Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

DTL is a Novel Downstream Gene of E2F1 that Promotes the Progression of Hepatocellular Carcinoma

Author(s): Ruiqiang Dong, Danhua Zhang, Baowei Han, Lingxue Xu, Danfeng Zhang, Zhenguo Cheng and Xinguang Qiu*

Volume 23, Issue 10, 2023

Published on: 01 June, 2023

Page: [817 - 828] Pages: 12

DOI: 10.2174/1568009623666230511100246

Price: $65

Abstract

Background: Hepatocellular carcinoma (HCC), one of the world's most prevalent malignancies, accounts for 90% of primary liver cancer cases. Recent studies have shown an increased expression of denticles E3 ubiquitin protein ligase homolog (DTL) in several different tumor types, but its function and regulatory mechanisms remain unclear.

Aims: This study aimed to investigate the expressions of the Cullin4 (CUL4) complex in HCC and elucidate the roles of DTL in HCC cells.

Methods: The relative expression of the CUL4 complex and its clinical significance were analyzed with The Cancer Genome Atlas (TCGA) data, and the level of DTL was confirmed by immunohistochemistry. The functions of DTL1 and upstream E2F1 were evaluated by a Western blot, MTT, transwell, and xenograft in HCC cell lines.

Results: The elevated mRNA expression of the CUL4 complex, including CUL4B, DDB1 (Damage Specific DNA Binding Protein 1), and DTL, was associated with the overall survival of HCC patients. We also found that the DTL protein was elevated in HCC tissues, and patients with highly expressed DTL and nucleus-located DTL had a poorer survival time. DTL knockdown significantly inhibited cancer proliferation, migration, and invasion. Further experiments showed that E2F1 was an upstream regulatory molecule of DTL, which was bound to the promoter of DTL, promoting the expression of DTL.

Conclusion: The study results demonstrate that E2F1-DTL signaling promotes the growth, migration, and invasion of HCC cells, which provides new insights and a potential biological target for future HCC therapies.

« Previous
Graphical Abstract

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Wang, W.; Wei, C. Advances in the early diagnosis of hepatocellular carcinoma. Genes Dis., 2020, 7(3), 308-319.
[http://dx.doi.org/10.1016/j.gendis.2020.01.014] [PMID: 32884985]
[3]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[4]
Shi, J.F.; Cao, M.; Wang, Y.; Bai, F.Z.; Lei, L.; Peng, J.; Feletto, E.; Canfell, K.; Qu, C.; Chen, W. Is it possible to halve the incidence of liver cancer in China by 2050? Int. J. Cancer, 2021, 148(5), 1051-1065.
[http://dx.doi.org/10.1002/ijc.33313] [PMID: 32997794]
[5]
Sangro, B.; Sarobe, P.; Hervás-Stubbs, S.; Melero, I. Advances in immunotherapy for hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol., 2021, 18(8), 525-543.
[http://dx.doi.org/10.1038/s41575-021-00438-0] [PMID: 33850328]
[6]
Deol, K.K.; Strieter, E.R. The ubiquitin proteoform problem. Curr. Opin. Chem. Biol., 2021, 63, 95-104.
[http://dx.doi.org/10.1016/j.cbpa.2021.02.015] [PMID: 33813043]
[7]
Dang, F.; Nie, L.; Wei, W. Ubiquitin signaling in cell cycle control and tumorigenesis. Cell Death Differ., 2021, 28(2), 427-438.
[http://dx.doi.org/10.1038/s41418-020-00648-0] [PMID: 33130827]
[8]
Song, L.; Luo, Z.Q. Post-translational regulation of ubiquitin signaling. J. Cell Biol., 2019, 218(6), 1776-1786.
[http://dx.doi.org/10.1083/jcb.201902074] [PMID: 31000580]
[9]
Zhou, Z.; Song, X.; Wavelet, C.M.; Wan, Y. Cullin 4-DCAF proteins in tumorigenesis. Adv. Exp. Med. Biol., 2020, 1217, 241-259.
[http://dx.doi.org/10.1007/978-981-15-1025-0_15] [PMID: 31898232]
[10]
Yin, Y.; Zhu, L.; Li, Q.; Zhou, P.; Ma, L. Cullin4 E3 ubiquitin ligases regulate male gonocyte migration, proliferation and blood-testis barrier homeostasis. Cells, 2021, 10(10), 2732.
[http://dx.doi.org/10.3390/cells10102732] [PMID: 34685710]
[11]
Pan, Y.; Wang, B.; Yang, X.; Bai, F.; Xu, Q.; Li, X.; Gao, L.; Ma, C.; Liang, X. CUL4A facilitates hepatocarcinogenesis by promoting cell cycle progression and epithelial-mesenchymal transition. Sci. Rep., 2015, 5(1), 17006.
[http://dx.doi.org/10.1038/srep17006] [PMID: 26593394]
[12]
Rehberger, M.; Schäfer, J.A.; Krampitz, A.M.; Bretz, A.C.; Jost, L.; Haferlach, T.; Stiewe, T.; Neubauer, A. The nuclear proteins TP73 and CUL4A confer resistance to cytarabine by induction of translesion DNA synthesis via Mono-ubiquitination of PCNA. HemaSphere, 2022, 6(5), e0708.
[http://dx.doi.org/10.1097/HS9.0000000000000708] [PMID: 35519003]
[13]
Olivero, M.; Dettori, D.; Arena, S.; Zecchin, D.; Lantelme, E.; Di Renzo, M.F. The stress phenotype makes cancer cells addicted to CDT2, a substrate receptor of the CRL4 ubiquitin ligase. Oncotarget, 2014, 5(15), 5992-6002.
[http://dx.doi.org/10.18632/oncotarget.2042] [PMID: 25115388]
[14]
Luo, Y.; He, Z.; Liu, W.; Zhou, F.; Liu, T.; Wang, G. DTL is a prognostic biomarker and promotes bladder cancer progression through regulating the AKT/mTOR axis. Oxid. Med. Cell. Longev., 2022, 2022, 1-22.
[http://dx.doi.org/10.1155/2022/3369858] [PMID: 35103094]
[15]
Chen, Y.C.; Chen, I.; Huang, G.J.; Kang, C.; Wang, K.C.; Tsao, M.J.; Pan, H.W. Targeting DTL induces cell cycle arrest and senescence and suppresses cell growth and colony formation through TPX2 inhibition in human hepatocellular carcinoma cells. OncoTargets Ther., 2018, 11, 1601-1616.
[http://dx.doi.org/10.2147/OTT.S147453] [PMID: 29606879]
[16]
Liu, S.; Gu, L.; Wu, N.; Song, J.; Yan, J.; Yang, S.; Feng, Y.; Wang, Z.; Wang, L.; Zhang, Y.; Jin, Y. Overexpression of DTL enhances cell motility and promotes tumor metastasis in cervical adenocarcinoma by inducing RAC1-JNK-FOXO1 axis. Cell Death Dis., 2021, 12(10), 929.
[http://dx.doi.org/10.1038/s41419-021-04179-5] [PMID: 34635635]
[17]
Li, J.; Guo, W.; Xue, W.; Xu, P.; Deng, Z.; Zhang, D.; Zheng, S.; Qiu, X. Long noncoding RNA AURKAPS1 potentiates malignant hepatocellular carcinoma progression by regulating miR-142, miR-155 and miR-182. Sci. Rep., 2019, 9(1), 19645.
[http://dx.doi.org/10.1038/s41598-019-56036-3] [PMID: 31873123]
[18]
Cui, H.; Wang, Q.; Lei, Z.; Feng, M.; Zhao, Z.; Wang, Y.; Wei, G. DTL promotes cancer progression by PDCD4 ubiquitin-dependent degradation. J. Exp. Clin. Cancer Res., 2019, 38(1), 350.
[19]
Denechaud, P.D.; Fajas, L.; Giralt, A. E2F1, a novel regulator of metabolism. Front. Endocrinol., 2017, 8, 311.
[http://dx.doi.org/10.3389/fendo.2017.00311] [PMID: 29176962]
[20]
Sun, T.; Liu, Z.; Yang, Q. The role of ubiquitination and deubiquitination in cancer metabolism. Mol. Cancer, 2020, 19(1), 146.
[http://dx.doi.org/10.1186/s12943-020-01262-x] [PMID: 33004065]
[21]
Zhou, P.; Yan, F. CRL4 ubiquitin pathway and DNA damage response. Adv. Exp. Med. Biol., 2020, 1217, 225-239.
[http://dx.doi.org/10.1007/978-981-15-1025-0_14] [PMID: 31898231]
[22]
Wang, Y.; Liu, X.; Zheng, H.; Wang, Q.; An, L.; Wei, G. Suppression of CUL4A attenuates TGF-β1-induced epithelial-to-mesenchymal transition in breast cancer cells. Int. J. Mol. Med., 2017, 40(4), 1114-1124.
[http://dx.doi.org/10.3892/ijmm.2017.3118] [PMID: 28902348]
[23]
Nakade, H.; Migita, K.; Matsumoto, S.; Wakatsuki, K.; Kunishige, T.; Miyao, S.; Sho, M. Overexpression of Cullin4A correlates with a poor prognosis and tumor progression in esophageal squamous cell carcinoma. Int. J. Clin. Oncol., 2020, 25(3), 446-455.
[http://dx.doi.org/10.1007/s10147-019-01547-2] [PMID: 31535245]
[24]
Meerang, M.; Kreienbühl, J.; Orlowski, V.; Müller, S.L.C.; Kirschner, M.B.; Opitz, I. Importance of cullin4 ubiquitin ligase in malignant pleural mesothelioma. Cancers, 2020, 12(11), 3460.
[http://dx.doi.org/10.3390/cancers12113460] [PMID: 33233664]
[25]
Shan, B.Q.; Wang, X.M.; Zheng, L.; Han, Y.; Gao, J.; Lv, M.D.; Zhang, Y.; Liu, Y.X.; Zhang, H.; Chen, H.S.; Ao, L.; Zhang, Y.L.; Lu, X.; Wu, Z.J.; Xu, Y.; Che, X.; Heger, M.; Cheng, S.Q.; Pan, W.W.; Zhang, X. DCAF13 promotes breast cancer cell proliferation by ubiquitin inhibiting PERP expression. Cancer Sci., 2022, 113(5), 1587-1600.
[http://dx.doi.org/10.1111/cas.15300] [PMID: 35178836]
[26]
Yuan, J.; Han, B.; Hu, H.; Qian, Y.; Liu, Z.; Wei, Z.; Liang, X.; Jiang, B.; Shao, C.; Gong, Y. CUL4B activates Wnt/β-catenin signalling in hepatocellular carcinoma by repressing Wnt antagonists. J. Pathol., 2015, 235(5), 784-795.
[http://dx.doi.org/10.1002/path.4492] [PMID: 25430888]
[27]
Dong, X.; Han, Y.; Zhang, E.; Wang, Y.; Zhang, P.; Wang, C.; Zhong, L.; Li, Q. Tumor suppressor DCAF15 inhibits epithelial-mesenchymal transition by targeting ZEB1 for proteasomal degradation in hepatocellular carcinoma. Aging, 2021, 13(7), 10603-10618.
[http://dx.doi.org/10.18632/aging.202823] [PMID: 33833131]
[28]
Perez-Peña, J.; Corrales-Sánchez, V.; Amir, E.; Pandiella, A.; Ocana, A. Ubiquitin-conjugating enzyme E2T (UBE2T) and denticleless protein homolog (DTL) are linked to poor outcome in breast and lung cancers. Sci. Rep., 2017, 7(1), 17530.
[http://dx.doi.org/10.1038/s41598-017-17836-7] [PMID: 29235520]
[29]
Mandigo, A.C.; Yuan, W.; Xu, K.; Gallagher, P.; Pang, A.; Guan, Y.F.; Shafi, A.A.; Thangavel, C.; Sheehan, B.; Bogdan, D.; Paschalis, A.; McCann, J.J.; Laufer, T.S.; Gordon, N.; Vasilevskaya, I.A.; Dylgjeri, E.; Chand, S.N.; Schiewer, M.J.; Domingo-Domenech, J.; Den, R.B.; Holst, J.; McCue, P.A.; de Bono, J.S.; McNair, C.; Knudsen, K.E. RB/E2F1 as a master regulator of cancer cell metabolism in advanced disease. Cancer Discov., 2021, 11(9), 2334-2353.
[http://dx.doi.org/10.1158/2159-8290.CD-20-1114] [PMID: 33879449]
[30]
Vélez-Cruz, R.; Johnson, D.G. E2F1 and p53 transcription factors as accessory factors for nucleotide excision repair. Int. J. Mol. Sci., 2012, 13(12), 13554-13568.
[http://dx.doi.org/10.3390/ijms131013554] [PMID: 23202967]
[31]
Sun, C.C.; Zhou, Q.; Hu, W.; Li, S.J.; Zhang, F.; Chen, Z.L.; Li, G.; Bi, Z.Y.; Bi, Y.Y.; Gong, F.Y.; Bo, T.; Yuan, Z.P.; Hu, W.D.; Zhan, B.T.; Zhang, Q.; Tang, Q.Z.; Li, D.J. Transcriptional E2F1/2/5/8 as potential targets and transcriptional E2F3/6/7 as new biomarkers for the prognosis of human lung carcinoma. Aging, 2018, 10(5), 973-987.
[http://dx.doi.org/10.18632/aging.101441] [PMID: 29754146]
[32]
Liu, Z.L.; Bi, X.W.; Liu, P.P.; Lei, D.X.; Wang, Y.; Li, Z.M.; Jiang, W.Q.; Xia, Y. Expressions and prognostic values of the E2F transcription factors in human breast carcinoma. Cancer Manag. Res., 2018, 10, 3521-3532.
[http://dx.doi.org/10.2147/CMAR.S172332] [PMID: 30271201]
[33]
Luo, Q.; Wu, X.; Chang, W.; Zhao, P.; Nan, Y.; Zhu, X.; Katz, J.P.; Su, D.; Liu, Z. ARID1A prevents squamous cell carcinoma initiation and chemoresistance by antagonizing pRb/E2F1/c-Myc-mediated cancer stemness. Cell Death Differ., 2020, 27(6), 1981-1997.
[http://dx.doi.org/10.1038/s41418-019-0475-6] [PMID: 31831874]
[34]
Liu, M.; Yan, Q.; Sun, Y.; Nam, Y.; Hu, L.; Loong, J.H.C.; Ouyang, Q.; Zhang, Y.; Li, H.L.; Kong, F.E.; Li, L.; Li, Y.; Li, M.M.; Cheng, W.; Jiang, L.X.; Fang, S.; Yang, X.D.; Mo, J.Q.; Gong, Y.F.; Tang, Y.Q.; Li, Y.; Yuan, Y.F.; Ma, N.F.; Lin, G.; Ma, S.; Wang, J.G.; Guan, X.Y. A hepatocyte differentiation model reveals two subtypes of liver cancer with different oncofetal properties and therapeutic targets. Proc. Natl. Acad. Sci. USA, 2020, 117(11), 6103-6113.
[http://dx.doi.org/10.1073/pnas.1912146117] [PMID: 32123069]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy