; Iwata, H.; Loi, S.; Rugo, H.S.; Schneeweiss, A.; Winer, E.P.; Patel, S.; Henschel, V.; Swat, A.; Kaul, M.; Molinero, L.; Patel, S.; Chui, S.Y.; Schmid, P. First-line atezolizumab plus nab-paclitaxel for unresectable, locally advanced, or metastatic triple-negative breast cancer: IMpassion130 final overall survival analysis. Ann. Oncol., 2021, 32(8), 983-993.
[http://dx.doi.org/10.1016/j.annonc.2021.05.355] [PMID: 34272041]
[34]
Yardley, D.A.; Coleman, R.; Conte, P.; Cortes, J.; Brufsky, A.; Shtivelband, M.; Young, R.; Bengala, C.; Ali, H.; Eakel, J.; Schneeweiss, A.; de la Cruz-Merino, L.; Wilks, S.; O’Shaughnessy, J.; Glück, S.; Li, H.; Miller, J.; Barton, D.; Harbeck, N. nab-Paclitaxel plus carboplatin or gemcitabine versus gemcitabine plus carboplatin as first-line treatment of patients with triple-negative metastatic breast cancer: Results from the tnAcity trial. Ann. Oncol., 2018, 29(8), 1763-1770.
[http://dx.doi.org/10.1093/annonc/mdy201] [PMID: 29878040]
[35]
Adams, S.; Diamond, J.R.; Hamilton, E.; Pohlmann, P.R.; Tolaney, S.M.; Chang, C.W.; Zhang, W.; Iizuka, K.; Foster, P.G.; Molinero, L.; Funke, R.; Powderly, J. Atezolizumab plus nab-paclitaxel in the treatment of metastatic triple-negative breast cancer with 2-year survival follow-up. JAMA Oncol., 2019, 5(3), 334-342.
[http://dx.doi.org/10.1001/jamaoncol.2018.5152] [PMID: 30347025]
[36]
Liu, J.; Liu, Q.; Li, Y.; Li, Q.; Su, F.; Yao, H.; Su, S.; Wang, Q.; Jin, L.; Wang, Y.; Lau, W.Y.; Jiang, Z.; Song, E. Efficacy and safety of camrelizumab combined with apatinib in advanced triple-negative breast cancer: An open-label phase II trial. J. Immunother. Cancer, 2020, 8(1), e000696.
[http://dx.doi.org/10.1136/jitc-2020-000696] [PMID: 32448804]
[37]
Adams, S.; Schmid, P.; Rugo, H.S.; Winer, E.P.; Loirat, D.; Awada, A.; Cescon, D.W.; Iwata, H.; Campone, M.; Nanda, R.; Hui, R.; Curigliano, G.; Toppmeyer, D.; O’Shaughnessy, J.; Loi, S.; Paluch-Shimon, S.; Tan, A.R.; Card, D.; Zhao, J.; Karantza, V.; Cortés, J.; O’Shaughnessy, J.; Loi, S.; Paluch-Shimon, S.; Tan, A.R.; Card, D.; Zhao, J.; Karantza, V.; Cortés, J. Pembrolizumab monotherapy for previously treated metastatic triple-negative breast cancer: Cohort A of the phase II KEYNOTE-086 study. Ann. Oncol., 2019, 30(3), 397-404.
[http://dx.doi.org/10.1093/annonc/mdy517] [PMID: 30475950]
[38]
Adams, S.; Loi, S.; Toppmeyer, D.; Cescon, D.W.; De Laurentiis, M.; Nanda, R.; Winer, E.P.; Mukai, H.; Tamura, K.; Armstrong, A.; Liu, M.C.; Iwata, H.; Ryvo, L.; Wimberger, P.; Rugo, H.S.; Tan, A.R.; Jia, L.; Ding, Y.; Karantza, V.; Schmid, P. Pembrolizumab monotherapy for previously untreated, PD-L1-positive, metastatic triple-negative breast cancer: Cohort B of the phase II KEYNOTE-086 study. Ann. Oncol., 2019, 30(3), 405-411.
[http://dx.doi.org/10.1093/annonc/mdy518] [PMID: 30475947]
[39]
Park, R.; Lopes, L.; Cristancho, C.R.; Riano, I.M.; Saeed, A. Treatment-Related adverse events of combination immune checkpoint inhibitors: Systematic review and meta-analysis. Front. Oncol., 2020, 10, 258.
[http://dx.doi.org/10.3389/fonc.2020.00258] [PMID: 32257944]
[40]
Melendez Solano, E.; Chapa, C. Comparison of the efficacy of different combinations of drugs for the treatment of patients with triple-negative breast cancer, Biomedical Engineering research projects (IIT-UACJ), Ciudad Juárez, México, 17 March, 2022 (Session Nanomedicine UACJ)., 2022.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy