Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

A Decennial Update on the Applications of Trifluroacetic Acid

Author(s): Mohammed Mujahid Alam, Ravi Varala* and Vittal Seema

Volume 21, Issue 4, 2024

Published on: 08 June, 2023

Page: [455 - 470] Pages: 16

DOI: 10.2174/1570193X20666230511121812

Price: $65

Abstract

Since its discovery at the beginning of the 20th century, trifluoroacetic acid, commonly known as TFA, has seen extensive application in organic synthesis both as a solvent and as a catalyst/ reagent. TFA can be used to facilitate a wide variety of chemical transformations, including rearrangements, functional group deprotections, condensations, hydroarylations and trifluoroalkylations, among others. The decennial mini-review examines key TFA synthetic applications from the middle of 2013 to the present, providing the organic chemistry research community with an opportunity to delve deeply into the numerous and varied applications of this strong acid, water-miscible, and low boiling point reagent.

Graphical Abstract

[1]
Siegemund, G.; Schwertfeger, W.; Feiring, A.; Smart, B.; Behr, F.; Vogel, H.; McKusick, B. "Fluorine Compounds, Organic".Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, 2000.
[http://dx.doi.org/10.1002/14356007.a11_349]
[2]
Ma, Z.; Wu, X.; Zhu, C. Merging Fluorine Incorporation and Functional Group Migration. Chem. Rec., 2022, 2022, e202200221.
[http://dx.doi.org/10.1002/tcr.202200221]
[3]
Britton, R.; Gouverneur, V.; Lin, J.H.; Meanwell, M.; Ni, C.; Pupo, G.; Xiao, J.C.; Hu, J. Contemporary synthetic strategies in organofluorine chemistry. Nat. Rev. Methods Primers, 2021, 1(1), 47.
[http://dx.doi.org/10.1038/s43586-021-00042-1]
[4]
Liu, Y.; Jiang, L.; Wang, H.; Wang, H.; Jiao, W.; Chen, G.; Zhang, P.; Hui, D.; Jian, X. A brief review for fluorinated carbon: Synthesis, properties and applications. Nanotechnol. Rev., 2019, 8(1), 573-586.
[http://dx.doi.org/10.1515/ntrev-2019-0051]
[5]
Gouverneur, V.; Seppelt, K. Introduction: Fluorine chemistry. Chem. Rev., 2015, 115(2), 563-565.
[http://dx.doi.org/10.1021/cr500686k] [PMID: 25627818]
[6]
Kirsch, P. Modern fluoroorganic chemistry: Synthesis, reactivity, applications; Wiley-VCH: Weinheim, 2013.
[http://dx.doi.org/10.1002/9783527651351]
[7]
Dinou, V. Fluorine chemistry: Past, present and future. Rev. Roum. Chim., 2006, 51(12), 1141-1152.
[8]
Begue, J-P.; Bonnet-Delpon, D. Bioorganic and Medicinal Chemistry of Fluorine; Wiley: Hoboken, 2008.
[http://dx.doi.org/10.1002/9780470281895]
[9]
Ojima, I. Ed.; Fluorine in medicinal chemistry and chemical biology; Wiley: Chichester, UK, 2009.
[http://dx.doi.org/10.1002/9781444312096]
[10]
Purser, S.; Moore, P.R.; Swallow, S.; Gouverneur, V. Fluorine in medicinal chemistry. Chem. Soc. Rev., 2008, 37(2), 320-330.
[http://dx.doi.org/10.1039/B610213C] [PMID: 18197348]
[11]
Prystupa, J. Fluorine—A current literature review. An NRC and ATSDR based review of safety standards for exposure to fluorine and fluorides. Toxicol. Mech. Methods, 2011, 21(2), 103-170.
[http://dx.doi.org/10.3109/15376516.2010.542931] [PMID: 21288074]
[12]
Shah, P.; Westwell, A.D. The role of fluorine in medicinal chemistry. J. Enzyme Inhib. Med. Chem., 2007, 22(5), 527-540.
[http://dx.doi.org/10.1080/14756360701425014] [PMID: 18035820]
[13]
Kamble, O.; Dandela, R.; Shinde, S. Recent innovations of organo-fluorine synthesis and pharmacokinetics. Curr. Org. Chem., 2021, 25(21), 2650-2665.
[http://dx.doi.org/10.2174/1385272825666210531111123]
[14]
Solomon, K.R.; Velders, G.J.M.; Wilson, S.R.; Madronich, S.; Longstreth, J.; Aucamp, P.J.; Bornman, J.F. Sources, fates, toxicity, and risks of trifluoroacetic acid and its salts: Relevance to substances regulated under the Montreal and Kyoto Protocols. J. Toxicol. Environ. Health B Crit. Rev., 2016, 19(7), 289-304.
[http://dx.doi.org/10.1080/10937404.2016.1175981] [PMID: 27351319]
[15]
Joudan, S.; De Silva, A.O.; Young, C.J. Insufficient evidence for the existence of natural trifluoroacetic acid. Environ. Sci. Proc. Impacts, 2021, 23(11), 1641-1649.
[http://dx.doi.org/10.1039/D1EM00306B] [PMID: 34693963]
[16]
Ardino, C.; Sannio, F.; Pasero, C.; Botta, L.; Dreass, E.; Docquier, J.D.; D’Agostino, I. The impact of counterions in biological activity: Case study of antibacterial alkylguanidino ureas. Mol. Divers., 2022, 2022, 1-11.
[http://dx.doi.org/10.1007/s11030-022-10505-6]
[17]
López, S.E.; Salazar, J. Trifluoroacetic acid: Uses and recent applications in organic synthesis. J. Fluor. Chem., 2013, 156, 73-100.
[18]
Norris, M. Trifluoroacetic Acid (TFA). Synlett, 2015, 26(3), 418-419.
[http://dx.doi.org/10.1055/s-0034-1379995]
[19]
Swarts, F. Bull. Soc. Chim. Belg., 1922, 8, 343-370.
[20]
Colby, D.; Han, C.; Kim, E. Cleaving carbon-carbon bonds by the release of trifluoroacetate to remodel molecules and assemble fluorinated structures. Synlett, 2012, 23(11), 1559-1563.
[http://dx.doi.org/10.1055/s-0031-1291156]
[21]
Eberhard, H.; Seitz, O.N. →O-Acyl shift in Fmoc-based synthesis of phosphopeptides. Org. Biomol. Chem., 2008, 6(8), 1349-1355.
[http://dx.doi.org/10.1039/b718568e] [PMID: 18385841]
[22]
López, S.; Restrepo, J.; Salazar, J. Trifluoroacetylation in organic synthesis: Reagents, developments and applications in the construction of trifluoromethylated compounds. Curr. Org. Synth., 2010, 7(5), 414-432.
[http://dx.doi.org/10.2174/157017910792246126]
[23]
Tarselli, M.A.; Raehal, K.M.; Brasher, A.K.; Streicher, J.M.; Groer, C.E.; Cameron, M.D.; Bohn, L.M.; Micalizio, G.C. Synthesis of conolidine, a potent non-opioid analgesic for tonic and persistent pain. Nat. Chem., 2011, 3(6), 449-453.
[http://dx.doi.org/10.1038/nchem.1050] [PMID: 21602859]
[24]
Norris, M.D.; Perkins, M.V. A biomimetic cascade for the formation of the methyl [2(5H)-furanylidene]ethanoate core of spongosoritin A and the gracilioethers. Tetrahedron, 2013, 69(46), 9813-9818.
[http://dx.doi.org/10.1016/j.tet.2013.09.006]
[25]
Doncaster, J.R.; Etchells, L.L.; Kershaw, N.M.; Nakamura, R.; Ryan, H.; Takeuchi, R.; Sakaguchi, K.; Sardarian, A.; Whitehead, R.C. Synthetic analogues of the manzamenones and plakoridines which inhibit DNA polymerase. Bioorg. Med. Chem. Lett., 2006, 16(11), 2877-2881.
[http://dx.doi.org/10.1016/j.bmcl.2006.03.005] [PMID: 16563761]
[26]
Han, C.; Kim, E.H.; Colby, D.A. Cleavage of carbon-carbon bonds through the mild release of trifluoroacetate: Generation of α,α-difluoroenolates for aldol reactions. J. Am. Chem. Soc., 2011, 133(15), 5802-5805.
[http://dx.doi.org/10.1021/ja202213f] [PMID: 21443226]
[27]
John, J.P.; Colby, D.A. Synthesis of α-halo-α,α-difluoromethyl ketones by a trifluoroacetate release/halogenation protocol. J. Org. Chem., 2011, 76(21), 9163-9168.
[http://dx.doi.org/10.1021/jo2017179] [PMID: 21995668]
[28]
Riofski, M.V.; John, J.P.; Zheng, M.M.; Kirshner, J.; Colby, D.A. Exploiting the facile release of trifluoroacetate for the α-methylenation of the sterically hindered carbonyl groups on (+)-sclareolide and (-)-eburnamonine. J. Org. Chem., 2011, 76(10), 3676-3683.
[http://dx.doi.org/10.1021/jo102114f] [PMID: 21491928]
[29]
Tietze, L.F.; Stecker, F.; Zinngrebe, J.; Sommer, K.M. Enantioselective palladium-catalyzed total synthesis of vitamin e by employing a domino Wacker-Heck reaction. Chemistry, 2006, 12(34), 8770-8776.
[http://dx.doi.org/10.1002/chem.200600849] [PMID: 17001611]
[30]
Keller, P.A.; Yepuri, N.R.; Kelso, M.J.; Mariani, M.; Skelton, B.W.; White, A.H. Oxidative coupling of indoles using thallium(III) trifluoroacetate. Tetrahedron, 2008, 64(33), 7787-7795.
[http://dx.doi.org/10.1016/j.tet.2008.05.133]
[31]
Le, H.V.; Ganem, B. Trifluoroacetic anhydride-catalyzed oxidation of isonitriles by DMSO: A rapid, convenient synthesis of isocyanates. Org. Lett., 2011, 13(10), 2584-2585.
[http://dx.doi.org/10.1021/ol200695y] [PMID: 21491899]
[32]
Chavan, S.P.; Lasonkar, P.B. One-pot migration–formylation of benzyl aryl ethers under Duff reaction condition. Tetrahedron Lett., 2013, 54(35), 4789-4792.
[http://dx.doi.org/10.1016/j.tetlet.2013.06.133]
[33]
Coutsolelos, A.; Gryko, D.; Skonieczny, K.; Charalambidis, G.; Tasior, M.; Krzeszewski, M.; Kalkan-Burat, A. General and efficient protocol for formylation of aromatic and heterocyclic phenols. Synthesis, 2012, 44(23), 3683-3687.
[http://dx.doi.org/10.1055/s-0032-1317500]
[34]
Zhu, J.; Xie, H.; Chen, Z.; Li, S.; Wu, Y. Synthesis of 6-trifluoromethylindolo[1,2-c]quinazolines and related heterocycles using N-(2-iodophenyl)trifluoroacetimidoyl chlorides as starting material via C–H bond functionalization. Chem. Commun., 2011, 47(5), 1512-1514.
[http://dx.doi.org/10.1039/C0CC03197F] [PMID: 21103556]
[35]
Nishimura, T.; Unni, A.K.; Yokoshima, S.; Fukuyama, T. Concise total synthesis of (+)-lyconadin A. J. Am. Chem. Soc., 2011, 133(3), 418-419.
[http://dx.doi.org/10.1021/ja109516f] [PMID: 21155564]
[36]
Wang, Z.; Feng, A.; Cui, M.; Liu, Y.; Wang, L.; Wang, Q. First discovery and stucture-activity relationship study of phenanthroquinolizidines as novel antiviral agents against tobacco mosaic virus (TMV). PLoS One, 2012, 7(12), e52933.
[http://dx.doi.org/10.1371/journal.pone.0052933] [PMID: 23285230]
[37]
Lima, H.M.; Garcia-Barboza, B.J.; Khatibi, N.N.; Lovely, C.J. Total syntheses of isonaamine C and isonaamidine E. Tetrahedron Lett., 2011, 52(44), 5725-5727.
[http://dx.doi.org/10.1016/j.tetlet.2011.08.030] [PMID: 22140280]
[38]
Varadaraju, T.G.; Hwu, J.R. Synthesis of anti-HIV lithospermic acid by two diverse strategies. Org. Biomol. Chem., 2012, 10(28), 5456-5465.
[http://dx.doi.org/10.1039/c2ob25575h] [PMID: 22669348]
[39]
Zhong, Y.L.; Gauthier, D.R., Jr; Shi, Y.J.; McLaughlin, M.; Chung, J.Y.L.; Dagneau, P.; Marcune, B.; Krska, S.W.; Ball, R.G.; Reamer, R.A.; Yasuda, N. Synthesis of antifungal glucan synthase inhibitors from enfumafungin. J. Org. Chem., 2012, 77(7), 3297-3310.
[http://dx.doi.org/10.1021/jo300046v] [PMID: 22423625]
[40]
Mohammadizadeh, M.R.; Firoozi, N. Trifluoroacetic acid as an effective catalyst for Biginelli reaction: One-pot, three-component synthesis of 3,4-dihydropyrimidin-2(1H)-ones (and-thiones). E-J. Chem., 2011, 8(s1), S266-S270.
[http://dx.doi.org/10.1155/2011/751282]
[41]
Mohammadizadeh, M.R.; Hasaninejad, A.; Bahramzadeh, M. Trifluoroacetic acid as an efficient catalyst for one-pot, four-component synthesis of 1,2,4,5-tetrasubstituted imidazoles under microwave-assisted, solvent-free conditions. Synth. Commun., 2009, 39(18), 3232-3242.
[http://dx.doi.org/10.1080/00397910902737122]
[42]
Ji, X.; Shi, G.; Zhang, Y. Progress of trifluoromethylation using trifluoroacetic acid and its derivatives as CF3-Sources. Youji Huaxue, 2019, 39(4), 929-939.
[http://dx.doi.org/10.6023/cjoc201810033]
[43]
Yin, D.; Su, D.; Jin, J. Photoredox catalytic trifluorometylation and perfluoroalkylation of arenes using trifluoroacetic and related carboxylic acids. Cell Rep. Phys. Sci., 2020, 1(8), 100141.
[http://dx.doi.org/10.1016/j.xcrp.2020.100141]
[44]
Beatty, J.W.; Douglas, J.J.; Cole, K.P.; Stephenson, C.R.J. A scalable and operationally simple radical trifluoromethylation. Nat. Commun., 2015, 6(1), 7919.
[http://dx.doi.org/10.1038/ncomms8919] [PMID: 26258541]
[45]
Chen, M.; Buchwald, S.L. Rapid and efficient trifluoromethylation of aromatic and heteroaromatic compounds using potassium trifluoroacetate enabled by a flow system. Angew. Chem. Int. Ed., 2013, 52(44), 11628-11631.
[http://dx.doi.org/10.1002/anie.201306094] [PMID: 24038907]
[46]
Sugiishi, T.; Amii, H.; Aikawa, K.; Mikami, K. Carbon–carbon bond cleavage for Cu-mediated aromatic trifluoromethylations and pentafluoroethylations. Beilstein J. Org. Chem., 2015, 11, 2661-2670.
[http://dx.doi.org/10.3762/bjoc.11.286] [PMID: 26734112]
[47]
Zeng, Y.F.; Zhou, M.X.; Li, Y.N.; Wu, X.; Guo, Y.; Wang, Z.Y.; Wang, Z. Switchable reductive N-trifluoroethylation and N-trifluoroacetylation of indoles with trifluoroacetic acid and trimethylamine borane. Org. Lett., 2022, 24(40), 7440-7445.
[http://dx.doi.org/10.1021/acs.orglett.2c03011] [PMID: 36173131]
[48]
Andrews, K.G.; Faizova, R.; Denton, R.M. A practical and catalyst-free trifluoroethylation reaction of amines using trifluoroacetic acid. Nat. Commun., 2017, 8(1), 15913.
[http://dx.doi.org/10.1038/ncomms15913] [PMID: 28649981]
[49]
Sorribes, I.; Junge, K.; Beller, M. Direct catalytic N-alkylation of amines with carboxylic acids. J. Am. Chem. Soc., 2014, 136(40), 14314-14319.
[http://dx.doi.org/10.1021/ja5093612] [PMID: 25230096]
[50]
Fu, M.C.; Shang, R.; Cheng, W.M.; Fu, Y. Boron-catalyzed N-alkylation of amines using carboxylic acids. Angew. Chem. Int. Ed., 2015, 54(31), 9042-9046.
[http://dx.doi.org/10.1002/anie.201503879] [PMID: 26150397]
[51]
Ren, Z.; Li, S.; Zhang, X.; Fan, L.; Zhou, G.; Yang, D. One-Pot synthesis of N-[3-(4-methylphenyl)-3-oxo-1-arylpropyl]acetamides employing trifluoroacetic acid as an efficient catalyst. Youji Huaxue, 2013, 33(5), 1047-1056.
[http://dx.doi.org/10.6023/cjoc201211009]
[52]
Tian, H.H.; Fan, L.; Zhang, X.H.; Zhou, C.H.; Zhou, G.M.; Yang, D-C. Trifluoroacetic acid–catalyzed synthesis of N -(1-(3-chlorophenyl)-3-aryl-3-oxopropyl)-2-(4-nitrophenyl)acetamides via dakin–west reaction. Synth. Commun., 2014, 44(2), 170-180.
[http://dx.doi.org/10.1080/00397911.2013.796381]
[53]
Manente, F.; Pietrobon, L.; Ronchin, L.; Vavasori, A. Trifuoroacetic acid hydroxylamine system as organocatalyst reagent in a one-pot salt free process for the synthesis of caprolactam and amides of industrial interest. Catal. Lett., 2021, 151(12), 3543-3549.
[http://dx.doi.org/10.1007/s10562-021-03590-z]
[54]
Ladd, A.L.; Gordon, W.; Gribble, G.W. Trifluoroacetic acid-promoted Friedel-Crafts aromatic alkylation with benzyl alcohols. Biomed. J. Sci. Tech. Res., 2018, 12(3), 9258-9262.
[http://dx.doi.org/10.26717/BJSTR.2018.12]
[55]
Fatahi, H.; Jafarzadeh, M.; Pourmanouchehri, Z. Synthesis of α-aminonitriles and 5-substituted 1H-tetrazoles using an efficient nanocatalyst of Fe3O4@SiO2-APTES-supported trifluoroacetic acid. J. Heterocycl. Chem., 2019, 56(8), 2090-2098.
[http://dx.doi.org/10.1002/jhet.3582]
[56]
Mokkarat, A.; Kruanetr, S.; Sakee, U. Facial preparation of trifluoroacetic acid-immobilized amino-functionalized silica magnetite nano-catalysts as a highly efficient and reusable for synthesis of β-enaminones. J. Mol. Struct., 2022, 1259, 132745.
[http://dx.doi.org/10.1016/j.molstruc.2022.132745]
[57]
Rudy, H.K.A.; Wanner, K.T. Accessing tricyclic imines comprising a 2-azabicyclo[2.2.2]octane scaffold by intramolecular hetero-Diels-Alder reaction of 4-alkenyl-substituted N-Silyl-1,4-dihydropyridines. Synthesis, 2019, 51(22), 4296-4310.
[http://dx.doi.org/10.1055/s-0039-1690619]
[58]
Wanner, K.; Schmaunz, C.; Mayer, P. Inter- and Intramolecular [4+2]-Cycloaddition reactions with 4,4-Disubstituted N-Silyl-1,4-dihydropyridines as precursors for N-protonated 2-azabutadiene intermediates. Synthesis, 2014, 46(12), 1630-1638.
[http://dx.doi.org/10.1055/s-0033-1341044]
[59]
Kuleshov, A.V.; Solyev, P.N.; Volodin, A.D.; Korlyukov, A.A.; Baranov, M.S.; Mikhaylov, A.A. (3+2) Cycloaddition of N-benzylazomethine methylide with 4-arylidene-1H-imidazol-5(4H)-ones. Chem. Heterocycl. Compd., 2020, 56(1), 108-111.
[http://dx.doi.org/10.1007/s10593-020-02630-7]
[60]
Rafeeq, M.; Reddy, C.; Vinodini, M. Efficient synthetic methods of thiobenzimidazole substituted quinazolin-4(3H)-one. Heterocycl. Lett., 2017, 7(1), 177-181.
[61]
Lashkari, M.; Maghsoodlou, M.T.; Karima, M.; Kangani, M. Trifluoroacetic acid catalyzed one-pot four-component domino reaction for the synthesis of substituted dihydro 2-oxypyrroles. J. Chil. Chem. Soc., 2018, 63(1), 3799-3802.
[http://dx.doi.org/10.4067/s0717-97072018000103799]
[62]
Venugopala, K.N.; Prasanna, R.T.; Odhav, B. Trifluoroacetic acid: An efficient catalyst for paal-knorr pyrrole synthesis and its deprotection. Asian J. Chem., 2013, 25(15), 8685-8689.
[http://dx.doi.org/10.14233/ajchem.2013.15185]
[63]
Pauff, S.M.; Miller, S.C. A trifluoroacetic acid-labile sulfonate protecting group and its use in the synthesis of a near-IR fluorophore. J. Org. Chem., 2013, 78(2), 711-716.
[http://dx.doi.org/10.1021/jo302065u] [PMID: 23167708]
[64]
Castán, A.; Badorrey, R.; Gálvez, J.A.; Díaz-de-Villegas, M.D. Synthesis of new pyrrolidine-based organocatalysts and study of their use in the asymmetric Michael addition of aldehydes to nitroolefins. Beilstein J. Org. Chem., 2017, 13, 612-619.
[http://dx.doi.org/10.3762/bjoc.13.59] [PMID: 28487754]
[65]
Iida, T.; Omura, K.; Sakiyama, R.; Kodomari, M. Regioselective dehydrogenation of 3-keto-steroids to form conjugated enones using o-iodoxybenzoic acid and trifluoroacetic acid catalysis. Chem. Phys. Lipids, 2014, 178, 45-51.
[http://dx.doi.org/10.1016/j.chemphyslip.2013.11.007] [PMID: 24309193]
[66]
Beryl, J. R.; Raj Xavier, J. Electrochemical trifluoromethylation of isonicotinic acid hydrazide using cyclic voltammetry and galvanostatic electrolysis. Orient. J. Chem., 2018, 34(4), 2098-2105.
[http://dx.doi.org/10.13005/ojc/3404050]
[67]
Pastrana-Rios, B.; del Valle Sosa, L.; Santiago, J. Trifluoroacetic acid as excipient destabilizes melittin causing the selective aggregation of melittin within the centrin-melittin-trifluoroacetic acid complexa). Struct. Dyn., 2015, 2(4), 041711.
[http://dx.doi.org/10.1063/1.4921219] [PMID: 26798810]
[68]
Hou, L.; Zhao, R.; Li, X. Highly efficient catalytic oxidation desulfurization from model oil based on acid deep eutectic solvents tetraethylammonium chloride/trifluoroacetic acid. CIESC J., 2017, 68(4), 1614-1621.
[http://dx.doi.org/10.11949/j.issn.0438-1157.20161449]
[69]
Guzman-Puyol, S.; Ceseracciu, L.; Tedeschi, G.; Marras, S.; Scarpellini, A.; Benítez, J.; Athanassiou, A.; Heredia-Guerrero, J. Transparent and robust all-cellulose nanocomposite packaging materials prepared in a mixture of trifluoroacetic acid and trifluoroacetic anhydride. Nanomaterials, 2019, 9(3), 368.
[http://dx.doi.org/10.3390/nano9030368] [PMID: 30841528]
[70]
Jirawitchalert, S.; Mitaim, S.; Chen, C-Y.; Patikarnmonthon, N. Cotton cellulose-derived hydrogel and electrospun fiber as alternative material for wound dressing application. Int. J. Biomater., 2022, 2022, 1-12.
[http://dx.doi.org/10.1155/2022/2502658]
[71]
Einstein, S.A.; Thompson, E.A.; Guo, C.; Whitley, E.M.; Bankson, J.A.; Cressman, E.N.K. Application of trifluoroacetic acid as a theranostic agent for chemical ablation of solid tissue. J. Vasc. Interv. Radiol., 2020, 31(1), 169-175.
[http://dx.doi.org/10.1016/j.jvir.2019.05.002] [PMID: 31537410]
[72]
Wang, L.S.; Cheng, S.X.; Zhuo, R.X. Synthesis and hydrolytic degradation of aliphatic polycarbonate based on dihydroxyacetone. Polym. Sci. Ser. B, 2013, 55(11-12), 604-610.
[http://dx.doi.org/10.1134/S1560090413080101]
[73]
Tezel, Ö.; Beyler Çiğil, A.; Kahraman, M.V. Encapsulation of trichloroacetic acid and trifluoroacetic acid for autonomous self healing coatings. Polymer-Plastics Technol. Mat., 2020, 59(18), 2040-2049.
[http://dx.doi.org/10.1080/25740881.2020.1784219]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy