Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Mitochondrial Transplantation and Immune Response of Human Bone Marrow Mesenchymal Stem Cells for the Therapeutic of Ischemic Stroke

Author(s): Yidong Liao, Jiang Ming, Wenxue Song, Guangtang Chen, Junshuan Cui, Longcai He, Zili Wang, Xudong Wang, Mingsong Xiong, Hua Yang* and Kaya Xu*

Volume 19, Issue 5, 2024

Published on: 23 June, 2023

Page: [678 - 687] Pages: 10

DOI: 10.2174/1574888X18666230505103407

Price: $65

Abstract

Ischemic stroke is the leading cause of death and disability worldwide, with increasing incidence and mortality, imposing a significant social and economic burden on patients and their families. However, cerebral vascular occlusion leads to acute loss of neurons and destruction of synaptic structures. The limited treatment options cannot adequately address intra-neuronal mitochondrial dysfunction due to stroke. Therefore, stem cell-derived mitochondria transplantation plays an important role in neuronal protection and recovery after stroke, when combined with the intracranial and extracranial immunoregulatory effects of stem cell therapy, revealing the mechanism of transferred mitochondria in stem cells in protecting neurological function among chronic-phase ischemic stroke by affecting the endogenous apoptotic pathway of neuronal cells. This research elaborated on the mitochondrial dysfunction in neurons after ischemic stroke, followed by human bone marrow mesenchymal stem cells (hBMSC) rescued damaged neurons by mitochondrial transfer through tunneling nanotubes (TNTs), and the immunomodulatory effect of the preferential transfer of stem cells to the spleen when transplanted into the bodywhich created an immune environment for nerve repair, as well as improved neurological recovery after the chronic phase of stroke. This review is expected to provide a novel idea for applying intracranial stem cell transplantation in chronic-phase ischemic stroke treatment.

Graphical Abstract

[1]
Virani SS, Alonso A, Aparicio HJ, et al. Heart disease and stroke statistics—2021 update. Circulation 2021; 143(8): e254-743.
[http://dx.doi.org/10.1161/CIR.0000000000000950] [PMID: 33501848]
[2]
Feigin VL, Stark BA, Johnson CO, et al. Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol 2021; 20(10): 795-820.
[http://dx.doi.org/10.1016/S1474-4422(21)00252-0] [PMID: 34487721]
[3]
Lapchak PA, Zhang JH. The high cost of stroke and stroke cytoprotection research. Transl Stroke Res 2017; 8(4): 307-17.
[http://dx.doi.org/10.1007/s12975-016-0518-y] [PMID: 28039575]
[4]
Schiavone S, Trabace L. Small molecules: Therapeutic application in neuropsychiatric and neurodegenerative disorders. Molecules 2018; 23(2): 411.
[http://dx.doi.org/10.3390/molecules23020411] [PMID: 29438357]
[5]
Farooq J, Park YJ, Cho J, et al. Stem cells as drug-like biologics for mitochondrial repair in stroke. Pharmaceutics 2020; 12(7): 615.
[http://dx.doi.org/10.3390/pharmaceutics12070615] [PMID: 32630218]
[6]
Jahed FJ, Rahbarghazi R, Shafaei H, Rezabakhsh A, Karimipour M. Application of neurotrophic factor-secreting cells (astrocyte - Like cells) in the in-vitro Alzheimer’s disease-like pathology on the human neuroblastoma cells. Brain Res Bull 2021; 172: 180-9.
[http://dx.doi.org/10.1016/j.brainresbull.2021.04.014] [PMID: 33895268]
[7]
Norat P, Soldozy S, Sokolowski JD, et al. Mitochondrial dysfunction in neurological disorders: Exploring mitochondrial transplantation. NPJ Regen Med 2020; 5(1): 22.
[http://dx.doi.org/10.1038/s41536-020-00107-x] [PMID: 33298971]
[8]
Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 2014; 94(3): 909-50.
[http://dx.doi.org/10.1152/physrev.00026.2013] [PMID: 24987008]
[9]
Gomzikova MO, James V, Rizvanov AA. Mitochondria donation by mesenchymal stem cells: Current understanding and mitochondria transplantation strategies. Front Cell Dev Biol 2021; 9: 653322.
[10]
Huang L, Zhang L. Neural stem cell therapies and hypoxic-ischemic brain injury. Prog Neurobiol 2019; 173: 1-17.
[http://dx.doi.org/10.1016/j.pneurobio.2018.05.004] [PMID: 29758244]
[11]
Torralba D, Baixauli F, Sánchez-Madrid F. Mitochondria Know No Boundaries: Mechanisms and functions of intercellular mitochondrial transfer. Front Cell Dev Biol 2016; 4: 107.
[http://dx.doi.org/10.3389/fcell.2016.00107]
[12]
Wang F, Tang H, Zhu J, Zhang JH. Transplanting mesenchymal stem cells for treatment of ischemic stroke. Cell Transplant 2018; 27(12): 1825-34.
[http://dx.doi.org/10.1177/0963689718795424] [PMID: 30251564]
[13]
Boncoraglio GB, Ranieri M, Bersano A, et al. Stem cell transplantation for ischemic stroke. Cochrane Database Syst Rev 2019; 5: CD007231.
[http://dx.doi.org/10.1002/14651858.CD007231.pub3]
[14]
Han H, Hu J, Yan Q, et al. Bone marrow-derived mesenchymal stem cells rescue injured H9c2 cells via transferring intact mitochondria through tunneling nanotubes in an in vitro simulated ischemia/reperfusion model. Mol Med Rep Greece 2016; 13: 1517-24.
[http://dx.doi.org/10.3892/mmr.2015.4726]
[15]
Borlongan CV, Russo E, Nguyen H, Lippert T, Tuazon J, Napoli E. Mitochondrial targeting as a novel therapy for stroke. Brain Circ 2018; 4(3): 84-94.
[http://dx.doi.org/10.4103/bc.bc_14_18] [PMID: 30450413]
[16]
Yang JL, Mukda S, Chen SD. Diverse roles of mitochondria in ischemic stroke. Redox Biol 2018; 16: 263-75.
[http://dx.doi.org/10.1016/j.redox.2018.03.002] [PMID: 29549824]
[17]
Hofmeijer J, van Putten MJAM. Ischemic cerebral damage: An appraisal of synaptic failure. Stroke 2012; 43(2): 607-15.
[http://dx.doi.org/10.1161/STROKEAHA.111.632943] [PMID: 22207505]
[18]
Dharmasaroja PA. Fluid intake related to brain edema in acute middle cerebral artery infarction. Transl Stroke Res 2016; 7(1): 49-53.
[http://dx.doi.org/10.1007/s12975-015-0439-1] [PMID: 26666449]
[19]
Qin C, Yang S, Chu YH, et al. Signaling pathways involved in ischemic stroke: Molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2022; 7(1): 215.
[http://dx.doi.org/10.1038/s41392-022-01064-1] [PMID: 35794095]
[20]
Ahnstedt H, Sweet J, Cruden P, Bishop N, Cipolla MJ. Effects of early post-ischemic reperfusion and tPA on cerebrovascular function and nitrosative stress in female rats. Transl Stroke Res 2016; 7(3): 228-38.
[http://dx.doi.org/10.1007/s12975-016-0468-4] [PMID: 27125535]
[21]
Yu W, Li P, Wang X, Stetler RA, Chen J. Anti-inflammatory signaling: The point of convergence for medical gases in neuroprotection against ischemic stroke. Med Gas Res 2016; 6(4): 227-31.
[http://dx.doi.org/10.4103/2045-9912.196906] [PMID: 28217296]
[22]
D’Arcy MS. Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int 2019; 43: 582-92.
[http://dx.doi.org/10.1002/cbin.11137]
[23]
Hou K, Xu D, Li F, et al. The progress of neuronal autophagy in cerebral ischemia stroke: Mechanisms, roles and research methods. J Neurol Sci 2019; 400: 72-82.
[http://dx.doi.org/10.1016/j.jns.2019.03.015]
[24]
Youle RJ, van der Bliek AM. Mitochondrial fission, fusion, and stress. Science 2012; 337(6098): 1062-5.
[http://dx.doi.org/10.1126/science.1219855] [PMID: 22936770]
[25]
Yang M, He Y, Deng S, et al. Mitochondrial quality control: A pathophysiological mechanism and therapeutic target for stroke. Front Mol Neurosci 2022; 14: 786099.
[http://dx.doi.org/10.3389/fnmol.2021.786099] [PMID: 35153669]
[26]
Javed MA, Wen L, Awais M, et al. TRO40303 ameliorates alcohol-induced pancreatitis through reduction of fatty acid ethyl ester–induced mitochondrial injury and necrotic cell death. Pancreas 2018; 47(1): 18-24.
[http://dx.doi.org/10.1097/MPA.0000000000000953] [PMID: 29200128]
[27]
Wang T, Yang Z, Zhang Y, et al. Caspase cleavage of Mcl-1 impairs its anti-apoptotic activity and proteasomal degradation in non-small lung cancer cells. Apoptosis Int J Program Cell Death 2018; 23: 54-64.
[http://dx.doi.org/10.1007/s10495-017-1436-5]
[28]
He Z, Ning N, Zhou Q, et al. Mitochondria as a therapeutic target for ischemic stroke. Free Radic Biol Med 2020; 146: 45-58.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.11.005]
[29]
Sims NR, Muyderman H. Mitochondria, oxidative metabolism and cell death in stroke. Biochim Biophys Acta 2010; 1802: 80-91.
[http://dx.doi.org/10.1016/j.bbadis.2009.09.003]
[30]
Hayakawa K, Esposito E, Wang X, et al. Transfer of mitochondria from astrocytes to neurons after stroke. Nature 2016; 535(7613): 551-5.
[http://dx.doi.org/10.1038/nature18928] [PMID: 27466127]
[31]
Li X, Li Y, Zhang Z, Bian Q, Gao Z, Zhang S. Mild hypothermia facilitates mitochondrial transfer from astrocytes to injured neurons during oxygen-glucose deprivation/reoxygenation. Neurosci Lett 2021; 756: 135940.
[http://dx.doi.org/10.1016/j.neulet.2021.135940] [PMID: 33971244]
[32]
Mahrouf-Yorgov M, Augeul L, Da Silva CC, et al. Mesenchymal stem cells sense mitochondria released from damaged cells as danger signals to activate their rescue properties. Cell Death Differ 2017; 24(7): 1224-38.
[http://dx.doi.org/10.1038/cdd.2017.51] [PMID: 28524859]
[33]
Babenko V, Silachev D, Popkov V, et al. Miro1 enhances mitochondria transfer from multipotent mesenchymal stem cells (MMSC) to neural cells and improves the efficacy of cell recovery. Molecules 2018; 23(3): 687.
[http://dx.doi.org/10.3390/molecules23030687] [PMID: 29562677]
[34]
Berlet R, Anthony S, Brooks B, et al. Combination of stem cells and rehabilitation therapies for ischemic stroke. Biomolecules 2021; 11(9): 1316.
[http://dx.doi.org/10.3390/biom11091316] [PMID: 34572529]
[35]
Park YJ, Borlongan CV. Recent advances in cell therapy for stroke. J Cereb Blood Flow Metab 2021; 41(10): 2797-9.
[http://dx.doi.org/10.1177/0271678X211026507] [PMID: 34187231]
[36]
Brown J, Park YJ, Lee JY, Chase TN, Koga M, Borlongan CV. Bone marrow-derived NCS-01 cells advance a novel cell-based therapy for stroke. Int J Mol Sci 2020; 21(8): 2845.
[http://dx.doi.org/10.3390/ijms21082845] [PMID: 32325813]
[37]
Balog J, Mehta SL, Vemuganti R. Mitochondrial fission and fusion in secondary brain damage after CNS insults. J Cereb Blood Flow Metab 2016; 36(12): 2022-33.
[http://dx.doi.org/10.1177/0271678X16671528] [PMID: 27677674]
[38]
Khoshnam SE, Winlow W, Farzaneh M. The interplay of MicroRNAs in the inflammatory mechanisms following ischemic stroke. J Neuropathol Exp Neurol 2017; 76: 548-61.
[http://dx.doi.org/10.1093/jnen/nlx036]
[39]
Heydari E, Alishahi M, Ghaedrahmati F, Winlow W, Khoshnam SE, Anbiyaiee A. The role of non-coding RNAs in neuroprotection and angiogenesis following ischemic stroke. Metab Brain Dis 2020; 35(1): 31-43.
[http://dx.doi.org/10.1007/s11011-019-00485-2] [PMID: 31446548]
[40]
Borlongan CV, Saft M, Koga M. Bone marrow-derived NCS-01 cells for ischemic stroke. Brain Circ 2021; 7(1): 44-7.
[http://dx.doi.org/10.4103/bc.bc_23_21] [PMID: 34084978]
[41]
Neal EG, Liska MG, Lippert T, et al. An update on intracerebral stem cell grafts. Expert Rev Neurother 2018; 18: 557-72.
[http://dx.doi.org/10.1080/14737175.2018.1491309]
[42]
Neal EG, Acosta SA, Kaneko Y, Ji X, Borlongan CV. Regulatory T-cells within bone marrow-derived stem cells actively confer immunomodulatory and neuroprotective effects against stroke. J Cereb Blood Flow Metab 2019; 39(9): 1750-8.
[http://dx.doi.org/10.1177/0271678X18766172] [PMID: 29569981]
[43]
Hayakawa K, Bruzzese M, Chou SHY, Ning M, Ji X, Lo EH. Extracellular mitochondria for therapy and diagnosis in acute central nervous system injury. JAMA Neurol 2018; 75(1): 119-22.
[http://dx.doi.org/10.1001/jamaneurol.2017.3475] [PMID: 29159397]
[44]
Hosseinian S, Ali Pour P, Kheradvar A. Prospects of mitochondrial transplantation in clinical medicine: Aspirations and challenges. Mitochondrion 2022; 65: 33-44.
[http://dx.doi.org/10.1016/j.mito.2022.04.006] [PMID: 35504560]
[45]
Islam MN, Das SR, Emin MT, et al. Mitochondrial transfer from bone-marrow–derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med 2012; 18(5): 759-65.
[http://dx.doi.org/10.1038/nm.2736] [PMID: 22504485]
[46]
Kaza AK, Wamala I, Friehs I, et al. Myocardial rescue with autologous mitochondrial transplantation in a porcine model of ischemia/reperfusion. J Thorac Cardiovasc Surg 2017; 153: 934-43.
[http://dx.doi.org/10.1016/j.jtcvs.2016.10.077]
[47]
Jung JE, Sun G, Bautista Garrido J, et al. The mitochondria-derived peptide humanin improves recovery from intracerebral hemorrhage: Implication of mitochondria transfer and microglia phenotype change. J Neurosci 2020; 40(10): 2154-65.
[http://dx.doi.org/10.1523/JNEUROSCI.2212-19.2020] [PMID: 31980585]
[48]
Tashiro R, Bautista-Garrido J, Ozaki D, et al. Transplantation of astrocytic mitochondria modulates neuronal antioxidant defense and neuroplasticity and promotes functional recovery after intracerebral hemorrhage. J Neurosci 2022; 42(36): 7001-14.
[http://dx.doi.org/10.1523/JNEUROSCI.2222-21.2022] [PMID: 35970559]
[49]
Liu K, Ji K, Guo L, et al. Mesenchymal stem cells rescue injured endothelial cells in an in vitro ischemia–reperfusion model via tunneling nanotube like structure-mediated mitochondrial transfer. Microvasc Res 2014; 92: 10-8.
[http://dx.doi.org/10.1016/j.mvr.2014.01.008] [PMID: 24486322]
[50]
Liu K, Guo L, Zhou Z, Pan M, Yan C. Mesenchymal stem cells transfer mitochondria into cerebral microvasculature and promote recovery from ischemic stroke. Microvasc Res 2019; 123: 74-80.
[http://dx.doi.org/10.1016/j.mvr.2019.01.001] [PMID: 30611747]
[51]
Li X, Yang Y, Ye G, et al. Transfer of mitochondria from mesenchymal stem cells derived from induced pluripotent stem cells attenuates hypoxia-ischemia-induced mitochondrial dysfunction in PC12 cells. Neural Regen Res 2020; 15(3): 464-72.
[http://dx.doi.org/10.4103/1673-5374.266058] [PMID: 31571658]
[52]
Nasoni MG, Carloni S, Canonico B, et al. Melatonin reshapes the mitochondrial network and promotes intercellular mitochondrial transfer via tunneling nanotubes after ischemic‐like injury in hippocampal HT22 cells. J Pineal Res 2021; 71(1): e12747.
[http://dx.doi.org/10.1111/jpi.12747] [PMID: 34085316]
[53]
Sáenz-de-Santa-María I, Bernardo-Castiñeira C, Enciso E, et al. Control of long-distance cell-to-cell communication and autophagosome transfer in squamous cell carcinoma via tunneling nanotubes. Oncotarget 2017; 8(13): 20939-60.
[http://dx.doi.org/10.18632/oncotarget.15467] [PMID: 28423494]
[54]
Borlongan CV, Nguyen H, Lippert T, et al. May the force be with you: Transfer of healthy mitochondria from stem cells to stroke cells. J Cereb Blood Flow Metab 2019; 39(2): 367-70.
[http://dx.doi.org/10.1177/0271678X18811277] [PMID: 30375940]
[55]
Nguyen H, Lee JY, Sanberg PR, Napoli E, Borlongan CV. Eye opener in stroke. Stroke 2019; 50(8): 2197-206.
[http://dx.doi.org/10.1161/STROKEAHA.119.025249] [PMID: 31242827]
[56]
He K, Shi X, Zhang X, et al. Long-distance intercellular connectivity between cardiomyocytes and cardiofibroblasts mediated by membrane nanotubes. Cardiovasc Res 2011; 92(1): 39-47.
[http://dx.doi.org/10.1093/cvr/cvr189] [PMID: 21719573]
[57]
Tseng N, Lambie SC, Huynh CQ, et al. Mitochondrial transfer from mesenchymal stem cells improves neuronal metabolism after oxidant injury in vitro: The role of Miro1. J Cereb Blood Flow Metab 2021; 41(4): 761-70.
[http://dx.doi.org/10.1177/0271678X20928147] [PMID: 32501156]
[58]
Soundara Rajan T, Gugliandolo A, Bramanti P, Mazzon E. Tunneling nanotubes-mediated protection of mesenchymal stem cells: An update from preclinical studies. Int J Mol Sci 2020; 21(10): 3481.
[http://dx.doi.org/10.3390/ijms21103481] [PMID: 32423160]
[59]
Lenz KM, Nelson LH. Microglia and beyond: Innate immune cells as regulators of brain development and behavioral function. Front Immunol 2018; 9: 698.
[http://dx.doi.org/10.3389/fimmu.2018.00698] [PMID: 29706957]
[60]
Hasselmann J, Blurton-Jones M. Human iPSC‐derived microglia: A growing toolset to study the brain’s innate immune cells. Glia 2020; 68(4): 721-39.
[http://dx.doi.org/10.1002/glia.23781] [PMID: 31926038]
[61]
Qin X, Akter F, Qin L, et al. Adaptive immunity regulation and cerebral ischemia. Front Immunol 2020; 11: 689.
[http://dx.doi.org/10.3389/fimmu.2020.00689] [PMID: 32477327]
[62]
McColl BW, Rothwell NJ, Allan SM. Systemic inflammation alters the kinetics of cerebrovascular tight junction disruption after experimental stroke in mice. J Neurosci 2008; 28(38): 9451-62.
[http://dx.doi.org/10.1523/JNEUROSCI.2674-08.2008] [PMID: 18799677]
[63]
Maida CD, Norrito RL, Daidone M, Tuttolomondo A, Pinto A. Neuroinflammatory mechanisms in ischemic stroke: Focus on cardioembolic stroke, background, and therapeutic approaches. Int J Mol Sci 2020; 21(18): 6454.
[http://dx.doi.org/10.3390/ijms21186454] [PMID: 32899616]
[64]
Jain A, Pasare C. Innate control of adaptive immunity: Beyond the three-signal paradigm. J Immunol 2017; 198(10): 3791-800.
[http://dx.doi.org/10.4049/jimmunol.1602000] [PMID: 28483987]
[65]
Iadecola C, Anrather J. The immunology of stroke: From mechanisms to translation. Nat Med 2011; 17(7): 796-808.
[http://dx.doi.org/10.1038/nm.2399] [PMID: 21738161]
[66]
Stirling DP, Liu S, Kubes P, Yong VW. Depletion of Ly6G/Gr-1 leukocytes after spinal cord injury in mice alters wound healing and worsens neurological outcome. J Neurosci 2009; 29(3): 753-64.
[http://dx.doi.org/10.1523/JNEUROSCI.4918-08.2009] [PMID: 19158301]
[67]
Iadecola C, Iadecola C. Brain-immune interactions and ischemic stroke: Clinical implications. Arch Neurol 2012; 69(5): 576-81.
[http://dx.doi.org/10.1001/archneurol.2011.3590] [PMID: 22782509]
[68]
Seifert HA, Leonardo CC, Hall AA, et al. The spleen contributes to stroke induced neurodegeneration through interferon gamma signaling. Metab Brain Dis 2012; 27(2): 131-41.
[http://dx.doi.org/10.1007/s11011-012-9283-0] [PMID: 22354752]
[69]
Seifert HA, Hall AA, Chapman CB, et al. A transient decrease in spleen size following stroke corresponds to splenocyte release into systemic circulation. J Neuroimmune Pharmacol Off J Soc Neuro-Immune Pharmacol 2012; 7: 1017-24.
[http://dx.doi.org/10.1007/s11481-012-9406-8]
[70]
Crowley MG, Liska MG, Borlongan CV. Stem cell therapy for sequestering neuroinflammation in traumatic brain injury: An update on exosome-targeting to the spleen. J Neurosurg Sci 2017; 61: 291-302.
[http://dx.doi.org/10.23736/S0390-5616.16.03921-7]
[71]
Yu H, Cai Y, Zhong A, Zhang Y, Zhang J, Xu S. The “Dialogue” between central and peripheral immunity after ischemic stroke: Focus on spleen. Front Immunol 2021; 12: 792522.
[http://dx.doi.org/10.3389/fimmu.2021.792522] [PMID: 34975893]
[72]
Swirski FK, Nahrendorf M, Etzrodt M, et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 2009; 325(5940): 612-6.
[http://dx.doi.org/10.1126/science.1175202] [PMID: 19644120]
[73]
Stewart IB, McKenzie DC. The human spleen during physiological stress. Sports Med Auckl 2002; 32: 361-9.
[http://dx.doi.org/10.2165/00007256-200232060-00002]
[74]
Dénes Á, Ferenczi S, Kovács KJ. Systemic inflammatory challenges compromise survival after experimental stroke via augmenting brain inflammation, blood- brain barrier damage and brain oedema independently of infarct size. J Neuroinflammation 2011; 8(1): 164.
[http://dx.doi.org/10.1186/1742-2094-8-164] [PMID: 22114895]
[75]
Muhammad S, Chaudhry SR, Kahlert UD, Niemelä M, Hänggi D. Brain immune interactions—novel emerging options to treat acute ischemic brain injury. Cells 2021; 10(9): 2429.
[http://dx.doi.org/10.3390/cells10092429] [PMID: 34572077]
[76]
An C, Shi Y, Li P, et al. Molecular dialogs between the ischemic brain and the peripheral immune system: Dualistic roles in injury and repair. Prog Neurobiol 2014; 115: 6-24.
[http://dx.doi.org/10.1016/j.pneurobio.2013.12.002] [PMID: 24374228]
[77]
Hu X, Leak RK, Thomson AW, et al. Promises and limitations of immune cell-based therapies in neurological disorders. Nat Rev Neurol 2018; 14(9): 559-68.
[http://dx.doi.org/10.1038/s41582-018-0028-5] [PMID: 29925925]
[78]
Iihoshi S, Honmou O, Houkin K, Hashi K, Kocsis JD. A therapeutic window for intravenous administration of autologous bone marrow after cerebral ischemia in adult rats. Brain Res 2004; 1007(1-2): 1-9.
[http://dx.doi.org/10.1016/j.brainres.2003.09.084] [PMID: 15064130]
[79]
Chen J, Li Y, Zhang R, et al. Combination therapy of stroke in rats with a nitric oxide donor and human bone marrow stromal cells enhances angiogenesis and neurogenesis. Brain Res 2004; 1005(1-2): 21-8.
[http://dx.doi.org/10.1016/j.brainres.2003.11.080] [PMID: 15044060]
[80]
Lu M, Chen J, Lu D, et al. Global test statistics for treatment effect of stroke and traumatic brain injury in rats with administration of bone marrow stromal cells. J Neurosci Methods 2003; 128: 183-90.
[http://dx.doi.org/10.1016/S0165-0270(03)00188-2]
[81]
Xu K, Lee JY, Kaneko Y, et al. Human stem cells transplanted into the rat stroke brain migrate to the spleen via lymphatic and inflammation pathways. Haematologica 2019; 104(5): 1062-73.
[http://dx.doi.org/10.3324/haematol.2018.206581] [PMID: 30514806]
[82]
Fu X, Liu G, Halim A, Ju Y, Luo Q, Song AG. Mesenchymal stem cell migration and tissue repair. Cells 2019; 8(8): 784.
[http://dx.doi.org/10.3390/cells8080784] [PMID: 31357692]
[83]
Han D, Liu H, Gao Y, Feng J. Targeting brain-spleen crosstalk after stroke: New insights into stroke pathology and treatment. Curr Neuropharmacol 2021; 19(9): 1590-605.
[http://dx.doi.org/10.2174/1570159X19666210316092225] [PMID: 33726651]
[84]
Acosta SA, Tajiri N, Hoover J, Kaneko Y, Borlongan CV. Intravenous bone marrow stem cell grafts preferentially migrate to spleen and abrogate chronic inflammation in stroke. Stroke 2015; 46(9): 2616-27.
[http://dx.doi.org/10.1161/STROKEAHA.115.009854] [PMID: 26219646]
[85]
Shi L, Sun Z, Su W, et al. Treg cell-derived osteopontin promotes microglia-mediated white matter repair after ischemic stroke. Immunity 2021; 54(7): 1527-1542.e8.
[http://dx.doi.org/10.1016/j.immuni.2021.04.022] [PMID: 34015256]
[86]
Klein L, Hinterberger M, Wirnsberger G, et al. Antigen presentation in the thymus for positive selection and central tolerance induction. Nat Rev Immunol 2009; 9: 833-44.
[http://dx.doi.org/10.1038/nri2669]
[87]
Shevach EM. Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity 2009; 30(5): 636-45.
[http://dx.doi.org/10.1016/j.immuni.2009.04.010] [PMID: 19464986]
[88]
André S, Tough DF, Lacroix-Desmazes S, Kaveri SV, Bayry J. Surveillance of antigen-presenting cells by CD4+ CD25+ regulatory T cells in autoimmunity: immunopathogenesis and therapeutic implications. Am J Pathol 2009; 174(5): 1575-87.
[http://dx.doi.org/10.2353/ajpath.2009.080987] [PMID: 19349365]
[89]
Zhou K, Zhong Q, Wang YC, et al. RETRACTED: Regulatory T cells ameliorate intracerebral hemorrhage-induced inflammatory injury by modulating microglia/macrophage polarization through the IL-10/GSK3β/PTEN axis. J Cereb Blood Flow Metab 2017; 37(3): 967-79.
[http://dx.doi.org/10.1177/0271678X16648712] [PMID: 27174997]
[90]
Marchi S, Guilbaud E, Tait SWG, Yamazaki T, Galluzzi L. Mitochondrial control of inflammation. Nat Rev Immunol 2023; 23(3): 159-73.
[http://dx.doi.org/10.1038/s41577-022-00760-x] [PMID: 35879417]
[91]
Chang CY, Liang MZ, Chen L. Current progress of mitochondrial transplantation that promotes neuronal regeneration. Transl Neurodegener 2019; 8(1): 17.
[http://dx.doi.org/10.1186/s40035-019-0158-8] [PMID: 31210929]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy