Generic placeholder image

Current Nanomaterials

Editor-in-Chief

ISSN (Print): 2405-4615
ISSN (Online): 2405-4623

Research Article

An Exceptional Valorization of CuO Nanoparticles in Ionic Liquids as an Efficient Medium for the Electrophilic Substitution of Indole Towards the Formation of Bis(indolyl)methanes

Author(s): Sangita Bhirud, Chandrakant Sarode, Gaurav Gupta* and Ganesh Chaudhari*

Volume 9, Issue 2, 2024

Published on: 19 May, 2023

Page: [148 - 157] Pages: 10

DOI: 10.2174/2405461508666230508124607

Price: $65

Abstract

Aim: Ionic liquids are promising green solvents with simple but unique structure-related physical properties such as negligible vapour pressure, exceptional thermal conductivity, remarkable thermal stability and their suitability and inertness towards a broad range of catalytic applications. CuO NPs have been addressed as a cost-effective and a reagent of a choice that necessitates only mild reaction conditions to offer a high yield of the desired products with exceptional selectivity in a short duration of time. Therefore, in the present work, attempts have been made to explore the catalytic potentials of CuO NPs in an ionic liquid medium to synthesize biologically important bis(indolyl)methanes.

Background: Catalytic explorations of metal oxide nanoparticles in ionic liquids offers a cooperative effect that has a significant impact on the kinetics as well as on the outcome of the reaction. Therefore, such catalytic systems in the present times have seized the scientific community's interest from the perspectives of sustainable development in synthetic organic chemistry. The combination of metal oxide nanoparticles with highly tunable ionic liquids is not only used to synthesize simple organic molecules but also explored in the synthesis of complex organic molecules of high commercial and biological relevance.

Objectives: The current work offers a rapid and robust protocol for synthesizing bis(indolyl)methanes via electrophilic substitution reaction between indole and various aldehydes in the presence of a CuO nanoparticles-ionic liquid system. The discussion focuses on the high tolerance of different functionalities by the catalytic system leading to the synthesis of bis(indolyl)methanes.

Methods: CuO NPs have been synthesized via the co-precipitation method using ionic liquid. The applicability of metal oxide nanoparticles-IL matrix was further investigated in synthesizing bis(indolyl)methanes.

Results: The FT-IR absorption below 600 cm-1 and the XRD pattern showing all the peaks in the diffraction diagram revealed the formation of CuO NPs. FESEM images show the flake-shaped morphology of CuO NPs and are found to be separated from the agglomerated clusters.

Conclusion: Ionic liquid-CuO NPs matrix reveals good to exceptional catalytic properties, and their advancements as a catalytic system at room temperature open new avenues for synthetic organic chemists.

Graphical Abstract

[1]
Mazaahir K, Neeraj Kumar M. Green Chemistry-Environmentally Benign Approaches. Croatia: InTech 2012. Available from:
[http://dx.doi.org/10.5772/1996]
[2]
Wu XF, Li Y. Transition Metal-Catalyzed Benzofuran Synthesis Transition Metal-Catalyzed Heterocycle Synthesis Series. US: Elsevier Inc. 2017.
[3]
Gribble GW. Heterocyclic Scaffolds II: Reactions and Applications of Indoles. Berlin, Heidelberg: Springer-Verlag 2010.
[http://dx.doi.org/10.1007/978-3-642-15733-2]
[4]
Houlihan WJ. Indoles. Canada: John Wiley & Sons, Inc. 1972.
[5]
Jiang H, Pan X, Huang L, Zhao J. Shi, D. Synthesis of 4H-cyclopenta[c]furans via cooperative PdCl2-FeCl2 catalyzed cascade cyclization reaction involving a novel acyl rearrangement process. Chem Commun (Camb) 2012; 48: 4698-700.
[http://dx.doi.org/10.1039/c2cc31138k] [PMID: 22473222]
[6]
Schumacher RF, Honraedt A, Bolm C. Synthesis of N-Methyl-2-indolyl- and N-methyl-2-benzo[b]furyl-substituted sulfoximines by Pd/Cu co-catalyzed domino cross-coupling/cyclization reactions. Eur J Org Chem 2012; 2012(20): 3737-41.
[http://dx.doi.org/10.1002/ejoc.201200573]
[7]
Wang Y, Liu L, Zhang L. Organic syntheses. Chem Sci (Camb) 2013; 4: 739-46.
[http://dx.doi.org/10.1039/C2SC21333H]
[8]
Sainsbury M. Heterocyclic Chemistry. UK: Royal Society of Chemistry 2001.
[http://dx.doi.org/10.1039/9781847551061]
[9]
Metz P. Stereoselective Heterocyclic Synthesis III. Berlin: Springer-Verlag 2001.
[http://dx.doi.org/10.1007/3-540-44726-1]
[10]
Joule JA, Mills K. Heterocyclic Chemistry. UK: John Wiley & Sons 2010.
[11]
Joule JA, Mills K. Heterocyclic Chemistry at a Glance. UK: John Wiley & Sons 2013.
[12]
Oparin AI. The Origin of Life. New York: Dover Publications, Inc. 1965.
[13]
Hatti I, Tokala VNB. Synthesis, anti-cancer evaluation and molecular docking studies of aryl bisindole derivatives. Chem Data Collect 2020; 29: 100511.
[http://dx.doi.org/10.1016/j.cdc.2020.100511]
[14]
Meshram GA, Patil VD. Simple and efficient method for synthesis of bis(indolyl) methanes with Cu(BF4)2·SiO2 under mild conditions. Synth Commun 2009; 40(1): 29-38.
[http://dx.doi.org/10.1080/00397910902916064]
[15]
Khadkikar P, Goud NS, Mohammed A, et al. An efficient and facile green synthesis of bisindole methanes as potential Mtb FtsZ inhibitors. Chem Biol Drug Des 2018; 92(6): 1933-9.
[http://dx.doi.org/10.1111/cbdd.13363] [PMID: 30003661]
[16]
Hui YH, Chen YC, Gong HW, Xie ZF. Convenient synthesis of bis(indolyl)alkanes by dithiocarbohydrazone Schiff base/Zn (ClO4)2·6H2O catalyzed Friedel–Crafts reaction of indoles with imines. Chin Chem Lett 2014; 25(1): 163-5.
[http://dx.doi.org/10.1016/j.cclet.2013.09.010]
[17]
Nguyen NK, Tuan HM, Yen BH, et al. Magnetically recyclable CuFe2O4 catalyst for efficient synthesis of bis(indolyl)methanes using indoles and alcohols under mild condition. Catal Commun 2020; 106240.
[http://dx.doi.org/10.1016/j.catcom.2020.106240]
[18]
Azizi N, Gholibeghlo E, Manocheri Z. Green procedure for the synthesis of bis(indolyl)methanes in water. Sci Iran 2012; 19(3): 574-8.
[http://dx.doi.org/10.1016/j.scient.2011.11.043]
[19]
Heravi MM, Bakhtiari K, Fatehi A, Bamoharram FF. A convenient synthesis of bis(indolyl)methanes catalyzed by diphosphooctadecatungstic acid. Catal Commun 2008; 9(2): 289-92.
[http://dx.doi.org/10.1016/j.catcom.2007.07.039]
[20]
Kokare ND, Sangshetti JN, Shinde DB. Oxalic acid as a catalyst for efficient synthesis of bis-(indolyl)methanes, and 14-aryl-14H-dibenzo[a,j]xanthenes in water. Chin Chem Lett 2008; 19(10): 1186-9.
[http://dx.doi.org/10.1016/j.cclet.2008.07.015]
[21]
Beltrá J, Gimeno MC, Herrera RP. A new approach for the synthesis of bisindoles through AgOTf as catalyst. Beilstein J Org Chem 2014; 10: 2206-14.
[http://dx.doi.org/10.3762/bjoc.10.228] [PMID: 25246979]
[22]
Babu G, Sridhar N, Perumal PT. A convenient method of synthesis of bisindolylmethanes: Indium trichloride–catalysed reactions of indole with aldehydes and Schiff’s bases. Synth Commun 2000; 30(9): 1609-14.
[http://dx.doi.org/10.1080/00397910008087197]
[23]
Siadatifard SH, Abdoli-Senejani M, Bodaghifard MA. An efficient method for synthesis of bis(indolyl)methane and di-bis(indolyl)methane derivatives in environmentally benign conditions using TBAHS. Cogent Chem 2016; 2(1): 1188435.
[http://dx.doi.org/10.1080/23312009.2016.1188435]
[24]
Giri BY, Prabhavati Devi BLA, Vijayalakshmi K, Prasad RBN, Lingaiah N, Sai Prasad PS. A mild and efficient synthesis of bis(indolyl)methane derivatives catalyzed by monoammonium salt of 12-tungstophosphoric acid. Indian J Chem 2012; 51B: 1731-7.
[25]
Srinivasa A, Nandeshwarappa BP, Kiran BM, Mahadevan KM. Antimony trichloride catalyzed condensation of indole and carbonyl compounds: Synthesis of Bis(indolyl)methanes. Phosphorus Sulfur Silicon Relat Elem 2008; 182(10): 2243-9.
[http://dx.doi.org/10.1080/10426500701418265]
[26]
Pawar RP, Bhagat DS, Shisodia SU, Bhosale HD, Pandule SS, Kendrekar PS. Rapid access to synthesis of bisindole derivatives using 2-morpholino ethanesulphonic acid. Academic J Chem 2016; 1(1): 26-32.
[27]
Chakraborti AK, Roy SR, Kumar D, Chopra P. Catalytic application of room temperature ionic liquids: [bmim][MeSO4] as a recyclable catalyst for synthesis of bis(indolyl)methanes. Ion-fishing by MALDI-TOF-TOF MS and MS/MS studies to probe the proposed mechanistic model of catalysis. Green Chem 2008; 10(10): 1111.
[http://dx.doi.org/10.1039/b807572g]
[28]
Das PJ, Das J. Synthesis of aryl/alkyl(2,2′-bis-3-methylindolyl) methanes and aryl(3,3′-bis indolyl)methanes promoted by secondary amine based ionic liquids and microwave irradiation. Tetrahedron Lett 2012; 53(35): 4718-20.
[29]
Qureshi ZS, Deshmukh KM, Bhanage BM. Applications of ionic liquids in organic synthesis and catalysis. Clean Technol Environ Policy 2014; 16(8): 1487-513.
[http://dx.doi.org/10.1007/s10098-013-0660-0]
[30]
Banothu J, Gali R, Velpula R, Bavantula R, Crooks PA. An eco-friendly improved protocol for the synthesis of bis(3-indolyl)methanes using poly(4-vinylpyridinium)hydrogen sulfate as efficient, heterogeneous, and recyclable solid acid catalyst. ISRN Org Chem 2013; 2013: 1-5.
[http://dx.doi.org/10.1155/2013/616932] [PMID: 24052864]
[31]
Sadaphal S, Shelke K, Sonar S, Shingare M. Ionic liquid promoted synthesis of bis(indolyl) methanes. Open Chem 2008; 6(4): 622-6.
[http://dx.doi.org/10.2478/s11532-008-0069-5]
[32]
Tran PH, Nguyen XTT, Chau DKN. A brønsted-acidic ionic liquid gel as an efficient and recyclable heterogeneous catalyst for the synthesis of bis(indolyl)methanes under solvent-free sonication. Asian J Org Chem 2018; 7(1): 232-9.
[http://dx.doi.org/10.1002/ajoc.201700596]
[33]
Veisi H, Hemmati S, Veisi H. Highly efficient method for synthesis of bis(indolyl)methanes catalyzed by fecl 3− based ionic liquid. J Chin Chem Soc (Taipei) 2009; 56(2): 240-5.
[http://dx.doi.org/10.1002/jccs.200900034]
[34]
Wang X, Aldrich CC. Development of an imidazole salt catalytic system for the preparation of bis(indolyl)methanes and bis(naphthyl)methane. PLoS One 2019; 14(4): e0216008.
[http://dx.doi.org/10.1371/journal.pone.0216008] [PMID: 31022274]
[35]
Choudhary S, Pandey K, Budania S, Kumar A. Functionalized ionic liquid-assisted chromatography-free synthesis of bis(indolyl)methanes. Mol Divers 2017; 21(1): 155-62.
[http://dx.doi.org/10.1007/s11030-016-9713-8] [PMID: 28078549]
[36]
Ji SJ, Loh TP, Zhou MF, Gu DG, Wang SY. Efficient synthesis of bis(indolyl)methanes catalyzed by lewis acids in ionic liquids. Synlett 2003; (13): 2077-9.
[http://dx.doi.org/10.1055/s-2003-41464]
[37]
Fadavipoor E, Badri R, Kiasat A, Sanaeishoar H. Copper oxide nanoparticles supported on ionic liquid-modified magnetic nanoparticles: A novel magnetically recyclable catalyst for the synthesis of 3,4-dihydropyrano[c]chromene derivatives. Polycycl Arom Compd 2018; 1-13.
[http://dx.doi.org/10.1080/10406638.2018.1526809]
[38]
Patil S, Mane A, Dhongade-Desai S. CuO nanoparticles as a reusable catalyst for the synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-dione derivatives under solvent-free conditions. J Iran Chem Soc 2019; 16: 1665-75.
[http://dx.doi.org/10.1007/s13738-019-01640-3]
[39]
Mehrabi H, Kazemi-Mireki M. CuO nanoparticles: An efficient and recyclable nanocatalyst for the rapid and green synthesis of 3,4-dihydropyrano[c]chromenes. Chin Chem Lett 2011; 22(12): 1419-22.
[http://dx.doi.org/10.1016/j.cclet.2011.06.003]
[40]
Ojha NK, Zyryanov GV, Majee A, Charushin VN, Chupakhin ON, Santra S. Copper nanoparticles as inexpensive and efficient catalyst: A valuable contribution in organic synthesis. Coord Chem Rev 2017; 353: 1-57.
[http://dx.doi.org/10.1016/j.ccr.2017.10.004]
[41]
Din MI, Arshad F, Hussain Z, Mukhtar M. Green adeptness in the synthesis and stabilization of copper nanoparticles: Catalytic, antibacterial, cytotoxicity, and antioxidant activities. Nanoscale Res Lett 2017; 12(1): 638.
[http://dx.doi.org/10.1186/s11671-017-2399-8] [PMID: 29282555]
[42]
Amaliyah S, Pangesti DP, Masruri M, Sabarudin A, Sumitro SB. Green synthesis and characterization of copper nanoparticles using Piper retrofractum Vahl extract as bioreductor and capping agent. Heliyon 2020; 6(8): e04636.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04636] [PMID: 32793839]
[43]
Raut D, Wankhede K, Vaidya V, et al. Copper nanoparticles in ionic liquids: Recyclable and efficient catalytic system for 1,3-dipolar cycloaddition reaction. Catal Commun 2009; 10(8): 1240-3.
[http://dx.doi.org/10.1016/j.catcom.2009.01.027]
[44]
Knapp R, Wyrzgol SA, Jentys A, Lercher JA. Water–gas shift catalysts based on ionic liquid mediated supported Cu nanoparticles. J Catal 2010; 276(2): 280-91.
[http://dx.doi.org/10.1016/j.jcat.2010.09.019]
[45]
Nador F, Volpe MA, Alonso F, Radivoy G. Synthesis of N-aryl imidazoles catalyzed by copper nanoparticles on nanosized silica-coated maghemite. Tetrahedron 2014; 70(36): 6082-7.
[http://dx.doi.org/10.1016/j.tet.2014.04.003]
[46]
Pai G, Chattopadhyay AP. N-Arylation of nitrogen containing heterocycles with aryl halides using copper nanoparticle catalytic system. Tetrahedron Lett 2016; 57(29): 3140-5.
[http://dx.doi.org/10.1016/j.tetlet.2016.06.019]
[47]
Yadav JS, Reddy BVS, Sunitha S. Efficient and eco-friendly process for the synthesis of bis(1h-indol-3-yl)methanes using ionic liquids. Adv Synth Catal 2003; 345(3): 349-52.
[48]
Gardas RL, Dagade DH, Coutinho JAP, Patil KJ. Thermodynamic studies of ionic interactions in aqueous solutions of imidazolium-based ionic liquids [Emim][Br] and [Bmim][Cl]. J Phys Chem B 2008; 112(11): 3380-9.
[http://dx.doi.org/10.1021/jp710351q] [PMID: 18302364]
[49]
Patil PP, Shaikh VR, Gupta GR, Patil PD, Borse AU, Patil KJ. Studies of viscosity coefficient and density properties of imidazolium based ionic liquids in aqueous solutions at different temperatures. ChemistrySelect 2018; 3(20): 5593-9.
[http://dx.doi.org/10.1002/slct.201800322]
[50]
Patil PD, Shaikh VR, Gupta GR, Hundiwale DG, Patil KJ. Studies of volumetric and viscosity properties in aqueous solutions of imidazolium based ionic liquids at different temperatures and at ambient pressure. J Solution Chem 2019; 48(1): 45-60.
[http://dx.doi.org/10.1007/s10953-019-00845-7]
[51]
Singh A, Raj T, Singh N. Highly selective and efficient reduction of nitroarenes by imidazolium salt stabilized copper nanoparticles in aqueous medium. Catal Lett 2015; 145(8): 1606-11.
[http://dx.doi.org/10.1007/s10562-015-1531-6]
[52]
Sarode CH, Gupta GR, Chaudhari GR, Waghulde GP, Waghulde GP. Investigations related to the suitability of imidazolium based room temperature ionic liquids and pyridinium based sponge ionic liquids towards the synthesis of 2-aminothiazole compounds as reaction medium and catalyst. Curr Green Chem 2018; 5(3): 191-7.
[http://dx.doi.org/10.2174/2213346105666181001111019]
[53]
Sarode C, Yeole S, Chaudhari G, Waghulde G, Gupta G. Development of the room temperature protocol based on room temperature ionic liquids and surfactant ionic liquids for the synthesis of derivatives of 2-amino-thiazoles and thermo- physical analysis of the synthesized derivatives using TGA-DSC. Curr Phys Chem 2021; 11(1): 18-26.
[http://dx.doi.org/10.2174/1877946810999200519102040]
[54]
Gupta GR, Chaudhari GR, Tomar PA, Waghulde GP, Patil KJ. Molten ammonium salt as a solvent for Menschutkin quaternization reaction (synthesis of ionic liquids) and other heterocyclic compounds. Asian J Chem 2012; 24(10): 4675-8.
[55]
Tamaekong N, Liewhiran C, Phanichphant S. Synthesis of thermally spherical cuo nanoparticles. J Nanomater 2014; 2014: 1-5.
[http://dx.doi.org/10.1155/2014/507978]
[56]
Rangel WM, Boca Santa RAA, Riella HG. A facile method for synthesis of nanostructured copper (II) oxide by coprecipitation. J Mater Res Technol 2020; 9(1): 994-1004.
[http://dx.doi.org/10.1016/j.jmrt.2019.11.039]
[57]
Moradi L, Ataei Z. Efficient and green pathway for one-pot synthesis of spirooxindoles in the presence of CuO nanoparticles. Green Chem Lett Rev 2017; 10(4): 380-6.
[http://dx.doi.org/10.1080/17518253.2017.1390611]
[58]
Fardood ST, Ramazani A. Green synthesis and characterization of copper oxide nanoparticles using coffee powder extract. J Nanostruct 2016; 6(2): 167-71.
[http://dx.doi.org/10.7508/jns.2016.02.009]
[59]
Luna IZ, Hilary LN, Chowdhury AMS, Gafur MA, Khan N, Khan RA. Preparation and characterization of copper oxide nanoparticles synthesized via chemical precipitation method. OAlib 2015; 2(3): 1-8.
[http://dx.doi.org/10.4236/oalib.1101409]
[60]
Gawande MB, Goswami A, Felpin FX, Asefa T. Cu and Cu-based nanoparticles: Synthesis and applications in catalysis. Chem Rev 2016; 116(6): 3722-811.
[61]
Prakash S, Elavarasan N, Venkatesan A, Subashini K, Sowndharya M, Sujatha V. Green synthesis of copper oxide nanoparticles and its effective applications in Biginelli reaction, BTB photodegradation and antibacterial activity. Adv Powder Technol 2018; 29(12): 3315-26.
[http://dx.doi.org/10.1016/j.apt.2018.09.009]
[62]
Gupta G, Chaudhari G, Tomar P, et al. Synthesis of bis(indolyl)methanes using molten N-butylpyridinium bromide. Eur J Chem 2012; 3(4): 475-9.
[http://dx.doi.org/10.5155/eurjchem.3.4.475-479.709]
[63]
Gupta GR, Girase TR, Kapdi AR. Ionic liquid as a sustainable reaction medium for diels-alder reaction Encyclopedia of Ionic Liquids. Singapore: Springer 2019.
[http://dx.doi.org/10.1007/978-981-10-6739-6_27-1]
[64]
Tayebee R, Amini MM, Abdollahi N, Aliakbari A, Rabiei S, Ramshini H. Magnetic inorganic-organic hybrid nanomaterial for the catalytic preparation of bis(indolyl)aryl methanes under solvent free conditions: Preparation and characterization of H5PW10V2O40/pyridine –Fe3O4 nanoparticles. Appl Catal A Gen 2013; 468: 75-87.
[http://dx.doi.org/10.1016/j.apcata.2013.07.065]
[65]
Gupta GR, Patil PD, Shaikh VR, Kolhapurkar RR, Dagade DH, Patil KJ. Analytical estimation of water, specific heat capacity and thermal profiles associated with enzymatic model compound β-cyclodextrin. Curr Sci 2018; 114(12): 2525-9.
[http://dx.doi.org/10.18520/cs/v114/i12/2525-2529]
[66]
Ramsingh Girase T, Patil KJ, Kapdi AR, Gupta GR. Palladium acetate/[CPy][Br]: An efficient catalytic system towards the synthesis of biologically relevant stilbene derivatives via heck cross‐coupling reaction. ChemistrySelect 2020; 5(14): 4251-62.
[http://dx.doi.org/10.1002/slct.201904837]
[67]
Dupont J, Fonseca GS, Umpierre AP, Fichtner PFP, Teixeira SR. Transition-metal nanoparticles in imidazolium ionic liquids: Recyclable catalysts for biphasic hydrogenation reactions. J Am Chem Soc 2002; 124(16): 4228-9.
[http://dx.doi.org/10.1021/ja025818u] [PMID: 11960449]
[68]
Mayank M, Singh A, Raj P, et al. Zwitterionic liquid (ZIL) coated CuO as an efficient catalyst for the green synthesis of bis-coumarin derivatives via one-pot multi-component reactions using mechanochemistry. New J Chem 2017; 41(10): 3872-81.
[http://dx.doi.org/10.1039/C6NJ03763A]
[69]
Gupta GR, Chaudhari GR, Tomar PA, et al. Mass spectrometry of ionic liquids: ESI-MS/MS studies. Asian J Chem 2013; 25(15): 8261-5.
[http://dx.doi.org/10.14233/ajchem.2013.14702]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy