Generic placeholder image

Recent Patents on Biotechnology

Editor-in-Chief

ISSN (Print): 1872-2083
ISSN (Online): 2212-4012

Review Article

A Review on Romiplostim Mechanism of Action and the Expressive Approach in E. coli

Author(s): Masoud Hashemzaei, Mohammad Bagher Ghoshoon*, Mehrnaz Jamshidi, Fatemeh Moradbeygi and Ahmad Hashemzehi

Volume 18, Issue 2, 2024

Published on: 23 June, 2023

Page: [95 - 109] Pages: 15

DOI: 10.2174/1872208317666230503094451

Price: $65

Abstract

Immune thrombocytopenic purpura (ITP) is an autoimmune disorder determined by immune-mediated platelet demolition and reduction of platelet production. Romiplostim is a new thrombopoiesis motivating peptibody that binds and stimulates the human thrombopoietin receptor the patent of which was registered in 2008. It is used to treat thrombocytopenia in patients with chronic immune thrombocytopenic purpura. Romiplostim is a 60 kDa peptibody designed to inhibit cross-reacting immune responses. It consists of four high-affinity TPO-receptor binding domains for the Mpl receptor and one human IgG1 Fc domain. Escherichia coli is a good host for the fabrication of recombinant proteins such as romiplostim. The expression of a gene intended in E. coli is dependent on many factors such as a protein’s inherent ability to fold, mRNA’s secondary structure, its solubility, its toxicity preferential codon use, and its need for post-translational modification (PTM). This review focuses on the structure, function, mechanism of action, and expressive approach to romiplostim in E. coli.

Graphical Abstract

[1]
Patel H, Patel N, Vyas A, Patel M, Pandey S. Romiplostim: A novel c-Mpl/CD110 receptor ligand for the management of idiopathic thrombocytopenic purpura. J Clin Diagn Res 2009; 3(4): 1690-6.
[2]
Lambert MP. Platelets and eltrombopag: A not-so-sticky situation. Blood 2012; 119(17): 3876-7.
[http://dx.doi.org/10.1182/blood-2012-03-410415] [PMID: 22538496]
[3]
Kuter DJ, Tarantino MD, Lawrence T. Clinical overview and practical considerations for optimizing romiplostim therapy in patients with immune thrombocytopenia. Blood Rev 2021; 49: 100811.
[http://dx.doi.org/10.1016/j.blre.2021.100811] [PMID: 33781612]
[4]
Molineux G, Newland A. Development of romiplostim for the treatment of patients with chronic immune thrombocytopenia: From bench to bedside. Br J Haematol 2010; 150(1): 9-20.
[http://dx.doi.org/10.1111/j.1365-2141.2010.08140.x] [PMID: 20298251]
[5]
Kuter DJ, Bussel JB, Lyons RM, et al. Efficacy of romiplostim in patients with chronic immune thrombocytopenic purpura: A double-blind randomised controlled trial. Lancet 2008; 371(9610): 395-403.
[http://dx.doi.org/10.1016/S0140-6736(08)60203-2] [PMID: 18242413]
[6]
Liu C-F, Feige U, Cheetham JC. Thrombopoietic compounds Patent TW1250988B, 2006.
[7]
Burgess-Brown NA, Sharma S, Sobott F, Loenarz C, Oppermann U, Gileadi O. Codon optimization can improve expression of human genes in Escherichia coli: A multi-gene study. Protein Expr Purif 2008; 59(1): 94-102.
[http://dx.doi.org/10.1016/j.pep.2008.01.008] [PMID: 18289875]
[8]
Makrides SC. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol Rev 1996; 60(3): 512-38.
[http://dx.doi.org/10.1128/mr.60.3.512-538.1996] [PMID: 8840785]
[9]
Gopal GJ, Kumar A. Strategies for the production of recombinant protein in Escherichia coli. Protein J 2013; 32(6): 419-25.
[http://dx.doi.org/10.1007/s10930-013-9502-5] [PMID: 23897421]
[10]
Redwan E. The optimal gene sequence for optimal protein expression in Escherichia coli: Principle requirements. Arab J Biotechnol 2006; 11(1): 493-510.
[11]
Methia N, Louache F, Vainchenker W, Wendling F. Oligodeoxynucleotides antisense to the proto-oncogene c-mpl specifically inhibit in vitro megakaryocytopoiesis. Blood 1993; 82(5): 1395-401.
[PMID: 7689867]
[12]
Perez-Ruixo JJ, Green B, Doshi S, Wang YM, Mould DR. Romiplostim dose response in patients with immune thrombocytopenia. J Clin Pharmacol 2012; 52(10): 1540-51.
[http://dx.doi.org/10.1177/0091270011420843] [PMID: 22167563]
[13]
Kaushansky K, Broudy VC, Lin N, et al. Thrombopoietin, the Mp1 ligand, is essential for full megakaryocyte development. Proc Natl Acad Sci 1995; 92(8): 3234-8.
[http://dx.doi.org/10.1073/pnas.92.8.3234] [PMID: 7536928]
[14]
Kuter DJ, Begley CG. Recombinant human thrombopoietin: Basic biology and evaluation of clinical studies. Blood 2002; 100(10): 3457-69.
[http://dx.doi.org/10.1182/blood.V100.10.3457] [PMID: 12411315]
[15]
Bunting S, Widmer R, Lipari T, et al. Normal platelets and megakaryocytes are produced in vivo in the absence of thrombopoietin. Blood 1997; 90(9): 3423-9.
[http://dx.doi.org/10.1182/blood.V90.9.3423] [PMID: 9345025]
[16]
Hokom MM, Lacey D, Kinstler OB, Choi E, Kaufman S, Faust J. Pegylated megakaryocyte growth and development factor abrogates the lethal thrombocytopenia associated with carboplatin and irradiation in mice. Blood 1995; 86(12): 4486-92.
[http://dx.doi.org/10.1182/blood.V86.12.4486.bloodjournal86124486]
[17]
George JN, Woolf SH, Raskob GE, et al. Idiopathic thrombocytopenic purpura: A practice guideline developed by explicit methods for the American Society of Hematology. Blood 1996; 88(1): 3-40.
[http://dx.doi.org/10.1182/blood.V88.1.3.3] [PMID: 8704187]
[18]
British Committee for Standards in Haematology General Haematology Task Force. Guidelines for the investigation and management of idiopathic thrombocytopenic purpura in adults, children and in pregnancy. Br J Haematol 2003; 120(4): 574-96.
[http://dx.doi.org/10.1046/j.1365-2141.2003.04131.x] [PMID: 12588344]
[19]
Stevens W, Koene H, Zwaginga JJ, Vreugdenhil G. Chronic idiopathic thrombocytopenic purpura: Present strategy, guidelines and new insights. Neth J Med 2006; 64(10): 356-63.
[PMID: 17122451]
[20]
Blanchette V, Freedman J, Garvey B. Eds., Management of chronic immune thrombocytopenic purpura in children and adults. Semin Hematol 1998; 35(S1): 36-51.
[PMID: 9523748]
[21]
Godeau B, Chevret S, Varet B, et al. Intravenous immunoglobulin or high-dose methylprednisolone, with or without oral prednisone, for adults with untreated severe autoimmune thrombocytopenic purpura: A randomised, multicentre trial. Lancet 2002; 359(9300): 23-9.
[http://dx.doi.org/10.1016/S0140-6736(02)07275-6] [PMID: 11809183]
[22]
Stasi R, Provan D, Eds. Management of immune thrombocytopenic purpura in adults Mayo Clinic Proceedings. Elsevier Amsterdam, the Netherlands 2004.
[23]
Kojouri K, Vesely SK, Terrell DR, George JN. Splenectomy for adult patients with idiopathic thrombocytopenic purpura: A systematic review to assess long-term platelet count responses, prediction of response, and surgical complications. Blood 2004; 104(9): 2623-34.
[http://dx.doi.org/10.1182/blood-2004-03-1168] [PMID: 15217831]
[24]
Evangelista ML, Stipa E, Buccisano F, Venditti A, Amadori S, Stasi R. Idiopathic thrombocytopenic purpura: Current concepts in pathophysiology and management. Thromb Haemost 2008; 99(1): 4-13.
[http://dx.doi.org/10.1160/TH07-08-0513] [PMID: 18217129]
[25]
Vesely SK, Perdue JJ, Rizvi MA, Terrell DR, George JN. Management of adult patients with persistent idiopathic thrombocytopenic purpura following splenectomy: A systematic review. Ann Intern Med 2004; 140(2): 112-20.
[http://dx.doi.org/10.7326/0003-4819-140-3-200402030-00012] [PMID: 14734334]
[26]
Cines DB, Yasothan U, Kirkpatrick P. Romiplostim. Nat Rev Drug Discov 2008; 7(11): 887-8.
[http://dx.doi.org/10.1038/nrd2741] [PMID: 18974747]
[27]
Ballem PJ, Segal GM, Stratton JR, Gernsheimer T, Adamson JW, Slichter SJ. Mechanisms of thrombocytopenia in chronic autoimmune thrombocytopenic purpura. Evidence of both impaired platelet production and increased platelet clearance. J Clin Invest 1987; 80(1): 33-40.
[http://dx.doi.org/10.1172/JCI113060] [PMID: 3597777]
[28]
Kaushansky K. Historical review: Megakaryopoiesis and thrombopoiesis. Blood 2008; 111(3): 981-6.
[http://dx.doi.org/10.1182/blood-2007-05-088500] [PMID: 18223171]
[29]
Nomura S, Dan K, Hotta T, Fujimura K, Ikeda Y. Effects of pegylated recombinant human megakaryocyte growth and development factor in patients with idiopathic thrombocytopenic purpura. Blood 2002; 100(2): 728-30.
[http://dx.doi.org/10.1182/blood.V100.2.728] [PMID: 12091377]
[30]
Li J, Yang C, Xia Y, et al. Thrombocytopenia caused by the development of antibodies to thrombopoietin. Blood 2001; 98(12): 3241-8.
[http://dx.doi.org/10.1182/blood.V98.12.3241] [PMID: 11719360]
[31]
Peeters K, Stassen JM, Collen D, Van Geet C, Freson K. Emerging treatments for thrombocytopenia: Increasing platelet production. Drug Discov Today 2008; 13(17-18): 798-806.
[http://dx.doi.org/10.1016/j.drudis.2008.06.002] [PMID: 18602017]
[32]
Wang B, Nichol J, Sullivan J. Pharmacodynamics and pharmacokinetics of AMG 531, a novel thrombopoietin receptor ligand. Clin Pharmacol Ther 2004; 76(6): 628-38.
[http://dx.doi.org/10.1016/j.clpt.2004.08.010] [PMID: 15592334]
[33]
Kuter DJ. New drugs for familiar therapeutic targets: Thrombopoietin receptor agonists and immune thrombocytopenic purpura. Eur J Haematol 2008; 80(69): 9-18.
[http://dx.doi.org/10.1111/j.1600-0609.2007.00999.x] [PMID: 18211568]
[34]
Kuter DJ. New thrombopoietic growth factors. Blood 2007; 109(11): 4607-16.
[http://dx.doi.org/10.1182/blood-2006-10-019315] [PMID: 17289815]
[35]
Kaushansky K. Thrombopoietin N Engl J Med 1998; 339(11): 746-54.
[http://dx.doi.org/10.1056/NEJM199809103391107] [PMID: 9731092]
[36]
Newland A, Caulier MT, Kappers-Klunne M, et al. An open-label, unit dose-finding study of AMG 531, a novel thrombopoiesis-stimulating peptibody, in patients with immune thrombocytopenic purpura. Br J Haematol 2006; 135(4): 547-53.
[http://dx.doi.org/10.1111/j.1365-2141.2006.06339.x] [PMID: 17061981]
[37]
Bussel JB, Kuter DJ, George JN, et al. AMG 531, a thrombopoiesis-stimulating protein, for chronic ITP. N Engl J Med 2006; 355(16): 1672-81.
[http://dx.doi.org/10.1056/NEJMoa054626] [PMID: 17050891]
[38]
Broudy V, Lin NL. AMG531 stimulates megakaryopoiesis in vitro by binding to Mpl. Cytokine 2004; 25(2): 52-60.
[http://dx.doi.org/10.1016/j.cyto.2003.05.001] [PMID: 14693160]
[39]
Godeau B, Provan D, Bussel J. Immune thrombocytopenic purpura in adults. Curr Opin Hematol 2007; 14(5): 535-56.
[http://dx.doi.org/10.1097/MOH.0b013e3282b9748f] [PMID: 17934364]
[40]
Nichol JL. AMG 531: An investigational thrombopoiesis-stimulating peptibody. Pediatr Blood Cancer 2006; 47(S5): 723-5.
[http://dx.doi.org/10.1002/pbc.20972] [PMID: 16933266]
[41]
Kumagai Y, Fujita T, Ozaki M, et al. Pharmacodynamics and pharmacokinetics of AMG 531, a thrombopoiesis-stimulating peptibody, in healthy Japanese subjects: A randomized, placebo-controlled study. J Clin Pharmacol 2007; 47(12): 1489-97.
[http://dx.doi.org/10.1177/0091270007306563] [PMID: 17925591]
[42]
Frampton JE, Lyseng-Williamson KA. Romiplostim. Drugs 2009; 69(3): 307-17.
[http://dx.doi.org/10.2165/00003495-200969030-00006] [PMID: 19275274]
[43]
Singh I, Swetha RK, Patel R, et al. Pharmacokinetics, pharmacodynamics, efficacy and safety of a romiplostim biosimilar in chronic refractory immune thrombocytopenic purpura (ITP) patients. Indian J Hematol Blood Transfus 2022; 38(1): 111-21.
[http://dx.doi.org/10.1007/s12288-021-01431-y] [PMID: 35125719]
[44]
Nplate (Romiplostim) public assessment report. European Medicines Agency Evaluation of Medicines for Human Use. 2008. Available from:https://www.ema.europa.eu/en/documents/assessment-report/nplate-epar-public-assessment-report_en.pdf
[45]
Kuter DJ, Bussel JB, Newland A, et al. Long-term treatment with romiplostim in patients with chronic immune thrombocytopenic purpura (ITP): 3-year update from an open-label extension study. Blood 2008; 112(11): 402.
[http://dx.doi.org/10.1182/blood.V112.11.402.402]
[46]
Kuter DJ. Romiplostim In: Hematopoietic Growth Factors in Oncology. 2010; pp. 267-88.
[47]
Keating GM. Romiplostim. Drugs 2012; 72(3): 415-35.
[http://dx.doi.org/10.2165/11208260-000000000-00000] [PMID: 22316355]
[48]
Tridente G. Adverse Events of Biomedicines. Springer: Berlin, Germany 2013.
[49]
Kane JF. Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr Opin Biotechnol 1995; 6(5): 494-500.
[http://dx.doi.org/10.1016/0958-1669(95)80082-4] [PMID: 7579660]
[50]
Kane JF, Violand BN, Curran DF, Staten NR, Duffin KL, Bogosian G. Novel in-frame two codon translational hop during synthesis of bovine placental lactogen in a recombinant strain of Escherichia coli. Nucleic Acids Res 1992; 20(24): 6707-12.
[http://dx.doi.org/10.1093/nar/20.24.6707] [PMID: 1480491]
[51]
Redwan ERM, Matar SM, El-Aziz GA, Serour EA. Synthesis of the human insulin gene: Protein expression, scaling up and bioactivity. Prep Biochem Biotechnol 2007; 38(1): 24-39.
[http://dx.doi.org/10.1080/10826060701774312] [PMID: 18080908]
[52]
Dieci G, Bottarelli L, Ballabeni A, Ottonello S. tRNA-assisted overproduction of eukaryotic ribosomal proteins. Protein Expr Purif 2000; 18(3): 346-54.
[http://dx.doi.org/10.1006/prep.2000.1203] [PMID: 10733889]
[53]
Baeshen MN, Al-Hejin AM, Bora RS, et al. Production of biopharmaceuticals in E. coli: Current scenario and future perspectives. J Microbiol Biotechnol 2015; 25(7): 953-62.
[http://dx.doi.org/10.4014/jmb.1412.12079] [PMID: 25737124]
[54]
Baker CS, Eöry LA, Yakhnin H, Mercante J, Romeo T, Babitzke P. CsrA inhibits translation initiation of Escherichia coli hfq by binding to a single site overlapping the Shine-Dalgarno sequence. J Bacteriol 2007; 189(15): 5472-81.
[http://dx.doi.org/10.1128/JB.00529-07] [PMID: 17526692]
[55]
Laursen BS, Sørensen HP, Mortensen KK, Sperling-Petersen HU. Initiation of protein synthesis in bacteria. Microbiol Mol Biol Rev 2005; 69(1): 101-23.
[http://dx.doi.org/10.1128/MMBR.69.1.101-123.2005] [PMID: 15755955]
[56]
Stenström CM, Jin H, Major LL, Tate WP, Isaksson LA. Codon bias at the 3′-side of the initiation codon is correlated with translation initiation efficiency in Escherichia coli. Gene 2001; 263(1-2): 273-84.
[http://dx.doi.org/10.1016/S0378-1119(00)00550-3] [PMID: 11223267]
[57]
Park YS, Seo SW, Hwang S, et al. Design of 5′-untranslated region variants for tunable expression in Escherichia coli. Biochem Biophys Res Commun 2007; 356(1): 136-41.
[http://dx.doi.org/10.1016/j.bbrc.2007.02.127] [PMID: 17349977]
[58]
Seo SW, Yang JS, Cho HS, et al. Predictive combinatorial design of mRNA translation initiation regions for systematic optimization of gene expression levels. Sci Rep 2014; 4(1): 4515.
[http://dx.doi.org/10.1038/srep04515] [PMID: 24682040]
[59]
Chen R. Bacterial expression systems for recombinant protein production: E. coli and beyond. Biotechnol Adv 2012; 30(5): 1102-7.
[http://dx.doi.org/10.1016/j.biotechadv.2011.09.013] [PMID: 21968145]
[60]
Iost I, Bizebard T, Dreyfus M. Functions of DEAD-box proteins in bacteria: Current knowledge and pending questions. Biochim Biophys Acta Gene Regul Mech 2013; 1829(8): 866-77.
[http://dx.doi.org/10.1016/j.bbagrm.2013.01.012] [PMID: 23415794]
[61]
Linder P, Daugeron MC. Are DEAD-box proteins becoming respectable helicases? Nat Struct Biol 2000; 7(2): 97-9.
[http://dx.doi.org/10.1038/72464] [PMID: 10655606]
[62]
César Sánchez J, Padrón G, Santana H, Herrera L. Elimination of an HuIFNα2b readthrough species, produced in Escherichia coli, by replacing its natural translational stop signal. J Biotechnol 1998; 63(3): 179-86.
[http://dx.doi.org/10.1016/S0168-1656(98)00073-X] [PMID: 9803532]
[63]
Newbury SF, Smith NH, Robinson EC, Hiles ID, Higgins CF. Stabilization of translationally active mRNA by prokaryotic REP sequences. Cell 1987; 48(2): 297-310.
[http://dx.doi.org/10.1016/0092-8674(87)90433-8] [PMID: 2433046]
[64]
Poole ES, Brown CM, Tate WP. The identity of the base following the stop codon determines the efficiency of in vivo translational termination in Escherichia coli. EMBO J 1995; 14(1): 151-8.
[http://dx.doi.org/10.1002/j.1460-2075.1995.tb06985.x] [PMID: 7828587]
[65]
Brinkmann U, Mattes RE, Buckel P. High-level expression of recombinant genes in Escherichia coli is dependent on the availability of the dnaY gene product. Gene 1989; 85(1): 109-14.
[http://dx.doi.org/10.1016/0378-1119(89)90470-8] [PMID: 2515992]
[66]
Parker J. Errors and alternatives in reading the universal genetic code. Microbiol Rev 1989; 53(3): 273-98.
[http://dx.doi.org/10.1128/mr.53.3.273-298.1989] [PMID: 2677635]
[67]
Seetharam R, Heeren RA, Wong EY, et al. Mistranslation in IGF-1 during over-expression of the protein in Escherichia coli using a synthetic gene containing low frequency codons. Biochem Biophys Res Commun 1988; 155(1): 518-23.
[http://dx.doi.org/10.1016/S0006-291X(88)81117-3] [PMID: 3137938]
[68]
Calderone TL, Stevens RD, Oas TG. High-level misincorporation of lysine for arginine at AGA codons in a fusion protein expressed in Escherichia coli. J Mol Biol 1996; 262(4): 407-12.
[http://dx.doi.org/10.1006/jmbi.1996.0524] [PMID: 8893852]
[69]
Fisher AC, Haitjema CH, Guarino C, et al. Production of secretory and extracellular N-linked glycoproteins in Escherichia coli. Appl Environ Microbiol 2011; 77(3): 871-81.
[http://dx.doi.org/10.1128/AEM.01901-10] [PMID: 21131519]
[70]
Overton TW. Recombinant protein production in bacterial hosts. Drug Discov Today 2014; 19(5): 590-601.
[http://dx.doi.org/10.1016/j.drudis.2013.11.008] [PMID: 24246684]
[71]
Graumann K, Premstaller A. Manufacturing of recombinant therapeutic proteins in microbial systems. Biotechnol J 2006; 1(2): 164-86.
[http://dx.doi.org/10.1002/biot.200500051] [PMID: 16892246]
[72]
Fayaz S, Fard-Esfahani P, Golkar M, Allahyari M, Sadeghi S. Expression, purification and biological activity assessment of romiplostim biosimilar peptibody. Daru 2016; 24(1): 18.
[http://dx.doi.org/10.1186/s40199-016-0156-7] [PMID: 27401785]
[73]
Basu A, Li X, Leong SSJ. Refolding of proteins from inclusion bodies: Rational design and recipes. Appl Microbiol Biotechnol 2011; 92(2): 241-51.
[http://dx.doi.org/10.1007/s00253-011-3513-y] [PMID: 21822901]
[74]
Ventura S, Villaverde A. Protein quality in bacterial inclusion bodies. Trends Biotechnol 2006; 24(4): 179-85.
[http://dx.doi.org/10.1016/j.tibtech.2006.02.007] [PMID: 16503059]
[75]
Sahdev S, Khattar SK, Saini KS. Production of active eukaryotic proteins through bacterial expression systems: A review of the existing biotechnology strategies. Mol Cell Biochem 2007; 307(1-2): 249-64.
[http://dx.doi.org/10.1007/s11010-007-9603-6] [PMID: 17874175]
[76]
Huang CJ, Lin H, Yang X. Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements. J Ind Microbiol Biotechnol 2012; 39(3): 383-99.
[http://dx.doi.org/10.1007/s10295-011-1082-9] [PMID: 22252444]
[77]
Fahnert B, Lilie H, Neubauer P. Inclusion bodies: Formation and utilisation. Adv Biochem Eng Biotechnol 2004; 89: 93-142.
[http://dx.doi.org/10.1007/b93995]
[78]
Jensen EB, Carlsen S. Production of recombinant human growth hormone in Escherichia coli: Expression of different precursors and physiological effects of glucose, acetate, and salts. Biotechnol Bioeng 1990; 36(1): 1-11.
[http://dx.doi.org/10.1002/bit.260360102] [PMID: 18592603]
[79]
Vasina JA, Baneyx F. Expression of aggregation-prone recombinant proteins at low temperatures: A comparative study of the Escherichia coli cspA and tac promoter systems. Protein Expr Purif 1997; 9(2): 211-8.
[http://dx.doi.org/10.1006/prep.1996.0678] [PMID: 9056486]
[80]
Mergulhão FJM, Summers DK, Monteiro GA. Recombinant protein secretion in Escherichia coli. Biotechnol Adv 2005; 23(3): 177-202.
[http://dx.doi.org/10.1016/j.biotechadv.2004.11.003] [PMID: 15763404]
[81]
Choi JH, Lee SY. Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl Microbiol Biotechnol 2004; 64(5): 625-35.
[http://dx.doi.org/10.1007/s00253-004-1559-9] [PMID: 14966662]
[82]
Joly JC, Leung WS, Swartz JR. Overexpression of Escherichia coli oxidoreductases increases recombinant insulin-like growth factor-I accumulation. Proc Natl Acad Sci 1998; 95(6): 2773-7.
[http://dx.doi.org/10.1073/pnas.95.6.2773] [PMID: 9501165]
[83]
Yim S, Jeong K, Chang H, Lee S. High-level secretory production of human granulocyte-colony stimulating factor by fed-batch culture of recombinant Escherichia coli. Bioprocess Biosyst Eng 2001; 24(4): 249-54.
[http://dx.doi.org/10.1007/s004490100267]
[84]
Kolaj O, Spada S, Robin S, Wall JG. Use of folding modulators to improve heterologous protein production in Escherichia coli. Microb Cell Fact 2009; 8(1): 9.
[http://dx.doi.org/10.1186/1475-2859-8-9] [PMID: 19173718]
[85]
Reilly DE, Yansura DG. Production of monoclonal antibodies in E. coli. In: Current trends in monoclonal antibody development and manufacturing. Springer: Berlin, Germany 2010; pp. 295-308.
[http://dx.doi.org/10.1007/978-0-387-76643-0_17]
[86]
Mavrangelos C, Thiel M, Adamson PJ, et al. Increased yield and activity of soluble single-chain antibody fragments by combining high-level expression and the Skp periplasmic chaperonin. Protein Expr Purif 2001; 23(2): 289-95.
[http://dx.doi.org/10.1006/prep.2001.1506] [PMID: 11676604]
[87]
DeLisa MP, Tullman D, Georgiou G. Folding quality control in the export of proteins by the bacterial twin-arginine translocation pathway. Proc Natl Acad Sci 2003; 100(10): 6115-20.
[http://dx.doi.org/10.1073/pnas.0937838100] [PMID: 12721369]
[88]
Jeong KJ, Lee SY. Secretory production of human granulocyte colony-stimulating factor in Escherichia coli. Protein Expr Purif 2001; 23(2): 311-8.
[http://dx.doi.org/10.1006/prep.2001.1508] [PMID: 11676607]
[89]
Mücke M, Ostendorp R, Leonhartsberger S. E. coli secretion technologies enable production of high yields of active human antibody fragments. Bioprocess Int 2009; 7(8): 40-7.
[90]
Yoon S, Kim S, Kim J. Secretory production of recombinant proteins in Escherichia coli. Recent Pat Biotechnol 2010; 4(1): 23-9.
[http://dx.doi.org/10.2174/187220810790069550] [PMID: 20201800]
[91]
Shokri A, Sandén A, Larsson G. Cell and process design for targeting of recombinant protein into the culture medium of Escherichia coli. Appl Microbiol Biotechnol 2003; 60(6): 654-64.
[http://dx.doi.org/10.1007/s00253-002-1156-8] [PMID: 12664143]
[92]
Yang J, Moyana T, MacKenzie S, Xia Q, Xiang J. One hundred seventy-fold increase in excretion of an FV fragment-tumor necrosis factor alpha fusion protein (sFV/TNF-alpha) from Escherichia coli caused by the synergistic effects of glycine and triton X-100. Appl Environ Microbiol 1998; 64(8): 2869-74.
[http://dx.doi.org/10.1128/AEM.64.8.2869-2874.1998] [PMID: 9687443]
[93]
Shokri A, Sandén AM, Larsson G. Growth rate-dependent changes in Escherichia coli membrane structure and protein leakage. Appl Microbiol Biotechnol 2002; 58(3): 386-92.
[http://dx.doi.org/10.1007/s00253-001-0889-0] [PMID: 11935192]
[94]
Bäcklund E, Reeks D, Markland K, Weir N, Bowering L, Larsson G. Fedbatch design for periplasmic product retention in Escherichia coli. J Biotechnol 2008; 135(4): 358-65.
[http://dx.doi.org/10.1016/j.jbiotec.2008.05.002] [PMID: 18579250]
[95]
Capon DJ, Chamow SM, Mordenti J, et al. Designing CD4 immunoadhesins for AIDS therapy. Nature 1989; 337(6207): 525-31.
[http://dx.doi.org/10.1038/337525a0] [PMID: 2536900]
[96]
Levin D, Golding B, Strome SE, Sauna ZE. Fc fusion as a platform technology: Potential for modulating immunogenicity. Trends Biotechnol 2015; 33(1): 27-34.
[http://dx.doi.org/10.1016/j.tibtech.2014.11.001] [PMID: 25488117]
[97]
Zhang L, Ma W, Da J. Mycobacterium vaccae influences the kinetics of Th1/Th2 cells and expression of iNOS in a marine model of experimental tuberculosis. Zhonghua Jie He He Hu Xi Za Zhi 2000; 23(1): 43-6.
[PMID: 11778182]
[98]
Soleimanpour S, Hassannia T, Motiee M, Amini AA, Rezaee SAR. Fcγ1 fragment of IgG1 as a powerful affinity tag in recombinant Fc-fusion proteins: immunological, biochemical and therapeutic properties. Crit Rev Biotechnol 2017; 37(3): 371-92.
[http://dx.doi.org/10.3109/07388551.2016.1163323] [PMID: 27049690]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy