Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Microwave-induced Reactions for Pyrrole Synthesis

Author(s): Monika Kamboj, Sangeeta Bajpai and Bimal Krishna Banik*

Volume 27, Issue 7, 2023

Published on: 19 June, 2023

Page: [559 - 567] Pages: 9

DOI: 10.2174/1385272827666230508124450

Price: $65

Abstract

Heterocycles are organic compounds, the most important pharmaceutical skeleton widely distributed in nature. Many of them possess medicinal as well as pharmacological activities. Pyrroles are well-known five-member-privileged scaffolds with pharmaceutical potential. Pyrrole is the component of complex macrocycles, including porphyrins of heme and chlorophylls. Nowadays, the development of microwave-supported synthetic strategies for such biologically relevant heterocycles is an important objective. Microwave-induced pyrrole synthesis has become an environmentally benign route in organic transformation with reduced reaction time and high yields. This mini-review focuses on the eco-friendly microwaveinduced synthesis of pyrroles, their derivatives, and their potential pharmacological applications, covering literature up to 2022.

Graphical Abstract

[1]
Taylor, A.P.; Robinson, R.P.; Fobian, Y.M.; Blakemore, D.C.; Jones, L.H.; Fadeyi, O. Modern advances in heterocyclic chemistry in drug discovery. Org. Biomol. Chem., 2016, 14(28), 6611-6637.
[http://dx.doi.org/10.1039/C6OB00936K] [PMID: 27282396]
[2]
Anastas, P.T.; Warner, J. Green Chemistry. Theory and Practice; Oxford University Press: Oxford, 1998.
[3]
Baig, R.B.N.; Varma, R.S. Alternative energy input: Mechanochemical, microwave and ultrasound-assisted organic synthesis. Chem. Soc. Rev., 2012, 41(4), 1559-1584.
[http://dx.doi.org/10.1039/C1CS15204A] [PMID: 22076552]
[4]
Colombo, M.; Peretto, I. Chemistry strategies in early drug discovery: An overview of recent trends. Drug Discov. Today, 2008, 13(15-16), 677-684.
[http://dx.doi.org/10.1016/j.drudis.2008.03.007] [PMID: 18675762]
[5]
Takkellapati, S. Microwave-assisted chemical transformations. Curr. Org. Chem., 2013, 17(20), 2305-2322.
[http://dx.doi.org/10.2174/13852728113179990042]
[6]
Santagada, V.; Frecentese, F.; Perissutti, E.; Fiorino, F.; Severino, B.; Caliendo, G. Microwave assisted synthesis: A new technology in drug discovery. Mini Rev. Med. Chem., 2009, 9(3), 340-358.
[http://dx.doi.org/10.2174/1389557510909030340] [PMID: 19275727]
[7]
Tiwari, S.; Talreja, S. Green chemistry and microwave irradiation technique: A review. J. Pharm. Res. Int., 2022, 34(39A), 74-79.
[http://dx.doi.org/10.9734/jpri/2022/v34i39A36240]
[8]
Garella, D.; Borretto, E.; Di Stilo, A.; Martina, K.; Cravotto, G.; Cintas, P. Microwave-assisted synthesis of N-heterocycles in medicinal chemistry. MedChemComm, 2013, 4(10), 1323-1343.
[http://dx.doi.org/10.1039/c3md00152k]
[9]
Montgomery, T.D.; Rawal, V.H. Palladium-catalyzed modular synthesis of substituted piperazines and related nitrogen heterocycles. Org. Lett., 2016, 18(4), 740-743.
[http://dx.doi.org/10.1021/acs.orglett.5b03708] [PMID: 26824482]
[10]
Domagala, A.; Jarosz, T.; Lapkowski, M. Living on pyrrolic foundations-advances in natural and artificial bioactive pyrrole derivatives. Eur. J. Med. Chem., 2015, 100, 176-187.
[http://dx.doi.org/10.1016/j.ejmech.2015.06.009] [PMID: 26087028]
[11]
Chen, G.; Liu, Z.; Zhang, Y.; Shan, X.; Jiang, L.; Zhao, Y.; He, W.; Feng, Z.; Yang, S.; Liang, G. Synthesis and anti-inflammatory evaluation of novel benzimidazole and imidazopyridine derivatives. ACS Med. Chem. Lett., 2013, 4(1), 69-74.
[http://dx.doi.org/10.1021/ml300282t] [PMID: 24900565]
[12]
Roomi, M.W.; MacDonald, S.F. The Hantzsch pyrrole synthesis. Can. J. Chem., 1970, 48(11), 1689-1697.
[http://dx.doi.org/10.1139/v70-279]
[13]
Castro, A.J.; Giannini, D.D.; Greenlee, W.F. Synthesis of a 2, 3′-bipyrrole. Denitrosation in the Knorr pyrrole synthesis. J. Org. Chem., 1970, 35(8), 2815-2816.
[http://dx.doi.org/10.1021/jo00833a080]
[14]
Amarnath, V.; Anthony, D.C.; Amarnath, K.; Valentine, W.M.; Wetterau, L.A.; Graham, D.G. Intermediates in the Paal-Knorr synthesis of pyrroles. J. Org. Chem., 1991, 56(24), 6924-6931.
[http://dx.doi.org/10.1021/jo00024a040]
[15]
Milgram, B.C.; Eskildsen, K.; Richter, S.M.; Scheidt, W.R.; Scheidt, K.A. Microwave-assisted Piloty-Robinson synthesis of 3, 4-disubstituted pyrroles. J. Org. Chem., 2007, 72(10), 3941-3944.
[http://dx.doi.org/10.1021/jo070389+] [PMID: 17432915]
[16]
McKinnon, D.M. The feist synthesis of pyrrole-3-carboxylic esters. Can. J. Chem., 1965, 43(9), 2628-2631.
[http://dx.doi.org/10.1139/v65-364]
[17]
Anastas, P.T.; Warner, J. Green Chemistry. Theory and Practice; Oxford University Press: Oxford, 1998.
[18]
Azarifar, D.; Maleki, B.; Setayeshnazar, M. A simple, microwave-assisted, and solvent-free synthesis of 2-Arylbenzothiazoles by acetic acid-promoted condensation of aldehydes with 2-aminothiophenol in air. Phosphorus Sulfur Silicon Relat. Elem., 2009, 184(8), 2097-2102.
[http://dx.doi.org/10.1080/10426500802423933]
[19]
Azarifar, D.; Maleki, B.; Sahraei, M. Microwave‐promoted oxidation of 1,3,5‐trisubstituted 4,5‐dihydro‐1 H ‐pyrazoles by in‐situ generation of NO + and NO respectively from sodium nitrite and sodium nitrate in acetic acid. J. Heterocycl. Chem., 2008, 45(2), 563-565.
[http://dx.doi.org/10.1002/jhet.5570450241]
[20]
Azarifar, D.; Nadimi, E.; Ghorbani-Vaghei, R.; Maleki, B. Microwave-assisted oxidation of 1,3,5-trisubstituted 4,5-dihydro-1H-pyrazoles to the corresponding pyrazoles with poly(N,N′-dibromobenzene-1,3-disulfonamide-1,2-ethanediyl). Mendeleev Commun., 2006, 16(6), 330-331.
[http://dx.doi.org/10.1070/MC2006v016n06ABEH002421]
[21]
Azarifar, D.; Maleki, B. Microwave‐assisted aromatization of 1, 3, 5‐Trisubstituted 2‐Pyrazolines by Bi(NO3)3•5H2O, as a novel and convenient oxidizing agent. Synth. Commun., 2005, 35(19), 2581-2585.
[http://dx.doi.org/10.1080/00397910500214136]
[22]
Gawande, M.B.; Shelke, S.N.; Zboril, R.; Varma, R.S. Microwave-assisted chemistry: Synthetic applications for rapid assembly of nanomaterials and organics. Acc. Chem. Res., 2014, 47(4), 1338-1348.
[http://dx.doi.org/10.1021/ar400309b] [PMID: 24666323]
[23]
Joshi, S.; More, U.; Kulkarni, V.; Aminabhavi, T. Pyrrole: Chemical synthesis, microwave assisted synthesis, reactions and applications: A review. Curr. Org. Chem., 2013, 17(20), 2279-2304.
[http://dx.doi.org/10.2174/13852728113179990040]
[24]
Xuan, D.D. Recent progress in the synthesis of pyrroles. Curr. Org. Chem., 2020, 24(6), 622-657.
[http://dx.doi.org/10.2174/1385272824666200228121627]
[25]
Mohamed, M.; Fathallah, S. Pyrroles and fused pyrroles: Synthesis and therapeutic activities. Mini Rev. Org. Chem., 2013, 11(4), 477-507.
[http://dx.doi.org/10.2174/1570193X113106660018]
[26]
Portilla Zuniga, O.M.; Sathicq, A.G.; Martinez Zambrano, J.J.; Romanelli, G.P. Green synthesis of pyrrole derivatives. Curr. Org. Synth., 2017, 14(6), 865-882.
[http://dx.doi.org/10.2174/1570179414666161206124318]
[27]
Bonacorso, H.G.; Libero, F.M.; Dal Forno, G.M.; Pittaluga, E.P.; Back, D.F.; Hörner, M.; Martins, M.A.P.; Zanatta, N. New regioselective synthesis of polyfunctionalized 3-ferrocenyl-1 H -pyrroles under microwave irradiation. Tetrahedron Lett., 2016, 57(41), 4568-4573.
[http://dx.doi.org/10.1016/j.tetlet.2016.08.088]
[28]
Rakendu, P.N.; Aneeja, T.; Anilkumar, G. Solvent‐free synthesis of pyrroles: An overview. Asian J. Org. Chem., 2021, 10(9), 2318-2333.
[http://dx.doi.org/10.1002/ajoc.202100436]
[29]
Philkhana, S.C.; Badmus, F.O.; Dos Reis, I.C.; Kartika, R. Recent advancements in pyrrole synthesis. Synthesis, 2021, 53(9), 1531-1555.
[http://dx.doi.org/10.1055/s-0040-1706713] [PMID: 34366491]
[30]
Efimov, I.V.; Kulikova, L.N.; Miftyakhova, A.R.; Matveeva, M.D.; Voskressensky, L.G. Recent advances for the synthesis of N‐unsubstituted pyrroles. ChemistrySelect, 2021, 6(48), 13740-13772.
[http://dx.doi.org/10.1002/slct.202103486]
[31]
Soni, J.P.; Chemitikanti, K.S.; Joshi, S.V.; Shankaraiah, N. The microwave-assisted syntheses and applications of non-fused single-nitrogen-containing heterocycles. Org. Biomol. Chem., 2020, 18(48), 9737-9761.
[http://dx.doi.org/10.1039/D0OB01779E] [PMID: 33211792]
[32]
Torres-Moya, I.; Harbuzaru, A.; Donoso, B.; Prieto, P.; Ponce Ortiz, R.; Díaz-Ortiz, Á. Microwave irradiation as a powerful tool for the preparation of n-type benzotriazole semiconductors with applications in organic field-effect transistors. Molecules, 2022, 27(14), 4340.
[http://dx.doi.org/10.3390/molecules27144340] [PMID: 35889212]
[33]
Karimi, S.; Ma, S.; Qu, M.; Chen, B.; Ramig, K.; Greer, E.M.; Szalda, D.J.; Neary, M.C.; Berkowitz, W.F.; Subramaniam, G. A new synthesis of biologically active pyrroles: Formal synthesis of pentabromopseudilin, bimetopyrol, and several antitubercular agents. J. Heterocycl. Chem., 2020, 57(1), 327-336.
[http://dx.doi.org/10.1002/jhet.3780]
[34]
Sabry, J.Y.; Fatahala, S.S.; Mohamed, M.S.; Mansour, Y.E.E.D. Synthesis strategies and medicinal value of pyrrole and its fused heterocyclic compounds. Med. Chem., 2022, 18(10), 1013-1043.
[http://dx.doi.org/10.2174/1573406418666220325141952] [PMID: 35339189]
[35]
Ibrahim, Y.A.; Li, J.; Ai, L.; Li, B. A convenient approach for the synthesis of substituted pyrroles by using phosphoric acid as a catalyst and their photophysical properties. J. Mol. Struct., 2022, 1252, 132123.
[http://dx.doi.org/10.1016/j.molstruc.2021.132123]
[36]
Adhikari, A.; Bhakta, S.; Ghosh, T. Microwave-assisted synthesis of bioactive heterocycles: An overview. Tetrahedron, 2022, 126, 133085.
[http://dx.doi.org/10.1016/j.tet.2022.133085]
[37]
Dandia, A.; Gupta, S.L.; Sharma, R.; Saini, P.; Parewa, V. Microwave-assisted catalyst-free organic synthesis. In: Green Sustainable Process for Chemical and Environmental Engineering and Science; Inamuddin, R.B.; Asiri, A.M., Eds.; Elsevier, 2021; pp. 539-562.
[http://dx.doi.org/10.1016/B978-0-12-819848-3.00013-X]
[38]
De la Hoz, A.; Loypy, A. Microwaves in Organic Synthesis, 3rd ed; Wiley-VCH: Weinheim, Germany, 2013.
[39]
Sanghi, R.; Singh, V. Green Chemistry for Environmental Remediation; Wiley: Hoboken, NJ, USA, 2012.
[40]
Pollastri, M.P.; Devine, W.G. Microwave Synthesis in Green Techniques for Organic Synthesis and Medicinal Chemistry; Wiley: Chichester, UK, 2012.
[41]
Horikoshi, S.; Serpone, N. Microwaves in Nanoparticles Synthesis: Fundamentals and Applications; Wiley-VCH: Weinheim, Germany, 2013.
[http://dx.doi.org/10.1002/9783527648122]
[42]
Tierney, J.P.; Lidstrom, P. Microwave Assisted Organic Synthesis; Blackwell Publishing Ltd.: Oxford, UK, 2009.
[43]
Leadbeater, N.E. Organic synthesis using microwave heating. In: Comprehensive Organic Synthesis, 2nd ed; Elsevier Ltd.: Oxford, UK, 2014.
[44]
Kappe, C.O.; Stadler, A. Microwaves in Organic and Medicinal Chemistry, 2nd ed; Wiley: Weinheim, Germany, 2012.
[http://dx.doi.org/10.1002/9783527647828]
[45]
Kranjc, K.; Kocevar, M. Microwave-assisted organic synthesis: General considerations and transformations of heterocyclic compounds. Curr. Org. Chem., 2010, 14(10), 1050-1074.
[http://dx.doi.org/10.2174/138527210791130488]
[46]
Kranjc, K.; Kocevar, M. From conventional reaction conditions to microwave-assisted catalytic transformations of various substrates. State of the art in 2012 (Part A: General). Curr. Org. Chem., 2013, 17(5), 448-456.
[http://dx.doi.org/10.2174/1385272811317050003]
[47]
Kranjc, K.; Kocevar, M. From conventional reaction conditions to microwave-assisted catalytic transformations of various substrates. State of the art in 2012 (Part B: Catalysis). Curr. Org. Chem., 2013, 17(5), 457-473.
[http://dx.doi.org/10.2174/1385272811317050004]
[48]
Guenin, E.; Meziane, D. Microwave assisted phosphorus organic chemistry: A review. Curr. Org. Chem., 2011, 15(19), 3465-3485.
[http://dx.doi.org/10.2174/138527211797374724]
[49]
Zhou, J.; Xu, W.; You, Z.; Wang, Z.; Luo, Y.; Gao, L.; Yin, C.; Peng, R.; Lan, L. A new type of power energy for accelerating chemical reactions: The nature of a microwave-driving force for accelerating chemical reactions. Sci. Rep., 2016, 6(1), 25149.
[http://dx.doi.org/10.1038/srep25149] [PMID: 27118640]
[50]
Keglevich, G.; Greiner, I. The meeting of two disciplines: Organophosphorus and green chemistry. Curr. Green Chem., 2013, 1(1), 2-16.
[http://dx.doi.org/10.2174/221334610101131218094831]
[51]
Majhi, S. The art of total synthesis of bioactive natural products via microwaves. Curr. Org. Chem., 2021, 25(9), 1047-1069.
[http://dx.doi.org/10.2174/1385272825666210303112302]
[52]
Li, C.J. Organic reactions in aqueous media-with a focus on carbon-carbon bond formation. Chem. Rev., 1993, 93(6), 2023-2035.
[http://dx.doi.org/10.1021/cr00022a004]
[53]
Gedye, R.; Smith, F.; Westaway, K.; Ali, H.; Baldisera, L.; Laberge, L.; Rousell, J. The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett., 1986, 27(3), 279-282.
[http://dx.doi.org/10.1016/S0040-4039(00)83996-9]
[54]
Giguere, R.J.; Bray, T.L.; Duncan, S.M.; Majetich, G. Application of commercial microwave ovens to organic synthesis. Tetrahedron Lett., 1986, 27(41), 4945-4948.
[http://dx.doi.org/10.1016/S0040-4039(00)85103-5]
[55]
Kappe, C.O.; Dallinger, D. The impact of microwave synthesis on drug discovery. Nat. Rev. Drug Discov., 2006, 5(1), 51-63.
[http://dx.doi.org/10.1038/nrd1926] [PMID: 16374514]
[56]
Pal, A.; Gayen, K.S. The impact of microwave irradiation reaction in medicinal chemistry: A review. Orient. J. Chem., 2021, 37(1), 01-24.
[http://dx.doi.org/10.13005/ojc/370101]
[57]
Gabriel, C.; Gabriel, S.; Grant, E.H.; Halstead, B.S.J.; Mingos, D.M.P. Dielectric parameters relevant to microwave dielectric heating. Chem. Soc. Rev., 1998, 27, 213-223.
[http://dx.doi.org/10.1039/a827213z]
[58]
Liu, H.; Zhang, L. Microwave heating in organic synthesis and drug discovery. In: Microwave Heating; Chandra, U., Ed.; InTech, 2011; pp. 351-370.
[59]
Loupy, A.; Petit, A.; Hamelin, J.; Texier-Boullet, F.; Jacquault, P.; Mathé, D. New solvent-free organic synthesis using focused microwaves. Synthesis, 1998, 1998(9), 1213-1234.
[http://dx.doi.org/10.1055/s-1998-6083]
[60]
Mortoni, A.; Martinelli, M.; Piarulli, U.; Regalia, N.; Gagliardi, S. Microwave-assisted solvent-free synthesis of a quinoline-3, 4-dicarboximide library on inorganic solid supports. Tetrahedron Lett., 2004, 45(35), 6623-6627.
[http://dx.doi.org/10.1016/j.tetlet.2004.07.026]
[61]
Keglevich, G.; Grün, A.; Bálint, E.; Zsuzsa Kiss, N.; Jablonkai, E. Microwave-assisted organophosphorus synthesis. Curr. Org. Chem., 2013, 17(5), 545-554.
[http://dx.doi.org/10.2174/1385272811317050009]
[62]
Keglevich, G.; Bálint, E.; Kiss, N.Z.; Jablonkai, E.; Hegeds, L.; Grün, A.; Greiner, I. Microwave-assisted esterification of phosphinic acids. Curr. Org. Chem., 2011, 15(11), 1802-1810.
[http://dx.doi.org/10.2174/138527211795656570]
[63]
Kiss, N.Z.; Keglevich, G. Microwave-assisted direct esterification of cyclic phosphinic acids in the presence of ionic liquids. Tetrahedron Lett., 2016, 57(9), 971-974.
[http://dx.doi.org/10.1016/j.tetlet.2016.01.044]
[64]
Keglevich, G.; Kiss, N.Z.; Körtvélyesi, T. Microwave-assisted functionalization of phosphinic acids: Amidations versus esterifications. Heteroatom Chem., 2013, 24(2), 91-99.
[http://dx.doi.org/10.1002/hc.21068]
[65]
Keglevich, G.; Dudás, E. Microwave promoted efficient synthesis of 2- phosphabicyclo[2.2.2]octadiene- and octene 2-oxides under solventless conditions in Diels-Alder reaction. Synth. Commun., 2007, 37(18), 3191-3199.
[http://dx.doi.org/10.1080/00397910701547532]
[66]
Perreux, L.; Loupy, A. A tentative rationalization of microwave effects in organic synthesis according to the reaction medium, and mechanistic considerations. Tetrahedron, 2001, 57(45), 9199-9223.
[http://dx.doi.org/10.1016/S0040-4020(01)00905-X]
[67]
Keglevich, G.; Greiner, I.; Mucsi, Z. An interpretation of the rate enhancing effect of microwaves-modelling the distribution and effect of local overheating-a case study. Curr. Org. Chem., 2015, 19(14), 1436-1440.
[http://dx.doi.org/10.2174/1385272819666150528004505]
[68]
Bose, A.K.; Manhas, M.S.; Ghosh, M.; Shah, M.; Raju, V.S.; Bari, S.S.; Newaz, S.N.; Banik, B.K.; Chaudhary, A.G.; Barakat, K.J. Microwave-induced organic reaction enhancement chemistry. 2. Simplified techniques. J. Org. Chem., 1991, 56(25), 6968-6970.
[http://dx.doi.org/10.1021/jo00025a004]
[69]
Banik, B.K.; Manhas, M.S.; Newaz, S.N.; Bose, A.K. Facile preparation of carbapenem synthons via microwave-induced rapid reaction. Bioorg. Med. Chem. Lett., 1993, 3(11), 2363-2368.
[http://dx.doi.org/10.1016/S0960-894X(01)80956-2]
[70]
Bose, A.K.; Banik, B.K.; Barakat, K.J.; Manhas, M.S. Simplified rapid hydrogenation under microwave irradiation: Selective transformations of β-Lactams1. Synlett, 1993, 1993(8), 575-576.
[http://dx.doi.org/10.1055/s-1993-22534]
[71]
Bose, A.K.; Manhas, M.S.; Banik, B.K.; Robb, E.W. Microwave-induced organic reaction enhancement (more) chemistry: Techniques for rapid, safe and inexpensive synthesis. Res. Chem. Intermed., 1994, 20(1), 1-11.
[http://dx.doi.org/10.1163/156856794X00027]
[72]
Bose, A.K.; Banik, B.K.; Manhas, M.S. Stereocontrol of β-lactam formation using microwave irradiation. Tetrahedron Lett., 1995, 36(2), 213-216.
[http://dx.doi.org/10.1016/0040-4039(94)02225-Z]
[73]
Banik, B.K.; Jayaraman, M.; Srirajan, V.; Manhas, M.S.; Bose, A.K. Rapid synthesis of β-lactams as intermediates for natural products via eco-friendly reactions. J. Indian Chem. Soc., 1997, 74, 943-947.
[74]
Manhas, M.S.; Banik, B.K.; Mathur, A.; Vincent, J.; Bose, A.K. Microwave-assisted synthesis of Vinyl β-Lactam: Synthons for natural products. Tetrahedron, 2000, 56, 5587-5601.
[http://dx.doi.org/10.1016/S0040-4020(00)00409-9]
[75]
Banik, B.K. Microwave-induced organic reactions toward biologically active molecules. Curr. Med. Chem., 2019, 26(24), 4492-4494.
[http://dx.doi.org/10.2174/092986732624190927114808] [PMID: 31654561]
[76]
Oussaid, B.; Garrigues, B.; Soufiaoui, M. New microwave method for synthesis of pyrroles. Can. J. Chem., 1994, 72(12), 2483-2485.
[http://dx.doi.org/10.1139/v94-314]
[77]
Ruault, P.; Pilard, J.F.; Touaux, B.; Texier-Boullet, F.; Hamelin, J. Rapid generation of amines by microwave irradiation of ureas dispersed on clay. Synlett, 1994, 1994(11), 935-936.
[http://dx.doi.org/10.1055/s-1994-23054]
[78]
Abid, M.; Török, B.; Huang, X. Corrigendum to: Microwave-assisted tandem processes for the synthesis of N-heterocycles. Aust. J. Chem., 2009, 62(4), 392-392.
[http://dx.doi.org/10.1071/CH08474_CO]
[79]
Abid, M.; Spaeth, A.; Török, B. Solvent-free solid acid-catalyzed electrophilic annelations: A new green approach for the synthesis of substituted five-membered N-heterocycles. Adv. Synth. Catal., 2006, 348(15), 2191-2196.
[http://dx.doi.org/10.1002/adsc.200606200]
[80]
Danks, T.N. Microwave assisted synthesis of pyrroles. Tetrahedron Lett., 1999, 40(20), 3957-3960.
[http://dx.doi.org/10.1016/S0040-4039(99)00620-6]
[81]
Wilson, M.A.; Filzen, G.; Welmaker, G.S. A microwave-assisted, green procedure for the synthesis of N-aryl sulfonyl and N-aryl pyrroles. Tetrahedron Lett., 2009, 50(34), 4807-4809.
[http://dx.doi.org/10.1016/j.tetlet.2009.06.079]
[82]
Vyankatesh, D.; Swapnali, T.; Rahul, A.; Shrinivas, M.; Chandrakant, M. Microwave assisted synthesis of 2 Amino-4,5-diphenyl-1-Substituted-1H-Pyrrole-3-carbonitrile for anti-inflammatory and antifungal activity. Pharm. Lett., 2017, 9(12), 51-58.
[83]
Younis, A.; Hassan, A.M.; Mady, M.F.; El-Haddad, A.F.; Yassin, F.A.; Fayad, M. Microwave-assisted one-pot synthesis of novel polyarylpyrrole derivatives of expected anticancer activity. Pharma Chem., 2017, 9(3), 33-44.
[84]
Aydogan, F.; Yolacan, C. Clauson Kaas pyrrole synthesis catalyzed by acidic ionic liquid under microwave irradiation. J. Chem., 2013, 2013, 1-6.
[http://dx.doi.org/10.1155/2013/976724]
[85]
Miles, K.C.; Mays, S.M.; Southerland, B.K.; Auvil, T.J.; Ketcha, D.M. The Clauson-Kaas pyrrole synthesis under microwave irradiation. ARKIVOC, 2009, (XIV), 181-190.
[86]
Rivera, S.; Bandyopadhyay, D.; Banik, B.K. Facile synthesis of N-substituted pyrroles via microwave-induced bismuth nitrate-catalyzed reaction. Tetrahedron Lett., 2009, 50(39), 5445-5448.
[http://dx.doi.org/10.1016/j.tetlet.2009.06.002]
[87]
Mir, N.A.; Choudhary, S.; Ramaraju, P.; Singh, D.; Kumar, I. Microwave assisted aminocatalyzed [3 + 2] annulation between α-iminonitriles and succinaldehyde: Synthesis of pyrrole-3-methanols and related polycyclic ring systems. RSC Advances, 2016, 6(46), 39741-39749.
[http://dx.doi.org/10.1039/C6RA06831F]
[88]
Bandyopadhyay, D.; Cruz, J.; Banik, B.K. Microwave-induced synthesis of 3-pyrrole substituted β-lactams via bismuth nitrate-catalyzed reactions. Tetrahedron, 2012, 68(52), 10686-10695.
[http://dx.doi.org/10.1016/j.tet.2012.06.009]
[89]
Banik, B.K.; Yadav, R.N.; Shaikh, A.L.; Das, A.; Ray, D. Asymmetric synthesis of 3-Pyrrole substituted b-Lactams through p-Toluene sulphonic acid-catalyzed reaction of azetidine-2,3-diones with hydroxyprolines. Curr. Organocatal., 2022, 9(4), 337-345.
[http://dx.doi.org/10.2174/2213337209666220802105301]
[90]
Andoh-Baidoo, R.; Danso, R.; Mukherjee, S.; Bandyopadhyay, D.; Banik, B.K. Microwave-induced N-bromosuccinimidemediated novel synthesis of pyrroles via Paal-Knorr reaction. Heterocycl. Lett., 2011, 1(Spl. Issue, July), 107-109.
[91]
Aghapoor, K.; Mohsenzadeh, F.; Darabi, H.R.; Rastgar, S. Microwave-induced calcium (II) chloride-catalyzed Paal-Knorr pyrrole synthesis: A safe, expeditious, and sustainable protocol. Res. Chem. Intermed., 2018, 44(7), 4063-4072.
[http://dx.doi.org/10.1007/s11164-018-3355-7]
[92]
Aghapoor, K.; Mohsenzadeh, F.; Darabi, H.R.; Sayahi, H. Crystalline salicylic acid as an efficient catalyst for ultrafast paal-knorr pyrrole synthesis under microwave induction. J. Chem. Sci., 2021, 133(2), 38.
[http://dx.doi.org/10.1007/s12039-021-01891-9]
[93]
Lee, H.; Yi, Y.; Jun, C.H. Copper (II)-promoted, one-pot conversion of 1-alkynes with anhydrides or primary amines to the respective 2,5-disubstituted furans or pyrroles under microwave irradiation conditions. Adv. Synth. Catal., 2015, 357(16-17), 3485-3490.
[http://dx.doi.org/10.1002/adsc.201500711]
[94]
Zhang, X.Y.; Yang, Z.W.; Chen, Z.; Wang, J.; Yang, D.L.; Shen, Z.; Hu, L.L.; Xie, J.W.; Zhang, J.; Cui, H.L. Tandem copper-catalyzed propargylation/alkyne azacyclization/isomerization reaction under microwave irradiation: Synthesis of fully substituted pyrroles. J. Org. Chem., 2016, 81(5), 1778-1785.
[http://dx.doi.org/10.1021/acs.joc.5b02429] [PMID: 26872395]
[95]
Feller, N.; Imhof, W. Microwave-assisted ruthenium catalysed high-pressure synthesis of N-heterocyclic compounds. Monatsh. Chem., 2019, 150(7), 1289-1296.
[http://dx.doi.org/10.1007/s00706-019-02440-4]
[96]
Chawla, A.; Kapoor, V.K. Microwave assisted one pot synthesis and antimicrobial activity of 2-(30 -acetyl-20 -methyl-50 -phenyl)- pyrrol-1-yl-1,4,5-triphenyl-1H-imidazole derivatives. Pharma Chem., 2018, 10(2), 27-31.
[97]
Das, A.; Roy, H.; Ansary, I. Microwave-assisted, one-pot three-component synthesis of 6-(Pyrrolyl) Coumarin/Quinolone derivatives catalyzed by in(III) chloride. ChemistrySelect, 2018, 3(33), 9592-9595.
[http://dx.doi.org/10.1002/slct.201801931]
[98]
Rohit, K.R.; Meera, G.; Anilkumar, G. A SOLVENT‐FREE MANGANESE (II) ‐CATALYZED CLAUSON‐KAAS protocol for the synthesis of N‐ARYL pyrroles under microwave irradiation. J. Heterocycl. Chem., 2022, 59(1), 194-200.
[http://dx.doi.org/10.1002/jhet.4372]
[99]
Park, A.; Choi, S.M.; Kim, T.S.; Yum, E.K. Microwave‐assisted synthesis of 5,6,7‐trisubstituted pyrrolo[2,3‐ d]pyrimidines via palladium‐catalyzed heteroannulation with internal Alkynes. Bull. Korean Chem. Soc., 2019, 40(11), 1134-1137.
[http://dx.doi.org/10.1002/bkcs.11866]
[100]
Cárdenas, R.A.V.; Leal, B.O.Q.; Reddy, A.; Bandyopadhyay, D.; Banik, B.K. Microwave-assisted polystyrene sulfonate-catalyzed synthesis of novel pyrroles. Org. Med. Chem. Lett., 2012, 2(1), 24.
[http://dx.doi.org/10.1186/2191-2858-2-24] [PMID: 22726766]
[101]
Shinde, V.V.; Lee, S.D.; Jeong, Y.S.; Jeong, Y.T. p-Toluenesulfonic acid doped polystyrene (PS-PTSA): Solvent-free microwave assisted cross-coupling-cyclization-oxidation to build one-pot diversely functionalized pyrrole from aldehyde, amine, active methylene, and nitroalkane. Tetrahedron Lett., 2015, 56(6), 859-865.
[http://dx.doi.org/10.1016/j.tetlet.2014.12.126]
[102]
Kucukdisli, M.; Ferenc, D.; Heinz, M.; Wiebe, C.; Opatz, T. Simple two-step synthesis of 2, 4-disubstituted pyrroles and 3,5-disubstituted pyrrole-2-carbonitriles from enones. Beilstein J. Org. Chem., 2014, 10, 466-470.
[http://dx.doi.org/10.3762/bjoc.10.44] [PMID: 24605166]
[103]
Li, Y.; Li, Q.Y.; Xu, H.W.; Fan, W.; Jiang, B.; Wang, S.L.; Tu, S.J. Multicomponent formation of fused pyrroles through p-TsOH promoted N-arylation. Tetrahedron, 2013, 69(14), 2941-2946.
[http://dx.doi.org/10.1016/j.tet.2013.02.026]
[104]
Tu, X.C.; Fan, W.; Jiang, B.; Wang, S.L.; Tu, S.J. A novel allylic substitution strategy to four-component synthesis of pyrazole-substituted fused pyrroles. Tetrahedron, 2013, 69(30), 6100-6107.
[http://dx.doi.org/10.1016/j.tet.2013.05.063]
[105]
Manta, S.; Tzioumaki, N.; Kollatos, N.; Andrea, P.; Margaritouli, M.; Panagiotopoulou, A.; Papanastasiou, I.; Mitsos, C.; Tsotinis, A.; Schols, D.; Komiotis, D. Polyfunctionalized pyrrole derivatives: Easy three-component microwave-assisted synthesis, cytostatic and antiviral evaluation. Curr. Microw. Chem., 2018, 5(1), 23-31.
[http://dx.doi.org/10.2174/2213335605666180221155915]
[106]
Zhao, B.; Kan, W.; Jing, T.; Zhang, X.; Zheng, Y.; Chen, L. Microwave-assisted one-pot synthesis of N-substituted 2- methyl-1H-pyrrole-3-carboxylate derivatives without catalyst and solvent. Heterocycles, 2015, 91(12), 2367-2376.
[http://dx.doi.org/10.3987/COM-15-13340]
[107]
Georgescu, E.; Dumitrascu, F.; Georgescu, F.; Draghici, C.; Dumitrescu, D. Microwave-Assisted synthesis of a library of pyrrolo [1,2-c]quinazolines. Revista de Chimie, 2019, 70(9), 3094-3099.
[http://dx.doi.org/10.37358/RC.19.9.7495]
[108]
Bharkavi, C.; Vivek Kumar, S.; Ashraf Ali, M.; Osman, H.; Muthusubramanian, S.; Perumal, S. One-pot microwave assisted stereoselective synthesis of novel dihydro-2′H-spiro[indene-2,1′-pyrrolo-[3,4-c]pyrrole]-tetraones and evaluation of their antimycobacterial activity and inhibition of AChE. Bioorg. Med. Chem. Lett., 2017, 27(14), 3071-3075.
[http://dx.doi.org/10.1016/j.bmcl.2017.05.050] [PMID: 28552337]
[109]
Karakuş, H.; Dürüst, Y. Novel benzothiophene 1, 1-dioxide deoxygenation path for the microwave-assisted synthesis of substituted benzothiophene-fused pyrrole derivatives. Mol. Divers., 2017, 21(1), 53-60.
[http://dx.doi.org/10.1007/s11030-016-9700-0] [PMID: 27677736]
[110]
Hanuman Reddy, V.; Mallikarjuna Reddy, G.; Thirupalu Reddy, M.; Rami Reddy, Y.V. Microwave-assisted facile synthesis of trisubstituted pyrrole derivatives. Res. Chem. Intermed., 2015, 41(12), 9805-9815.
[http://dx.doi.org/10.1007/s11164-015-1966-9]
[111]
Kamel, M.S.; Belal, A.; Aboelez, M.O.; Shokr, E.K.; Abdel-Ghany, H.; Mansour, H.S.; Shawky, A.M.; El-Remaily, M.A.E.A.A.A. Microwave-assisted synthesis, biological activity evaluation, molecular docking, and ADMET studies of some novel Pyrrolo [2,3-b] pyrrole derivatives. Molecules, 2022, 27(7), 2061.
[http://dx.doi.org/10.3390/molecules27072061] [PMID: 35408463]
[112]
Khan, A.; Siddique, A.M.; Shaikh, M.; Khan, I.A.; Shafi, S. Microwave-assisted solvent-free tandem cross-metathesis/intramolecular isomerization-cyclization reaction for the synthesis of N -substituted pyrroles: It’s computational analysis. Synth. Commun., 2022, 52(4), 585-596.
[http://dx.doi.org/10.1080/00397911.2022.2039710]
[113]
Mallikarjuna Reddy, G.; Camilo, A., Jr; Raul Garcia, J. Pyrrole-2, 5-dione analogs as a promising antioxidant agents: microwave-assisted synthesis, bio-evaluation, SAR analysis and DFT studies/interpretation. Bioorg. Chem., 2021, 106, 104465.
[http://dx.doi.org/10.1016/j.bioorg.2020.104465] [PMID: 33229119]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy