Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

Resveratrol Inhibits Restenosis through Suppressing Proliferation, Migration and Trans-differentiation of Vascular Adventitia Fibroblasts via Activating SIRT1

Author(s): Mengyun Li, Lan Luo, Ying Xiong, Fuyu Wang, Yun Xia, Zongze Zhang* and Jianjuan Ke*

Volume 31, Issue 2, 2024

Published on: 27 June, 2023

Page: [242 - 256] Pages: 15

DOI: 10.2174/0929867330666230505161041

Price: $65

Abstract

Aim: After the balloon angioplasty, vascular adventitia fibroblasts (VAFs), which proliferate, trans-differentiate to myofibroblasts and migrate to neointima, are crucial in restenosis. Resveratrol (RSV) has been reported to protect the cardiovascular by reducing restenosis and the mechanism remains unclear.

Methods: This study was dedicated to investigate the effect of RSV on VAFs in injured arteries and explore the potential mechanism. In this work, carotid artery balloon angioplasty was performed on male SD rats to ensure the injury of intima and VAFs were isolated to explore the effects in vitro. The functional and morphological results showed the peripheral delivery of RSV decreased restenosis of the injured arteries and suppressed the expression of proliferation, migration and transformation related genes. Moreover, after being treated with RSV, the proliferation, migration and trans-differentiation of VAFs were significantly suppressed and exogenous TGF-β1 can reverse this effect.

Result: Mechanistically, RSV administration activated SIRT1 and decreased the translation and expression of TGF-β1, SMAD3 and NOX4, and reactive oxygen species (ROS) decreased significantly after VAFs treated with RSV.

Conclusion: Above results indicated RSV inhibited restenosis after balloon angioplasty through suppressing proliferation, migration and trans-differentiation of VAFs via regulating SIRT1- TGF-β1-SMAD3-NOX4 to decrease ROS.

« Previous
[1]
Wu, Y.; Liu, X.; Guo, L.Y.; Zhang, L.; Zheng, F.; Li, S.; Li, X.Y.; Yuan, Y.; Liu, Y.; Yan, Y.; Chen, S.Y.; Wang, J.N.; Zhang, J.; Tang, J.M. S100B is required for maintaining an intermediate state with double-positive Sca-1+ progenitor and vascular smooth muscle cells during neointimal formation. Stem Cell Res. Ther., 2019, 10(1), 294.
[http://dx.doi.org/10.1186/s13287-019-1400-0] [PMID: 31547879]
[2]
Mota, R.I.; Morgan, S.E.; Bahnson, E.M. Diabetic vasculopathy: Macro and microvascular injury. Curr. Pathobiol. Rep., 2020, 8(1), 1-14.
[http://dx.doi.org/10.1007/s40139-020-00205-x] [PMID: 32655983]
[3]
Simard, T.; Hibbert, B.; Ramirez, F.D.; Froeschl, M.; Chen, Y.X.; O’Brien, E.R. The evolution of coronary stents: A brief review. Can. J. Cardiol., 2014, 30(1), 35-45.
[http://dx.doi.org/10.1016/j.cjca.2013.09.012] [PMID: 24286961]
[4]
Marquis-Gravel, G.; Matteau, A.; Potter, B.J.; Gobeil, F.; Noiseux, N.; Stevens, L.M.; Mansour, S. Impact of paclitaxel-eluting balloons compared to second-generation drug-eluting stents for of in-stent restenosis in a primarily acute coronary syndrome population. Arq. Bras. Cardiol., 2017, 109(4), 277-283.
[http://dx.doi.org/10.5935/abc.20170142] [PMID: 28977052]
[5]
Jeewandara, T.; Wise, S.; Ng, M. Biocompatibility of coronary stents. Materials (Basel), 2014, 7(2), 769-786.
[http://dx.doi.org/10.3390/ma7020769] [PMID: 28788487]
[6]
Peng, X.; Qu, W.; Jia, Y.; Wang, Y.; Yu, B.; Tian, J. Bioresorbable scaffolds: Contemporary status and future directions. Front. Cardiovasc. Med., 2020, 7, 589571.
[http://dx.doi.org/10.3389/fcvm.2020.589571] [PMID: 33330651]
[7]
Yang, X.; Yang, Y.; Guo, J.; Meng, Y.; Li, M.; Yang, P.; Liu, X.; Aung, L.H.H.; Yu, T.; Li, Y. Targeting the epigenome in in-stent restenosis: From mechanisms to therapy. Mol. Ther. Nucleic Acids, 2021, 23, 1136-1160.
[http://dx.doi.org/10.1016/j.omtn.2021.01.024] [PMID: 33664994]
[8]
Guo, L.W.; Wang, B.; Goel, S.A.; Little, C.; Takayama, T.; Shi, X.D.; Roenneburg, D.; DiRenzo, D.; Kent, K.C. Halofuginone stimulates adaptive remodeling and preserves re-endothelialization in balloon-injured rat carotid arteries. Circ. Cardiovasc. Interv., 2014, 7(4), 594-601.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.113.001181] [PMID: 25074254]
[9]
Xie, X.; Urabe, G.; Marcho, L.; Stratton, M.; Guo, L.W.; Kent, C.K. ALDH1A3 regulations of matricellular proteins promote vascular smooth muscle cell proliferation. iScience, 2019, 19, 872-882.
[http://dx.doi.org/10.1016/j.isci.2019.08.044] [PMID: 31513972]
[10]
Satish, L.; LaFramboise, W.A.; O’Gorman, D.B.; Johnson, S.; Janto, B.; Gan, B.S.; Baratz, M.E.; Hu, F.Z.; Post, J.C.; Ehrlich, G.D.; Kathju, S. Identification of differentially expressed genes in fibroblasts derived from patients with Dupuytren’s Contracture. BMC Med. Genomics, 2008, 1(1), 10.
[http://dx.doi.org/10.1186/1755-8794-1-10] [PMID: 18433489]
[11]
Sasaki, N.; Toyoda, M. Vascular diseases and gangliosides. Int. J. Mol. Sci., 2019, 20(24), 6362.
[http://dx.doi.org/10.3390/ijms20246362] [PMID: 31861196]
[12]
Han, X.; Wu, A.; Wang, J.; Chang, H.; Zhao, Y.; Zhang, Y.; Mao, Y.; Lou, L.; Gao, Y.; Zhang, D.; Li, T.; Yang, T.; Wang, L.; Feng, C.; Zhao, M. Activation and migration of adventitial fibroblasts contributes to vascular remodeling Anat. Rec., 2018, 301, 1216-1223.
[13]
Wu, X.; Lu, Q. Expression and significance of α-SMA and PCNA in the vascular adventitia of balloon-injured rat aorta. Exp. Ther. Med., 2013, 5(6), 1671-1676.
[http://dx.doi.org/10.3892/etm.2013.1059] [PMID: 23837052]
[14]
Yan, C.; Li, B.; Fan, F.; Du, Y.; Ma, R.; Cheng, X.D.; Li, X.Y.; Zhang, B.; Yu, Q.; Wang, Y.G.; Tang, R.X.; Zheng, K.Y. The roles of Toll-like receptor 4 in the pathogenesis of pathogen-associated biliary fibrosis caused by Clonorchis sinensis. Sci. Rep., 2017, 7(1), 3909.
[http://dx.doi.org/10.1038/s41598-017-04018-8] [PMID: 28634394]
[15]
Ren, M.; Zhang, J.; Wang, B.; Liu, P.; Jiang, H.; Liu, G.; Yin, H. Qindan-capsule inhibits proliferation of adventitial fibroblasts and collagen synthesis. J. Ethnopharmacol., 2010, 129(1), 53-58.
[http://dx.doi.org/10.1016/j.jep.2010.03.004] [PMID: 20230887]
[16]
Chen, W.; Chu, Y.; Zhu, D.; Yan, C.; Liu, J.; Ji, K.; Gao, P. Perivascular gene transfer of dominant-negative N19RhoA attenuates neointimal formation via inhibition of TGF-β1-Smad2 signaling in rats after carotid artery balloon injury. Biochem. Biophys. Res. Commun., 2009, 389(2), 217-223.
[http://dx.doi.org/10.1016/j.bbrc.2009.08.104] [PMID: 19706289]
[17]
Wang, M.; Xiong, L.; Jiang, L.J.; Lu, Y.Z.; Liu, F.; Song, L.J.; Xiang, F.; He, X.L.; Yu, F.; Shuai, S.Y.; Ma, W.L.; Ye, H. miR-4739 mediates pleural fibrosis by targeting bone morphogenetic protein 7. EBioMedicine, 2019, 41, 670-682.
[http://dx.doi.org/10.1016/j.ebiom.2019.02.057] [PMID: 30850350]
[18]
Zhang, H.; Wang, Y.; Meng, A.; Yan, H.; Wang, X.; Niu, J.; Li, J.; Wang, H. Inhibiting TGFβ1 has a protective effect on mouse bone marrow suppression following ionizing radiation exposure in vitro. J. Radiat. Res., 2013, 54(4), 630-636.
[http://dx.doi.org/10.1093/jrr/rrs142] [PMID: 23370919]
[19]
Zhu, Y.; Takayama, T.; Wang, B.; Kent, A.; Zhang, M.; Binder, B.Y.K.; Urabe, G.; Shi, Y.; DiRenzo, D.; Goel, S.A.; Zhou, Y.; Little, C.; Roenneburg, D.A.; Shi, X.D.; Li, L.; Murphy, W.L.; Kent, K.C.; Ke, J.; Guo, L.W. Restenosis inhibition and re-differentiation of TGFβ/smad3-activated smooth muscle cells by resveratrol. Sci. Rep., 2017, 7(1), 41916.
[http://dx.doi.org/10.1038/srep41916] [PMID: 28165488]
[20]
Barman, S.A.; Fulton, D. Adventitial fibroblast Nox4 expression and ROS signaling in pulmonary arterial hypertension. Adv. Exp. Med. Biol., 2017, 967, 1-11.
[http://dx.doi.org/10.1007/978-3-319-63245-2_1] [PMID: 29047077]
[21]
Li, S.; Tabar, S.S.; Malec, V.; Eul, B.G.; Klepetko, W.; Weissmann, N.; Grimminger, F.; Seeger, W.; Rose, F.; Hänze, J. NOX4 regulates ROS levels under normoxic and hypoxic conditions, triggers proliferation, and inhibits apoptosis in pulmonary artery adventitial fibroblasts. Antioxid. Redox Signal., 2008, 10(10), 1687-1698.
[http://dx.doi.org/10.1089/ars.2008.2035] [PMID: 18593227]
[22]
Zhang, S.; Yin, Z.; Qin, W.; Ma, X.; Zhang, Y.; Liu, E.; Chu, Y. Pirfenidone inhibits hypoxic pulmonary hypertension through the NADPH/ROS/p38 pathway in adventitial fibroblasts in the pulmonary artery. Mediators Inflamm., 2020, 2020, 1-12.
[http://dx.doi.org/10.1155/2020/2604967] [PMID: 32587469]
[23]
Barnes, J.L.; Gorin, Y. Myofibroblast differentiation during fibrosis: Role of NAD(P)H oxidases. Kidney Int., 2011, 79(9), 944-956.
[http://dx.doi.org/10.1038/ki.2010.516] [PMID: 21307839]
[24]
Xu, F.; Liu, Y.; Shi, L.; Liu, W.; Zhang, L.; Cai, H.; Qi, J.; Cui, Y.; Wang, W.; Hu, Y. NADPH oxidase p47phox siRNA attenuates adventitial fibroblasts proliferation and migration in apoE(-/-) mouse. J. Transl. Med., 2015, 13(1), 38.
[http://dx.doi.org/10.1186/s12967-015-0407-2] [PMID: 25628043]
[25]
Janbandhu, V.; Tallapragada, V.; Patrick, R.; Li, Y.; Abeygunawardena, D.; Humphreys, D.T.; Martin, E.M.M.A.; Ward, A.O.; Contreras, O.; Farbehi, N.; Yao, E.; Du, J.; Dunwoodie, S.L.; Bursac, N.; Harvey, R.P. Hif-1a suppresses ROS-induced proliferation of cardiac fibroblasts following myocardial infarction. Cell Stem Cell, 2022, 29(2), 281-297.e12.
[http://dx.doi.org/10.1016/j.stem.2021.10.009] [PMID: 34762860]
[26]
Vallée, A.; Lecarpentier, Y.; Vallée, J.N. Thermodynamic aspects and reprogramming cellular energy metabolism during the fibrosis process. Int. J. Mol. Sci., 2017, 18(12), 2537.
[http://dx.doi.org/10.3390/ijms18122537] [PMID: 29186898]
[27]
Chatterjee, A.; Kosmacek, E.A.; Oberley-Deegan, R.E. MnTE-2-PyP treatment, or NOX4 inhibition, protects against radiation-induced damage in mouse primary prostate fibroblasts by inhibiting the TGF-Beta 1 signaling pathway. Radiat. Res., 2017, 187(3), 367-381.
[http://dx.doi.org/10.1667/RR14623.1] [PMID: 28225655]
[28]
Morry, J.; Ngamcherdtrakul, W.; Yantasee, W. Oxidative stress in cancer and fibrosis: Opportunity for therapeutic intervention with antioxidant compounds, enzymes, and nanoparticles. Redox Biol., 2017, 11, 240-253.
[http://dx.doi.org/10.1016/j.redox.2016.12.011] [PMID: 28012439]
[29]
Benedetti, F.; Sorrenti, V.; Buriani, A.; Fortinguerra, S.; Scapagnini, G.; Zella, D. Resveratrol, rapamycin and metformin as modulators of antiviral pathways. Viruses, 2020, 12(12), 1458.
[http://dx.doi.org/10.3390/v12121458] [PMID: 33348714]
[30]
Gharaee-Kermani, M.; Moore, B.B.; Macoska, J.A. Resveratrol-mediated repression and reversion of prostatic myofibroblast phenoconversion. PLoS One, 2016, 11(7), e0158357.
[http://dx.doi.org/10.1371/journal.pone.0158357] [PMID: 27367854]
[31]
Malaguarnera, L. Influence of resveratrol on the immune response. Nutrients, 2019, 11(5), 946.
[http://dx.doi.org/10.3390/nu11050946] [PMID: 31035454]
[32]
Zerr, P.; Palumbo-Zerr, K.; Huang, J.; Tomcik, M.; Sumova, B.; Distler, O.; Schett, G.; Distler, J.H.W. Sirt1 regulates canonical TGF-β signalling to control fibroblast activation and tissue fibrosis. Ann. Rheum. Dis., 2016, 75(1), 226-233.
[http://dx.doi.org/10.1136/annrheumdis-2014-205740] [PMID: 25180292]
[33]
Si, J.; Meng, R.; Gao, P.; Hui, F.; Li, Y.; Liu, X.; Yang, B. Linagliptin protects rat carotid artery from balloon injury and activates the NRF2 antioxidant pathway. Exp. Anim., 2019, 68(1), 81-90.
[http://dx.doi.org/10.1538/expanim.18-0089] [PMID: 30369549]
[34]
Wang, X.W.; Zhang, C.; Lee, K.C.; He, X.J.; Lu, Z.Q.; Huang, C.; Wu, Q.C. Adenovirus-mediated gene transfer of microRNA-21 sponge inhibits neointimal hyperplasia in rat vein grafts. Int. J. Biol. Sci., 2017, 13(10), 1309-1319.
[http://dx.doi.org/10.7150/ijbs.20254] [PMID: 29104497]
[35]
Yu, X.; Takayama, T.; Goel, S.A.; Shi, X.; Zhou, Y.; Kent, K.C.; Murphy, W.L.; Guo, L.W. A rapamycin-releasing perivascular polymeric sheath produces highly effective inhibition of intimal hyperplasia. J. Control. Release, 2014, 191, 47-53.
[36]
Hu, H.; Patel, S.; Hanisch, J.J.; Santana, J.M.; Hashimoto, T.; Bai, H.; Kudze, T.; Foster, T.R.; Guo, J.; Yatsula, B.; Tsui, J.; Dardik, A. Future research directions to improve fistula maturation and reduce access failure. Semin. Vasc. Surg., 2016, 29(4), 153-171.
[http://dx.doi.org/10.1053/j.semvascsurg.2016.08.005] [PMID: 28779782]
[37]
Liu, L.; Li, N.; Zhang, Q.; Zhou, J.; Lin, L.; He, X. Inhibition of ERK1/2 signaling impairs the promoting effects of TGF-β1 on hepatocellular carcinoma cell invasion and epithelial-mesenchymal transition. Oncol. Res., 2017, 25(9), 1607-1616.
[http://dx.doi.org/10.3727/096504017X14938093512742] [PMID: 28492136]
[38]
Yang, Y.; Wang, Y.; He, Z.; Liu, Y.; Chen, C.; Wang, Y.; Wang, D.W.; Wang, H. Trimetazidine inhibits renal tubular epithelial cells to mesenchymal transition in diabetic rats via upregulation of sirt1. Front. Pharmacol., 2020, 11, 1136.
[http://dx.doi.org/10.3389/fphar.2020.01136] [PMID: 32848753]
[39]
Li, K.; Zhai, M.; Jiang, L.; Song, F.; Zhang, B.; Li, J.; Li, H.; Li, B.; Xia, L.; Xu, L.; Cao, Y.; He, M.; Zhu, H.; Zhang, L.; Liang, H.; Jin, Z.; Duan, W.; Wang, S. Tetrahydrocurcumin ameliorates diabetic cardiomyopathy by attenuating high glucose-induced oxidative stress and fibrosis via activating the SIRT1 pathway. Oxid. Med. Cell. Longev., 2019, 2019, 1-15.
[http://dx.doi.org/10.1155/2019/6746907] [PMID: 31210844]
[40]
Zhao, H.; Wang, Z.; Tang, F.; Zhao, Y.; Feng, D.; Li, Y.; Hu, Y.; Wang, C.; Zhou, J.; Tian, X.; Yao, J. Carnosol-mediated Sirtuin 1 activation inhibits Enhancer of Zeste Homolog 2 to attenuate liver fibrosis. Pharmacol. Res., 2018, 128, 327-337.
[http://dx.doi.org/10.1016/j.phrs.2017.10.013] [PMID: 29106960]
[41]
Zhang, Z.; Zhao, M.; Wang, G. Hsa_circ_0051079 functions as an oncogene by regulating miR-26a-5p/TGF-β1 in osteosarcoma. Cell Biosci., 2019, 9(1), 94.
[http://dx.doi.org/10.1186/s13578-019-0355-2] [PMID: 31798828]
[42]
Kubiczkova, L.; Sedlarikova, L.; Hajek, R.; Sevcikova, S. TGF-β – an excellent servant but a bad master. J. Transl. Med., 2012, 10(1), 183.
[http://dx.doi.org/10.1186/1479-5876-10-183] [PMID: 22943793]
[43]
Yang, K.; Dong, W. SIRT1-related signaling pathways and their association with bronchopulmonary dysplasia. Front. Med. (Lausanne), 2021, 8, 595634.
[http://dx.doi.org/10.3389/fmed.2021.595634] [PMID: 33693011]
[44]
Huang, S.; You, S.; Qian, J.; Dai, C.; Shen, S.; Wang, J.; Huang, W.; Liang, G.; Wu, G. Myeloid differentiation 2 deficiency attenuates AngII-induced arterial vascular oxidative stress, inflammation, and remodeling. Aging (Albany NY), 2021, 13(3), 4409-4427.
[http://dx.doi.org/10.18632/aging.202402] [PMID: 33495414]
[45]
Maldonado, E.; Rojas, D.A.; Urbina, F.; Solari, A. The use of antioxidants as potential co-adjuvants to treat chronic chagas disease Antioxidants, 2021, 10(7), 1022.
[46]
Yuan, B.; Liu, H.; Dong, X.; Pan, X.; Sun, X.; Sun, J.; Pan, L.L. A novel resveratrol analog upregulates SIRT1 expression and ameliorates neointima formation. Front. Cardiovasc. Med., 2021, 8, 756098.
[http://dx.doi.org/10.3389/fcvm.2021.756098] [PMID: 34796214]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy