Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Research Article

Protective Effects of Propolis on Behavioral and Stress Oxidative Changes in Cuprizone-Induced Demyelination Model

Author(s): Ghazal Farhadifard, Rasool Haddadi, Khashayar Sanemar, Homa Farhadifard and Mojdeh Mohammadi*

Volume 19, Issue 2, 2024

Published on: 24 May, 2023

Page: [226 - 232] Pages: 7

DOI: 10.2174/1574885518666230512120450

Price: $65

Abstract

Objective: Multiple sclerosis (MS) is a continuing demyelination inflammatory disease of the central nervous system (CNS). In this study, we investigated the effect of propolis on locomotor coordination and stress oxidative modifications in the demyelination model induced by cuprizone because of its antioxidant, neuroprotective, and anti-inflammatory properties.

Methods: Mice were nourished with powdered chow, including 0.4% w/w cuprizone for one week and then 0.2% w/w cuprizone for four weeks, for MS induction. Mice were given propolis at various doses (100,150, and 200 mg/kg of body weight) during the last 4-weeks of treatment with cuprizone.

Results: Based on our results, the number of falls decreased significantly in 150 mg/kg and 200 mg/kg propolis+cuprizone groups (p < 0.001) but, no significant difference was reported between the 100 mg/kg propolis+cuprizone group and the cuprizone group. The malondialdehyde level decreased significantly in 150 mg/kg and 200 mg/kg propolis+cuprizone (p < 0.01, p < 0.001, respectively), although there was no significant difference in the 100 mg/kg propolis+cuprizone compared to cuprizone group. Glutathione levels increased significantly in 150 mg/kg and 200 mg/kg propolis+cuprizone groups (p < 0.05, p < 0.001, respectively) compared to the cuprizone group. There was no noteworthy difference in glutathione level at the 100 mg/kg propolis+cuprizone concentration as compared to the cuprizone group.

Conclusion: Propolis has the potential to be used as an adjunctive drug in multiple sclerosis treatment.

Graphical Abstract

[1]
Praet J, Guglielmetti C, Berneman Z, Van der Linden A, Ponsaerts P. Cellular and molecular neuropathology of the cuprizone mouse model: Clinical relevance for multiple sclerosis. Neurosci Biobehav Rev 2014; 47: 485-505.
[http://dx.doi.org/10.1016/j.neubiorev.2014.10.004] [PMID: 25445182]
[2]
Kipp M, Clarner T, Dang J, Copray S, Beyer C. The cuprizone animal model: New insights into an old story. Acta Neuropathol 2009; 118(6): 723-36.
[http://dx.doi.org/10.1007/s00401-009-0591-3] [PMID: 19763593]
[3]
Nyamoya S, Schweiger F, Kipp M, Hochstrasser T. Cuprizone as a model of myelin and axonal damage. Drug Discov Today Dis Models 2017; 25-26: 63-8.
[http://dx.doi.org/10.1016/j.ddmod.2018.09.003]
[4]
Hedayatpour A, Ragerdi I, Pasbakhsh P, et al. Promotion of remyelination by adipose mesenchymal stem cell transplantation in a cuprizone model of multiple sclerosis. Cell J 2013; 15(2): 142-51.
[PMID: 23862116]
[5]
Liebetanz D, Merkler D. Effects of commissural de- and remyelination on motor skill behaviour in the cuprizone mouse model of multiple sclerosis. Exp Neurol 2006; 202(1): 217-24.
[http://dx.doi.org/10.1016/j.expneurol.2006.05.032] [PMID: 16857191]
[6]
Matsushima GK, Morell P. The neurotoxicant, cuprizone, as a model to study demyelination and remyelination in the central nervous system. Brain Pathol 2001; 11(1): 107-16.
[http://dx.doi.org/10.1111/j.1750-3639.2001.tb00385.x] [PMID: 11145196]
[7]
Armstrong RC. Growth factor regulation of remyelination: Behind the growing interest in endogenous cell repair of the CNS. Future Neurol 2007; 2(6): 689-97.
[http://dx.doi.org/10.2217/14796708.2.6.689] [PMID: 19079759]
[8]
Harsan LA, Steibel J, Zaremba A, et al. Recovery from chronic demyelination by thyroid hormone therapy: Myelinogenesis induction and assessment by diffusion tensor magnetic resonance imaging. J Neurosci 2008; 28(52): 14189-201.
[http://dx.doi.org/10.1523/JNEUROSCI.4453-08.2008] [PMID: 19109501]
[9]
Tansey FA, Zhang H, Cammer W. Expression of carbonic anhydrase II mRNA and protein in oligodendrocytes during toxic demyelination in the young adult mouse. Neurochem Res 1996; 21(4): 411-6.
[http://dx.doi.org/10.1007/BF02527704] [PMID: 8734433]
[10]
Koutsoudaki PN, Skripuletz T, Gudi V, et al. Demyelination of the hippocampus is prominent in the cuprizone model. Neurosci Lett 2009; 451(1): 83-8.
[http://dx.doi.org/10.1016/j.neulet.2008.11.058] [PMID: 19084049]
[11]
Ahmed R, Tanvir EM, Hossen MS, et al. Antioxidant properties and cardioprotective mechanism of malaysian propolis in rats. Evid Based Complement Alternat Med 2017; 2017: 1-11.
[http://dx.doi.org/10.1155/2017/5370545] [PMID: 28261310]
[12]
Dobrowolski JW, Vohora SB, Sharma K, Shah SA, Naqvi SAH, Dandiya PC. Antibacterial, antifungal, antiamoebic, antiinflammatory and antipyretic studies on propolis bee products. J Ethnopharmacol 1991; 35(1): 77-82.
[http://dx.doi.org/10.1016/0378-8741(91)90135-Z] [PMID: 1753797]
[13]
Hegazi AG, Abd El Hady FK, Abd Allah FAM. Chemical composition and antimicrobial activity of European propolis. Z Naturforsch C J Biosci 2000; 55(1-2): 70-5.
[http://dx.doi.org/10.1515/znc-2000-1-214] [PMID: 10739103]
[14]
Kim JD, Liu L, Guo W, Meydani M. Chemical structure of flavonols in relation to modulation of angiogenesis and immune-endothelial cell adhesion. J Nutr Biochem 2006; 17(3): 165-76.
[http://dx.doi.org/10.1016/j.jnutbio.2005.06.006] [PMID: 16169200]
[15]
Nagai T, Inoue R, Inoue H, Suzuki N. Preparation and antioxidant properties of water extract of propolis. Food Chem 2003; 80(1): 29-33.
[http://dx.doi.org/10.1016/S0308-8146(02)00231-5]
[16]
Nagai T, Sakai M, Inoue R, Inoue H, Suzuki N. Antioxidative activities of some commercially honeys, royal jelly, and propolis. Food Chem 2001; 75(2): 237-40.
[http://dx.doi.org/10.1016/S0308-8146(01)00193-5]
[17]
Vakilzadeh G, Khodagholi F, Ghadiri T, et al. Protective effect of a cAMP analogue on behavioral deficits and neuropathological changes in cuprizone model of demyelination. Mol Neurobiol 2015; 52(1): 130-41.
[http://dx.doi.org/10.1007/s12035-014-8857-8] [PMID: 25128030]
[18]
Ghaiad HR, Nooh MM, El-Sawalhi MM, Shaheen AA. Resveratrol promotes remyelination in cuprizone model of multiple sclerosis: Biochemical and histological study. Mol Neurobiol 2017; 54(5): 3219-29.
[http://dx.doi.org/10.1007/s12035-016-9891-5] [PMID: 27067589]
[19]
Dawn-Linsley M, Ekinci FJ, Ortiz D, Rogers E, Shea TB. Monitoring thiobarbituric acid-reactive substances (TBARs) as an assay for oxidative damage in neuronal cultures and central nervous system. J Neurosci Methods 2005; 141(2): 219-22.
[http://dx.doi.org/10.1016/j.jneumeth.2004.06.010] [PMID: 15661303]
[20]
Yagi K. Simple assay for the level of total lipid peroxides in serum or plasma. Methods Mol Biol 1998; 108: 101-6.
[http://dx.doi.org/10.1385/0-89603-472-0:101] [PMID: 9921519]
[21]
Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979; 95(2): 351-8.
[http://dx.doi.org/10.1016/0003-2697(79)90738-3] [PMID: 36810]
[22]
Richard MJ, Portal B, Meo J, Coudray C, Hadjian A, Favier A. Malondialdehyde kit evaluated for determining plasma and lipoprotein fractions that react with thiobarbituric acid. Clin Chem 1992; 38(5): 704-9.
[http://dx.doi.org/10.1093/clinchem/38.5.704] [PMID: 1582024]
[23]
Al Ghamdi AA, Badr G, Hozzein WN, et al. Oral supplementation of diabetic mice with propolis restores the proliferation capacity and chemotaxis of B and T lymphocytes towards CCL21 and CXCL12 by modulating the lipid profile, the pro-inflammatory cytokine levels and oxidative stress. BMC Immunol 2015; 16(1): 54.
[http://dx.doi.org/10.1186/s12865-015-0117-9] [PMID: 26370805]
[24]
Jaiswal N. Protective effect of flavonoids in multiple sclerosis. J Sci Innov Res 2013; 2: 509-11.
[25]
Helal SI, Hegazi A, Al-Menabbawy K. Apitherapy have a role in treatment of multiple sclerosis. Maced J Med Sci 2014; 7(2): 267-72.
[26]
Viuda-Martos M, Ruiz-Navajas Y. Fernández-López J, PérezÁlvarez JA. Functional properties of honey, propolis, and royal jelly. J Food Sci 2008; 73(9): R117-24.
[http://dx.doi.org/10.1111/j.1750-3841.2008.00966.x] [PMID: 19021816]
[27]
Cudd A, Nicolau C. Interaction of intravenously injected liposomes with mouse liver mitochondria. A fluorescence and electron microscopy study. Biochim Biophys Acta Biomembr 1986; 860(2): 201-14.
[http://dx.doi.org/10.1016/0005-2736(86)90516-X] [PMID: 3741851]
[28]
Hoppel CL, Tandler B. Biochemical effects of cuprizone on mouse liver and heart mitochondria. Biochem Pharmacol 1973; 22(18): 2311-8.
[http://dx.doi.org/10.1016/0006-2952(73)90012-9] [PMID: 4733682]
[29]
Tedeschi H, Mannella CA, Bowman CL. Patch clamping the outer mitochondrial membrane. J Membr Biol 1987; 97(1): 21-9.
[http://dx.doi.org/10.1007/BF01869611] [PMID: 3612769]
[30]
Ransohoff RM. Animal models of multiple sclerosis: The good, the bad and the bottom line. Nat Neurosci 2012; 15(8): 1074-7.
[http://dx.doi.org/10.1038/nn.3168] [PMID: 22837037]
[31]
Skripuletz T, Lindner M, Kotsiari A, et al. Cortical demyelination is prominent in the murine cuprizone model and is strain-dependent. Am J Pathol 2008; 172(4): 1053-61.
[http://dx.doi.org/10.2353/ajpath.2008.070850] [PMID: 18349131]
[32]
Skripuletz T, Bussmann JH, Gudi V, et al. Cerebellar cortical demyelination in the murine cuprizone model. Brain Pathol 2010; 20(2): 301-12.
[http://dx.doi.org/10.1111/j.1750-3639.2009.00271.x] [PMID: 19371354]
[33]
Rahn EJ, Iannitti T, Donahue RR, Taylor BK. Sex differences in a mouse model of multiple sclerosis: Neuropathic pain behavior in females but not males and protection from neurological deficits during proestrus. Biol Sex Differ 2014; 5(1): 4.
[http://dx.doi.org/10.1186/2042-6410-5-4] [PMID: 24581045]
[34]
Banskota AH, Tezuka Y, Kadota S. Recent progress in pharmacological research of propolis. Phytother Res 2001; 15(7): 561-71.
[http://dx.doi.org/10.1002/ptr.1029] [PMID: 11746834]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy