Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Palladium (II)-N-heterocyclic Carbene Complexes: Synthesis, Molecular Docking, UV-Vis Absorption and Enzyme Inhibition

Author(s): Sofiane ikhlef*, Sarra Lasmari, El Hassen Mokrani, Raouf Boulcina, Chawki Bensouici, Nevin Gürbüz and Ismail Özdemir

Volume 21, Issue 11, 2024

Published on: 23 June, 2023

Page: [2023 - 2034] Pages: 12

DOI: 10.2174/1570180820666230508154948

Price: $65

Abstract

Background: Alzheimer's disease is the most prevalent form of dementia; it affects the brain regions responsible for thought, memory, and language. Dementia cannot currently be cured by any medication.

Objective: We aimed to synthesize Pd-NHC type PEPPSI and investigate their biological activity in anticholinesterase enzymes.

Methods: In this study, we described preparing a series of Pd-NHC type PEPPSI obtained from their unsymmetrical benzimidazolium salts. These complexes (3a-f) were synthesized from the 2- chloromethyl-1,3-dioxalane benzimidazolium salts, PdCl2, KBr and pyridine. The compounds (3a-f) were tested against two enzymes (AChE and BChE).

Results: The results showed that most of the Palladium–NHC complexes effectively inhibited AChE with IC50values in the range of 4.94 - 40.03 μM, and for BChE are in the range of 4.21 - 21.28 μM. The results showed that the compound (3a) was the most potent inhibitor activity against both AChE and BChE. The inhibition parameter (IC50) was calculated by the spectrophotometric method. The inhibitory effects of the synthesized Pd-NHCs were compared to galantamine as a clinical cholinergic enzyme inhibitor. Additionally, Molecular docking is carried out to estimate the binding pattern between the newly synthesized compounds and both AChE and BChE active sites.

Conclusion: The results demonstrated that all synthesized compounds show excellent to moderate inhibition against the examined enzymes (AChE/BChE).

[1]
Yeong, K.Y.; Liew, W-L.; Murugaiyah, V.; Ang, C.W.; Osman, H.; Tan, S.C. Ethyl nitrobenzoate: A novel scaffold for cholinesterase inhibition. Bioorg. Chem., 2017, 70, 27-33.
[http://dx.doi.org/10.1016/j.bioorg.2016.11.005]
[2]
Kamal, M.A.; Klein, P.; Yu, Q.; Tweedie, D.; Li, Y.; Holloway, H.W.; Greig, N.H. Kinetics of human serum butyrylcholinesterase and its inhibition by a novel experimental Alzheimer therapeutic, bisnorcymserine. J. Alzheimers Dis., 2006, 10(1), 43-51.
[http://dx.doi.org/10.3233/JAD-2006-10108] [PMID: 16988481]
[3]
Muñoz-Torrero, D. Acetylcholinesterase inhibitors as disease-modifying therapies for Alzheimer’s disease. Curr. Med. Chem., 2008, 15(24), 2433-2455.
[http://dx.doi.org/10.2174/092986708785909067] [PMID: 18855672]
[4]
Özgeriş, B.; Göksu, S.; Polat Köse, L.; Gülçin, İ.; Salmas, R.E.; Durdagi, S.; Tümer, F.; Supuran, C.T. Acetylcholinesterase and carbonic anhydrase inhibitory properties of novel urea and sulfamide derivatives incorporating dopaminergic 2-aminotetralin scaffolds. Bioorg. Med. Chem., 2016, 24(10), 2318-2329.
[http://dx.doi.org/10.1016/j.bmc.2016.04.002] [PMID: 27068142]
[5]
Orhan, g.; Orhan, I; Sener, B. Recent developments in natural and synthetic drug research for Alzheimer’s Disease. Lett. Drug Des. Discov., 2006, 3(4), 268-274.
[http://dx.doi.org/10.2174/157018006776743215]
[6]
Khan, S.; Tariq, M.; Ashraf, M.; Abdullah, S.; Rashida, M.; Khalid, M.; Taslimi, P.; Fatima, M.; Zafar, R.; Shafiq, Z. 2-acetylbenzofuran hydrazones and their metal complexes as α-glucosidase inhibitors. Bioorg. Chem., 2020, 102, 104082.
[http://dx.doi.org/10.1016/j.bioorg.2020.104082]
[7]
Huseynova, A.; Kaya, R.; Taslimi, P.; Farzaliyev, V.; Mammadyarova, X.; Sujayev, A.; Tüzün, B.; Kocyigit, U.M.; Alwasel, S.; Gulçin, İ. Design, synthesis, characterization, biological evaluation, and molecular docking studies of novel 1,2-aminopropanthiols substituted derivatives as selective carbonic anhydrase, acetylcholinesterase and α-glycosidase enzymes inhibitors. J. Biomol. Struct. Dyn., 2022, 40(1), 236-248.
[http://dx.doi.org/10.1080/07391102.2020.1811772] [PMID: 32851915]
[8]
Massoulié, J.; Pezzementi, L.; Bon, S.; Krejci, E.; Vallette, F.M. Molecular and cellular biology of cholinesterases. Prog. Neurobiol., 1993, 41(1), 31-91.
[http://dx.doi.org/10.1016/0301-0082(93)90040-Y] [PMID: 8321908]
[9]
Bursal, E.; Taslimi, P.; Gören, A.C.; Gülçin, I. Assessments of anticholinergic, antidiabetic, antioxidant activities and phenolic content of Stachys annua. Biocatal. Agric. Biotechnol., 2020, 28, 101711.
[http://dx.doi.org/10.1016/j.bcab.2020.101711]
[10]
Işık, M.; Akocak, S.; Lolak, N.; Taslimi, P.; Türkeş, C.; Gülçin, İ.; Durgun, M.; Beydemir, Ş. Synthesis, characterization, biological evaluation, and in silico studies of novel 1,3‐diaryltriazene‐substituted sulfathiazole derivatives. Arch. Pharm., 2020, 353(9), 2000102.
[http://dx.doi.org/10.1002/ardp.202000102]
[11]
Gocer, H.; Topal, F.; Topal, M.; Küçük, M.; Teke, D.; Gülçin, İ.; Alwasel, S.H.; Supuran, C.T. Acetylcholinesterase and carbonic anhydrase isoenzymes I and II inhibition profiles of taxifolin. J. Enzyme Inhib. Med. Chem., 2015, 31(3), 1-7.
[http://dx.doi.org/10.3109/14756366.2015.1036051] [PMID: 25893707]
[12]
Digiacomo, M.; Chen, Z.; Wang, S.; Lapucci, A.; Macchia, M.; Yang, X.; Chu, J.; Han, Y.; Pi, R.; Rapposelli, S. Synthesis and pharmacological evaluation of multifunctional tacrine derivatives against several disease pathways of AD. Bioorg. Med. Chem. Lett., 2015, 25(4), 807-810.
[http://dx.doi.org/10.1016/j.bmcl.2014.12.084] [PMID: 25597007]
[13]
Öfele, K. 1,3-Dimethyl-4-imidazolinyliden-(2)-pentacarbonylchrom ein neuer übergangsmetall-carben-komplex. J. Organomet. Chem., 1968, 12(3), P42-P43.
[http://dx.doi.org/10.1016/S0022-328X(00)88691-X]
[14]
Wanzlick, H-W.; Schönherr, H-J. Direct synthesis of a mercury salt-carbene complex. Angew. Chem. Int. Ed. Engl., 1968, 7(2), 141-142.
[http://dx.doi.org/10.1002/anie.196801412]
[15]
Arduengo, A.J., III; Harlow, R.L.; Kline, M. A stable crystalline carbene. J. Am. Chem. Soc., 1991, 113(1), 361-363.
[http://dx.doi.org/10.1021/ja00001a054]
[16]
Hahn, F.E.; Jahnke, M.C. Heterocyclic carbenes: synthesis and coordination chemistry. Angew. Chem. Int. Ed., 2008, 47(17), 3122-3172.
[http://dx.doi.org/10.1002/anie.200703883]
[17]
Sonogashira, K.; Tohda, Y.; Hagihara, N. A convenient synthesis of acetylenes: Catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett., 1975, 16(50), 4467-4470.
[http://dx.doi.org/10.1016/S0040-4039(00)91094-3]
[18]
Erdemir, F.; Aktaş, A.; Barut Celepci, D.; Gök, Y. New (NHC)Pd(II)(PPh3) complexes: Synthesis, characterization, crystal structure and its application on Sonogashira and Mizoroki–Heck cross-coupling reactions. Chem. Pap., 2020, 74(1), 99-112.
[http://dx.doi.org/10.1007/s11696-019-00859-x]
[19]
Aktaş, A.; Akkoç, S.; Gök, Y. Palladium catalyzed Mizoroki–Heck and Suzuki–Miyaura reactions using naphthalenomethyl-substituted imidazolidin-2-ylidene ligands in aqueous media. J. Coord. Chem., 2013, 66(16), 2901-2909.
[http://dx.doi.org/10.1080/00958972.2013.819092]
[20]
Huang, R.; Shaughnessy, K.H. Water-soluble palladacycles as precursors to highly recyclable catalysts for the suzuki coupling of aryl bromides in aqueous solvents. Organometallics, 2006, 25(17), 4105-4112.
[http://dx.doi.org/10.1021/om050940y]
[21]
Torun, L.; Liu, S.; Madras, B.K.; Meltzer, P.C. Synthesis of 3-(4-heteroaryl-phenyl)-8-oxabicyclo[3.2.1]octane-2-carboxylic acid methyl esters. Tetrahedron Lett., 2006, 47(4), 599-603.
[http://dx.doi.org/10.1016/j.tetlet.2005.10.170]
[22]
Şahin, N.; Gürbüz, N.; Karabıyık, H.; Karabıyık, H.; Özdemir, İ. Arylation of heterocyclic compounds by benzimidazole-based N-heterocyclic carbene-palladium(II) complexes. J. Organomet. Chem., 2020, 907, 121076.
[http://dx.doi.org/10.1016/j.jorganchem.2019.121076]
[23]
Türker, F.; Bereket, I.; Barut Celepci, D.; Aktaş, A.; Gök, Y. New Pd-PEPPSI complexes bearing meta-cyanobenzyl-Substituted NHC: Synthesis, characterization, crystal structure and catalytic activity in direct CeH arylation of (Hetero)arenes with aryl bromides. J. Mol. Struct., 2020, 1205, 127608.
[http://dx.doi.org/10.1016/j.molstruc.2019.127608]
[24]
Medici, S.; Peana, M.; Crisponi, G.; Nurchi, V.M.; Lachowicz, J.I.; Remelli, M.; Zoroddu, M.A. Silver coordination compounds: A new horizon in medicine. Coord. Chem. Rev., 2016, 327-328, 349-359.
[http://dx.doi.org/10.1016/j.ccr.2016.05.015]
[25]
Garrison, J.C.; Tessier, C.A.; Youngs, W.J. Synthesis and crystallographic characterization of multi-donor N-heterocyclic carbene chelating ligands and their silver complexes: Potential use in pharmaceuticals. J. Organomet. Chem., 2005, 690(24-25), 6008-6020.
[http://dx.doi.org/10.1016/j.jorganchem.2005.07.102]
[26]
(a) Hopkinson, M.N.; Richter, C.; Schedler, M.; Glorius, F. An overview of N-heterocyclic carbenes. Nature, 2014, 510(7506), 485-496.
[http://dx.doi.org/10.1038/nature13384] [PMID: 24965649];
(b) Poyatos, M.; Mata, J.A.; Peris, E. Complexes with poly(N-heterocyclic carbene) ligands: Structural features and catalytic applications. Chem. Rev., 2009, 109(8), 3677-3707.
[http://dx.doi.org/10.1021/cr800501s] [PMID: 19236010]
[27]
Danopoulos, A.A.; Simler, T.; Braunstein, P. N-heterocyclic carbene complexes of copper, nickel, and cobalt. Chem. Rev., 2019, 119(6), 3730-3961.
[http://dx.doi.org/10.1021/acs.chemrev.8b00505] [PMID: 30843688]
[28]
(a) Fortman, G.C.; Nolan, S.P. N-Heterocyclic carbene (NHC) ligands and palladium in homogeneous cross-coupling catalysis: A perfect union. Chem. Soc. Rev., 2011, 40(10), 5151-5169.
[http://dx.doi.org/10.1039/c1cs15088j] [PMID: 21731956];
(b) Glorius, F. N-Heterocyclic Carbenes in Catalysis-An Introduction. In: Topics in Organometallic Chemistry; Springer: Cham, 2006; pp. 1-20.
[http://dx.doi.org/10.1007/3418_2006_059]
[29]
Aktaş, A.; Celepci, D.B.; Gök, Y.; Aygün, M. 2-Hydroxyethyl-substituted (NHC)Pd(II)PPh3 complexes: synthesis, characterization, crystal structure and its application on sonogashira cross-coupling reactions in aqueous media. ChemistrySelect, 2018, 3(39), 10932-10937.
[http://dx.doi.org/10.1002/slct.201802519]
[30]
Karaaslan, M.G.; Aktaş, A.; Gürses, C.; Gök, Y.; Ateş, B. Chemistry, structure, and biological roles of Au-NHC complexes as TrxR inhibitors. Bioorg. Chem., 2020, 95, 103552.
[http://dx.doi.org/10.1016/j.bioorg.2019.103552]
[31]
Al Nasr, I.; Touj, N.; Koko, W.; Khan, T.; Özdemir, I.; Yaşar, S.; Hamdi, N. Biological activities of NHC–Pd(II) complexes based on benzimidazolylidene N-heterocyclic carbene (NHC) ligands bearing aryl substituents. Catalysts, 2020, 10(10), 1190.
[http://dx.doi.org/10.3390/catal10101190]
[32]
Düşünceli, S.D.; Ayaz, D.; Üstün, E.; Günal, S.; Özdemir, N.; Dinçer, M.; Özdemir, İ. Synthesis, antimicrobial properties, and theoretical analysis of benzimidazole-2-ylidene silver(I) complexes. J. Coord. Chem., 2020, 73(13), 1967-1986.
[http://dx.doi.org/10.1080/00958972.2020.1812587]
[33]
Slimani, I.; Mansour, L.; Abutaha, N.; Harrath, A.H.; Al-Tamimi, J.; Gürbüz, N.; Özdemir, I.; Hamdi, N. Synthesis, structural characterization of silver(I)-NHC complexes and their antimicrobial, antioxidant and antitumor activities. J. King Saud Univ. Sci., 2020, 32(2), 1544-1554.
[http://dx.doi.org/10.1016/j.jksus.2019.12.010]
[34]
Hickey, J.L.; Ruhayel, R.A.; Barnard, P.J.; Baker, M.V.; Berners-Price, S.J.; Filipovska, A. Mitochondria-targeted chemotherapeutics: The rational design of gold(I) N-heterocyclic carbene complexes that are selectively toxic to cancer cells and target protein selenols in preference to thiols. J. Am. Chem. Soc., 2008, 130(38), 12570-12571.
[http://dx.doi.org/10.1021/ja804027j] [PMID: 18729360]
[35]
Mercs, L.; Albrecht, M. Beyond catalysis: N-heterocyclic carbene complexes as components for medicinal, luminescent, and functional materials applications. Chem. Soc. Rev., 2010, 39(6), 1903-1912.
[http://dx.doi.org/10.1039/b902238b] [PMID: 20502793]
[36]
Lasmari, S.; Gürbüz, N.; Boulcina, R.; Özdemir, N.; Özdemir, İ. Synthesis of [PdBr2(benzimidazole-2-ylidene)(pyridine)] complexes and their catalytic activity in the direct C H bond activation of 2-substituted heterocycles. Polyhedron, 2021, 199, 115091.
[http://dx.doi.org/10.1016/j.poly.2021.115091]
[37]
Lasmari, S.; Ikhlef, S.; Boulcina, R.; Mokrani, E.H.; Bensouici, C.; Gürbüz, N.; Dündar, M.; Karcı, H.; Özdemir, İ.; Koç, A.; Özdemir, I.; Debache, A. New silver Nheterocyclic carbenes complexes: Synthesis, molecular docking study and biological activities evaluation as cholinesterase inhibitors and antimicrobials. J. Mol. Struct., 2021, 1238, 130399.
[http://dx.doi.org/10.1016/j.molstruc.2021.130399]
[38]
Ellman, G.L.; Courtney, K.D.; Andres, V., Jr; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 1961, 7(2), 88-95.
[http://dx.doi.org/10.1016/0006-2952(61)90145-9]
[39]
Release, S. 2015-1: Maestro, version 10.1; Schrodinger, LLC: New York, 2015.
[40]
Sandeli, A.E.K.; Khiri-Meribout, N.; Benzerka, S.; Gürbüz, N.; Dündar, M.; Karcı, H.; Bensouici, C.; Mokrani, E.H.; Özdemir, İ.; Koç, A.; Özdemir, N.; Debache, A.; Özdemir, İ. Silver (I)-N-heterocyclic carbene complexes: Synthesis and characterization, biological evaluation of Anti-Cholinesterase, anti-alpha-amylase, anti-lipase, and antibacterial activities, and molecular docking study. Inorg. Chim. Acta, 2021, 525, 120486.
[http://dx.doi.org/10.1016/j.ica.2021.120486]
[41]
Demmak, R.G.; Bordage, S.; Bensegueni, A.; Boutaghane, N.; Hennebelle, T.; Mokrani, E.H.; Sahpaz, S. Chemical constituents from Solenostemma argel and their cholinesterase inhibitory activity. Nat. Prod. Sci., 2019, 25(2), 115-121.
[http://dx.doi.org/10.20307/nps.2019.25.2.115]
[42]
Mokrani, E.H.; Abdelaziz, M.A.; Akakba, N.; Teniou, S.; Demmam, R.G.; Bensegueni, A. Identification of new potent Tubulin Colchicine Binding Site inhibitors for potential antitumor drug using molecular docking and drug-likeness prediction. Cumhuriyet Science Journal., 2022, 43(3), 398-403.
[http://dx.doi.org/10.17776/csj.1063966]
[43]
Jones, G.; Willett, P.; Glen, R.C. Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J. Mol. Biol., 1995, 245(1), 43-53.
[http://dx.doi.org/10.1016/S0022-2836(95)80037-9] [PMID: 7823319]
[44]
The PyMOL Molecular Graphics System Version 2.2.3. Available From: https://pymol.org
[45]
Ruiz-Botella, S.; Peris, E. Phenylene- and Biphenylene-Bridged Bis-Imidazolylidenes of Palladium. Organometallics, 2014, 33(19), 5509-5516.
[http://dx.doi.org/10.1021/om500765u]
[46]
Wang, H.M.J.; Lin, I.J.B. Facile synthesis of silver(i)−carbene complexes. Useful carbene transfer agents. Organometallics, 1998, 17(5), 972-975.
[http://dx.doi.org/10.1021/om9709704]
[47]
Kaloğlu, N.; Özdemir, İ.; Günal, S.; Özdemir, İ. Synthesis and antimicrobial activity of bulky 3,5‐di‐ tert ‐butyl substituent‐containing silver–N‐heterocyclic carbene complexes. Appl. Organomet. Chem., 2017, 31(11), e3803.
[http://dx.doi.org/10.1002/aoc.3803]
[48]
Akkoç, S.; Gök, Y.; İlhan, İ.Ö.; Kayser, V. N -Methylphthalimide-substituted benzimidazolium salts and PEPPSI Pd–NHC complexes: Synthesis, characterization and catalytic activity in carbon–carbon bond-forming reactions. Beilstein J. Org. Chem., 2016, 12, 81-88.
[http://dx.doi.org/10.3762/bjoc.12.9] [PMID: 26877810]
[49]
Graham, B.; Fayter, A.E.R.; Gibson, M.I. Synthesis of anthracene conjugates of truncated antifreeze protein sequences: effect of the end group and photocontrolled dimerization on ice recrystallization inhibition activity. Biomacromolecules, 2019, 20(12), 4611-4621.
[http://dx.doi.org/10.1021/acs.biomac.9b01538] [PMID: 31714763]
[50]
Arıcı, H.; Sündü, B.; Fırıncı, R.; Ertuğrul, E.; Özdemir, N.; Çetinkaya, B.; Metin, Ö.; Günay, M.E. The synthesis of new PEPPSI-type N-heterocyclic carbene (NHC)-Pd(II) complexes bearing long alkyl chain as precursors for the synthesis of NHC-stabilized Pd(0) nanoparticles and their catalytic applications. J. Organomet. Chem., 2021, 934, 121633.
[http://dx.doi.org/10.1016/j.jorganchem.2020.121633]
[51]
Yamali, C.; Gül, H.I.; Ece, A. Synthesis, molecular modeling, and biological evaluation of 4-[5-aryl-3-(thiophen-2-yl)-4,5-dihydro-1H-pyrazol-1-yl] benzenesulfonamides toward acetylcholinesterase, carbonic anhydrase I and II enzymes. Chem. Biol. Drug Des., 2018, 91(4), 854-866.
[52]
Mokrani, E.H.; Bensegueni, A.; Chaput, L.; Beauvineau, C.; Djeghim, H.; Mouawad, L. identification of new potent acetylcholinesterase inhibitors using virtual screening and in vitro approaches. Mol. Inform., 2019, 38(5), 1800118.
[http://dx.doi.org/10.1002/minf.201800118] [PMID: 30725535]

© 2025 Bentham Science Publishers | Privacy Policy