Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

A Comprehensive Exploration of Metabolism and Tumor Microenvironment and Immunotherapy Response: Evidence From Large Populations in Non-small Cell Lung Cancer

Author(s): Baorong Chen, Qinghua Hou, Linzhuang Liu, Liusheng Wu, Hanwen Wang, Xinyi Lai, Haozhen Liu, Xiaoqiang Li and Jixian Liu*

Volume 24, Issue 1, 2024

Published on: 18 May, 2023

Page: [46 - 58] Pages: 13

DOI: 10.2174/1568009623666230503094327

Abstract

Aim: The study aimed to explore the effect of metabolism on lung cancer.

Background: The tumor microenvironment is largely influenced by metabolism, tightly involved in tumor progression.

Objective: We try to investigate the effect of tumor metabolism terms on non-small cell lung cancer (NSCLC) prognosis, drug and immunotherapy sensitivity, as well as its underlying mechanisms.

Methods: All the data was obtained from The Cancer Genome Atlas and Gene Expression Omnibus databases. R software was used to perform all statistical analyses and plots.

Results: This study conducted 21 metabolism statuses in NSCLC to identify their underlying roles. We found that alpha-linolenic acid metabolism, sphingolipid metabolism, glycerophospholipid metabolism, fatty acid degradation, linoleic acid metabolism, primary bile acid biosynthesis, and fatty acid metabolism were protective factors for NSCLC. Next, we constructed a prognosis model based on primary bile acid biosynthesis, glycerophospholipid, and sphingolipid metabolism. Results in the present study showed that our model could effectively predict patients' prognosis in both training and validation cohorts. A clinical correlation revealed that patients at high-risk exhibited more progressive clinical characteristics. Biological enrichment indicated that MYC targets, E2F targets, mTORC1 signaling, G2/M checkpoint, and epithelial-mesenchymal transition were activated in the high-risk group. Immune relation analysis showed that risk score positively correlated with Th2 cells, yet a negative correlation with CD56 bright NK, Th17, mast and CD8+ T cells. Moreover, our model was related to NSCLC patients' sensitivity to immunotherapy and chemotherapy. Ultimately, eight characteristic genes were identified to distinguish the patients' risk group in the real application.

Conclusions: The model we developed is a useful tool to predict NSCLC patients' prognosis and is associated with the sensitivity of immunotherapy and chemotherapy. Meanwhile, our results can guide the following metabolism-related studies in NSCLC.

Graphical Abstract

[1]
Thai, A.A.; Solomon, B.J.; Sequist, L.V.; Gainor, J.F.; Heist, R.S. Lung cancer. Lancet, 2021, 398(10299), 535-554.
[http://dx.doi.org/10.1016/S0140-6736(21)00312-3] [PMID: 34273294]
[2]
Cheng, H.; Perez-Soler, R. Leptomeningeal metastases in non-small-cell lung cancer. Lancet Oncol., 2018, 19(1), e43-e55.
[http://dx.doi.org/10.1016/S1470-2045(17)30689-7] [PMID: 29304362]
[3]
Sihoe, A.D.L. Video-assisted thoracoscopic surgery as the gold standard for lung cancer surgery. Respirology, 2020, 25(S2), 49-60.
[http://dx.doi.org/10.1111/resp.13920] [PMID: 32734596]
[4]
Aokage, K.; Yoshida, J.; Hishida, T.; Tsuboi, M.; Saji, H.; Okada, M.; Suzuki, K.; Watanabe, S.; Asamura, H. Limited resection for early-stage non-small cell lung cancer as function-preserving radical surgery: A review. Jpn. J. Clin. Oncol., 2017, 47(1), 7-11.
[http://dx.doi.org/10.1093/jjco/hyw148] [PMID: 27765813]
[5]
Judge, A.; Dodd, M.S. Metabolism. Essays Biochem., 2020, 64(4), 607-647.
[http://dx.doi.org/10.1042/EBC20190041] [PMID: 32830223]
[6]
Li, Z.; Zhang, H. Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression. Cell. Mol. Life Sci., 2016, 73(2), 377-392.
[http://dx.doi.org/10.1007/s00018-015-2070-4] [PMID: 26499846]
[7]
Xu, H.; Zhou, S.; Tang, Q.; Xia, H.; Bi, F. Cholesterol metabolism: New functions and therapeutic approaches in cancer. Biochim. Biophys. Acta Rev. Cancer, 2020, 1874(1), 188394.
[http://dx.doi.org/10.1016/j.bbcan.2020.188394] [PMID: 32698040]
[8]
Wu, Z.; Zuo, M.; Zeng, L.; Cui, K.; Liu, B.; Yan, C.; Chen, L.; Dong, J.; Shangguan, F.; Hu, W.; He, H.; Lu, B.; Song, Z. OMA1 reprograms metabolism under hypoxia to promote colorectal cancer development. EMBO Rep., 2021, 22(1), e50827.
[http://dx.doi.org/10.15252/embr.202050827] [PMID: 33314701]
[9]
Tang, Y.C.; Hsiao, J.R.; Jiang, S.S.; Chang, J.Y.; Chu, P.Y.; Liu, K.J.; Fang, H.L.; Lin, L.M.; Chen, H.H.; Huang, Y.W.; Chen, Y.T.; Tsai, F.Y.; Lin, S.F.; Chuang, Y.J.; Kuo, C.C. c-MYC-directed NRF2 drives malignant progression of head and neck cancer via glucose-6-phosphate dehydrogenase and transketolase activation. Theranostics, 2021, 11(11), 5232-5247.
[http://dx.doi.org/10.7150/thno.53417] [PMID: 33859744]
[10]
Maddocks, O.D.K.; Berkers, C.R.; Mason, S.M.; Zheng, L.; Blyth, K.; Gottlieb, E.; Vousden, K.H. Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature, 2013, 493(7433), 542-546.
[http://dx.doi.org/10.1038/nature11743] [PMID: 23242140]
[11]
Wei, X.; Dong, Y.; Chen, X.; Ren, X.; Li, G.; Wang, Y.; Wang, Y.; Zhang, T.; Wang, S.; Qin, C.; Song, N. Construction of circRNA-based ceRNA network to reveal the role of circRNAs in the progression and prognosis of metastatic clear cell renal cell carcinoma. Aging (Albany NY), 2020, 12(23), 24184-24207.
[http://dx.doi.org/10.18632/aging.104107] [PMID: 33223511]
[12]
Ren, X.; Wei, X.; Ding, Y.; Qi, F.; Zhang, Y.; Hu, X.; Qin, C.; Li, X. Comparison of neoadjuvant therapy and upfront surgery in resectable pancreatic cancer: A meta-analysis and systematic review. OncoTargets Ther., 2019, 12, 733-744.
[http://dx.doi.org/10.2147/OTT.S190810] [PMID: 30774360]
[13]
Zhang, T.; Zhou, X.; Zhang, X.; Ren, X.; Wu, J.; Wang, Z.; Wang, S.; Wang, Z. Gut microbiota may contribute to the postnatal male reproductive abnormalities induced by prenatal dibutyl phthalate exposure. Chemosphere, 2022, 287(Pt 1), 132046.
[http://dx.doi.org/10.1016/j.chemosphere.2021.132046] [PMID: 34474386]
[14]
Zhang, X.; Zhang, T.; Ren, X.; Chen, X.; Wang, S.; Qin, C. Pyrethroids toxicity to male reproductive system and offspring as a function of oxidative stress induction: Rodent studies. Front. Endocrinol., 2021, 12, 656106.
[http://dx.doi.org/10.3389/fendo.2021.656106] [PMID: 34122335]
[15]
Malta, T.M.; Sokolov, A.; Gentles, A.J.; Burzykowski, T.; Poisson, L.; Weinstein, J.N. Kamińska, B.; Huelsken, J.; Omberg, L.; Gevaert, O.; Colaprico, A.; Czerwińska, P.; Mazurek, S.; Mishra, L.; Heyn, H.; Krasnitz, A.; Godwin, A.K.; Lazar, A.J.; Stuart, J.M.; Hoadley, K.A.; Laird, P.W.; Noushmehr, H.; Wiznerowicz, M.; Caesar-Johnson, S.J.; Demchok, J.A.; Felau, I.; Kasapi, M.; Ferguson, M.L.; Hutter, C.M.; Sofia, H.J.; Tarnuzzer, R.; Wang, Z.; Yang, L.; Zenklusen, J.C.; Zhang, J.J.; Chudamani, S.; Liu, J.; Lolla, L.; Naresh, R.; Pihl, T.; Sun, Q.; Wan, Y.; Wu, Y.; Cho, J.; DeFreitas, T.; Frazer, S.; Gehlenborg, N.; Getz, G.; Heiman, D.I.; Kim, J.; Lawrence, M.S.; Lin, P.; Meier, S.; Noble, M.S.; Saksena, G.; Voet, D.; Zhang, H.; Bernard, B.; Chambwe, N.; Dhankani, V.; Knijnenburg, T.; Kramer, R.; Leinonen, K.; Liu, Y.; Miller, M.; Reynolds, S.; Shmulevich, I.; Thorsson, V.; Zhang, W.; Akbani, R.; Broom, B.M.; Hegde, A.M.; Ju, Z.; Kanchi, R.S.; Korkut, A.; Li, J.; Liang, H.; Ling, S.; Liu, W.; Lu, Y.; Mills, G.B.; Ng, K-S.; Rao, A.; Ryan, M.; Wang, J.; Weinstein, J.N.; Zhang, J.; Abeshouse, A.; Armenia, J.; Chakravarty, D.; Chatila, W.K.; de Bruijn, I.; Gao, J.; Gross, B.E.; Heins, Z.J.; Kundra, R.; La, K.; Ladanyi, M.; Luna, A.; Nissan, M.G.; Ochoa, A.; Phillips, S.M.; Reznik, E.; Sanchez-Vega, F.; Sander, C.; Schultz, N.; Sheridan, R.; Sumer, S.O.; Sun, Y.; Taylor, B.S.; Wang, J.; Zhang, H.; Anur, P.; Peto, M.; Spellman, P.; Benz, C.; Stuart, J.M.; Wong, C.K.; Yau, C.; Hayes, D.N.; Parker, J.S.; Wilkerson, M.D.; Ally, A.; Balasundaram, M.; Bowlby, R.; Brooks, D.; Carlsen, R.; Chuah, E.; Dhalla, N.; Holt, R.; Jones, S.J.M.; Kasaian, K.; Lee, D.; Ma, Y.; Marra, M.A.; Mayo, M.; Moore, R.A.; Mungall, A.J.; Mungall, K.; Robertson, A.G.; Sadeghi, S.; Schein, J.E.; Sipahimalani, P.; Tam, A.; Thiessen, N.; Tse, K.; Wong, T.; Berger, A.C.; Beroukhim, R.; Cherniack, A.D.; Cibulskis, C.; Gabriel, S.B.; Gao, G.F.; Ha, G.; Meyerson, M.; Schumacher, S.E.; Shih, J.; Kucherlapati, M.H.; Kucherlapati, R.S.; Baylin, S.; Cope, L.; Danilova, L.; Bootwalla, M.S.; Lai, P.H.; Maglinte, D.T.; Van Den Berg, D.J.; Weisenberger, D.J.; Auman, J.T.; Balu, S.; Bodenheimer, T.; Fan, C.; Hoadley, K.A.; Hoyle, A.P.; Jefferys, S.R.; Jones, C.D.; Meng, S.; Mieczkowski, P.A.; Mose, L.E.; Perou, A.H.; Perou, C.M.; Roach, J.; Shi, Y.; Simons, J.V.; Skelly, T.; Soloway, M.G.; Tan, D.; Veluvolu, U.; Fan, H.; Hinoue, T.; Laird, P.W.; Shen, H.; Zhou, W.; Bellair, M.; Chang, K.; Covington, K.; Creighton, C.J.; Dinh, H.; Doddapaneni, H.V.; Donehower, L.A.; Drummond, J.; Gibbs, R.A.; Glenn, R.; Hale, W.; Han, Y.; Hu, J.; Korchina, V.; Lee, S.; Lewis, L.; Li, W.; Liu, X.; Morgan, M.; Morton, D.; Muzny, D.; Santibanez, J.; Sheth, M.; Shinbrot, E.; Wang, L.; Wang, M.; Wheeler, D.A.; Xi, L.; Zhao, F.; Hess, J.; Appelbaum, E.L.; Bailey, M.; Cordes, M.G.; Ding, L.; Fronick, C.C.; Fulton, L.A.; Fulton, R.S.; Kandoth, C.; Mardis, E.R.; McLellan, M.D.; Miller, C.A.; Schmidt, H.K.; Wilson, R.K.; Crain, D.; Curley, E.; Gardner, J.; Lau, K.; Mallery, D.; Morris, S.; Paulauskis, J.; Penny, R.; Shelton, C.; Shelton, T.; Sherman, M.; Thompson, E.; Yena, P.; Bowen, J.; Gastier-Foster, J.M.; Gerken, M.; Leraas, K.M.; Lichtenberg, T.M.; Ramirez, N.C.; Wise, L.; Zmuda, E.; Corcoran, N.; Costello, T.; Hovens, C.; Carvalho, A.L.; de Carvalho, A.C.; Fregnani, J.H.; Longatto-Filho, A.; Reis, R.M.; Scapulatempo-Neto, C.; Silveira, H.C.S.; Vidal, D.O.; Burnette, A.; Eschbacher, J.; Hermes, B.; Noss, A.; Singh, R.; Anderson, M.L.; Castro, P.D.; Ittmann, M.; Huntsman, D.; Kohl, B.; Le, X.; Thorp, R.; Andry, C.; Duffy, E.R.; Lyadov, V.; Paklina, O.; Setdikova, G.; Shabunin, A.; Tavobilov, M.; McPherson, C.; Warnick, R.; Berkowitz, R.; Cramer, D.; Feltmate, C.; Horowitz, N.; Kibel, A.; Muto, M.; Raut, C.P.; Malykh, A.; Barnholtz-Sloan, J.S.; Barrett, W.; Devine, K.; Fulop, J.; Ostrom, Q.T.; Shimmel, K.; Wolinsky, Y.; Sloan, A.E.; De Rose, A.; Giuliante, F.; Goodman, M.; Karlan, B.Y.; Hagedorn, C.H.; Eckman, J.; Harr, J.; Myers, J.; Tucker, K.; Zach, L.A.; Deyarmin, B.; Hu, H.; Kvecher, L.; Larson, C.; Mural, R.J.; Somiari, S.; Vicha, A.; Zelinka, T.; Bennett, J.; Iacocca, M.; Rabeno, B.; Swanson, P.; Latour, M.; Lacombe, L.; Têtu, B.; Bergeron, A.; McGraw, M.; Staugaitis, S.M.; Chabot, J.; Hibshoosh, H.; Sepulveda, A.; Su, T.; Wang, T.; Potapova, O.; Voronina, O.; Desjardins, L.; Mariani, O.; Roman-Roman, S.; Sastre, X.; Stern, M-H.; Cheng, F.; Signoretti, S.; Berchuck, A.; Bigner, D.; Lipp, E.; Marks, J.; McCall, S.; McLendon, R.; Secord, A.; Sharp, A.; Behera, M.; Brat, D.J.; Chen, A.; Delman, K.; Force, S.; Khuri, F.; Magliocca, K.; Maithel, S.; Olson, J.J.; Owonikoko, T.; Pickens, A.; Ramalingam, S.; Shin, D.M.; Sica, G.; Van Meir, E.G.; Zhang, H.; Eijckenboom, W.; Gillis, A.; Korpershoek, E.; Looijenga, L.; Oosterhuis, W.; Stoop, H.; van Kessel, K.E.; Zwarthoff, E.C.; Calatozzolo, C.; Cuppini, L.; Cuzzubbo, S.; DiMeco, F.; Finocchiaro, G.; Mattei, L.; Perin, A.; Pollo, B.; Chen, C.; Houck, J.; Lohavanichbutr, P.; Hartmann, A.; Stoehr, C.; Stoehr, R.; Taubert, H.; Wach, S.; Wullich, B.; Kycler, W.; Murawa, D.; Wiznerowicz, M.; Chung, K.; Edenfield, W.J.; Martin, J.; Baudin, E.; Bubley, G.; Bueno, R.; De Rienzo, A.; Richards, W.G.; Kalkanis, S.; Mikkelsen, T.; Noushmehr, H.; Scarpace, L.; Girard, N.; Aymerich, M.; Campo, E.; Giné, E.; Guillermo, A.L.; Van Bang, N.; Hanh, P.T.; Phu, B.D.; Tang, Y.; Colman, H.; Evason, K.; Dottino, P.R.; Martignetti, J.A.; Gabra, H.; Juhl, H.; Akeredolu, T.; Stepa, S.; Hoon, D.; Ahn, K.; Kang, K.J.; Beuschlein, F.; Breggia, A.; Birrer, M.; Bell, D.; Borad, M.; Bryce, A.H.; Castle, E.; Chandan, V.; Cheville, J.; Copland, J.A.; Farnell, M.; Flotte, T.; Giama, N.; Ho, T.; Kendrick, M.; Kocher, J-P.; Kopp, K.; Moser, C.; Nagorney, D.; O’Brien, D.; O’Neill, B.P.; Patel, T.; Petersen, G.; Que, F.; Rivera, M.; Roberts, L.; Smallridge, R.; Smyrk, T.; Stanton, M.; Thompson, R.H.; Torbenson, M.; Yang, J.D.; Zhang, L.; Brimo, F.; Ajani, J.A.; Gonzalez, A.M.A.; Behrens, C.; Bondaruk, J.; Broaddus, R.; Czerniak, B.; Esmaeli, B.; Fujimoto, J.; Gershenwald, J.; Guo, C.; Lazar, A.J.; Logothetis, C.; Meric-Bernstam, F.; Moran, C.; Ramondetta, L.; Rice, D.; Sood, A.; Tamboli, P.; Thompson, T.; Troncoso, P.; Tsao, A.; Wistuba, I.; Carter, C.; Haydu, L.; Hersey, P.; Jakrot, V.; Kakavand, H.; Kefford, R.; Lee, K.; Long, G.; Mann, G.; Quinn, M.; Saw, R.; Scolyer, R.; Shannon, K.; Spillane, A.; Stretch, J.; Synott, M.; Thompson, J.; Wilmott, J.; Al-Ahmadie, H.; Chan, T.A.; Ghossein, R.; Gopalan, A.; Levine, D.A.; Reuter, V.; Singer, S.; Singh, B.; Tien, N.V.; Broudy, T.; Mirsaidi, C.; Nair, P.; Drwiega, P.; Miller, J.; Smith, J.; Zaren, H.; Park, J-W.; Hung, N.P.; Kebebew, E.; Linehan, W.M.; Metwalli, A.R.; Pacak, K.; Pinto, P.A.; Schiffman, M.; Schmidt, L.S.; Vocke, C.D.; Wentzensen, N.; Worrell, R.; Yang, H.; Moncrieff, M.; Goparaju, C.; Melamed, J.; Pass, H.; Botnariuc, N.; Caraman, I.; Cernat, M.; Chemencedji, I.; Clipca, A.; Doruc, S.; Gorincioi, G.; Mura, S.; Pirtac, M.; Stancul, I.; Tcaciuc, D.; Albert, M.; Alexopoulou, I.; Arnaout, A.; Bartlett, J.; Engel, J.; Gilbert, S.; Parfitt, J.; Sekhon, H.; Thomas, G.; Rassl, D.M.; Rintoul, R.C.; Bifulco, C.; Tamakawa, R.; Urba, W.; Hayward, N.; Timmers, H.; Antenucci, A.; Facciolo, F.; Grazi, G.; Marino, M.; Merola, R.; de Krijger, R.; Gimenez-Roqueplo, A-P.; Piché, A.; Chevalier, S.; McKercher, G.; Birsoy, K.; Barnett, G.; Brewer, C.; Farver, C.; Naska, T.; Pennell, N.A.; Raymond, D.; Schilero, C.; Smolenski, K.; Williams, F.; Morrison, C.; Borgia, J.A.; Liptay, M.J.; Pool, M.; Seder, C.W.; Junker, K.; Omberg, L.; Dinkin, M.; Manikhas, G.; Alvaro, D.; Bragazzi, M.C.; Cardinale, V.; Carpino, G.; Gaudio, E.; Chesla, D.; Cottingham, S.; Dubina, M.; Moiseenko, F.; Dhanasekaran, R.; Becker, K-F.; Janssen, K-P.; Slotta-Huspenina, J.; Abdel-Rahman, M.H.; Aziz, D.; Bell, S.; Cebulla, C.M.; Davis, A.; Duell, R.; Elder, J.B.; Hilty, J.; Kumar, B.; Lang, J.; Lehman, N.L.; Mandt, R.; Nguyen, P.; Pilarski, R.; Rai, K.; Schoenfield, L.; Senecal, K.; Wakely, P.; Hansen, P.; Lechan, R.; Powers, J.; Tischler, A.; Grizzle, W.E.; Sexton, K.C.; Kastl, A.; Henderson, J.; Porten, S.; Waldmann, J.; Fassnacht, M.; Asa, S.L.; Schadendorf, D.; Couce, M.; Graefen, M.; Huland, H.; Sauter, G.; Schlomm, T.; Simon, R.; Tennstedt, P.; Olabode, O.; Nelson, M.; Bathe, O.; Carroll, P.R.; Chan, J.M.; Disaia, P.; Glenn, P.; Kelley, R.K.; Landen, C.N.; Phillips, J.; Prados, M.; Simko, J.; Smith-McCune, K.; VandenBerg, S.; Roggin, K.; Fehrenbach, A.; Kendler, A.; Sifri, S.; Steele, R.; Jimeno, A.; Carey, F.; Forgie, I.; Mannelli, M.; Carney, M.; Hernandez, B.; Campos, B.; Herold-Mende, C.; Jungk, C.; Unterberg, A.; von Deimling, A.; Bossler, A.; Galbraith, J.; Jacobus, L.; Knudson, M.; Knutson, T.; Ma, D.; Milhem, M.; Sigmund, R.; Godwin, A.K.; Madan, R.; Rosenthal, H.G.; Adebamowo, C.; Adebamowo, S.N.; Boussioutas, A.; Beer, D.; Giordano, T.; Mes-Masson, A-M.; Saad, F.; Bocklage, T.; Landrum, L.; Mannel, R.; Moore, K.; Moxley, K.; Postier, R.; Walker, J.; Zuna, R.; Feldman, M.; Valdivieso, F.; Dhir, R.; Luketich, J.; Pinero, E.M.M.; Quintero-Aguilo, M.; Carlotti, C.G., Jr; Dos Santos, J.S.; Kemp, R.; Sankarankuty, A.; Tirapelli, D.; Catto, J.; Agnew, K.; Swisher, E.; Creaney, J.; Robinson, B.; Shelley, C.S.; Godwin, E.M.; Kendall, S.; Shipman, C.; Bradford, C.; Carey, T.; Haddad, A.; Moyer, J.; Peterson, L.; Prince, M.; Rozek, L.; Wolf, G.; Bowman, R.; Fong, K.M.; Yang, I.; Korst, R.; Rathmell, W.K.; Fantacone-Campbell, J.L.; Hooke, J.A.; Kovatich, A.J.; Shriver, C.D.; DiPersio, J.; Drake, B.; Govindan, R.; Heath, S.; Ley, T.; Van Tine, B.; Westervelt, P.; Rubin, M.A.; Lee, J.I.; Aredes, N.D.; Mariamidze, A. Machine learning identifies stemness features associated with oncogenic dedifferentiation. Cell, 2018, 173(2), 338-354.e15.
[http://dx.doi.org/10.1016/j.cell.2018.03.034] [PMID: 29625051]
[16]
Hänzelmann, S.; Castelo, R.; Guinney, J. GSVA: Gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics, 2013, 14(1), 7.
[http://dx.doi.org/10.1186/1471-2105-14-7] [PMID: 23323831]
[17]
Tibshirani, R. The lasso method for variable selection in the Cox model. Stat. Med., 1997, 16(4), 385-395.
[http://dx.doi.org/10.1002/(SICI)1097-0258(19970228)16:4<385:AID-SIM380>3.0.CO;2-3] [PMID: 9044528]
[18]
Ren, X.; Chen, X.; Zhang, X.; Jiang, S.; Zhang, T.; Li, G.; Lu, Z.; Zhang, D.; Wang, S.; Qin, C. Immune microenvironment and response in prostate cancer using large population cohorts. Front. Immunol., 2021, 12, 686809.
[http://dx.doi.org/10.3389/fimmu.2021.686809] [PMID: 34777331]
[19]
Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; Mesirov, J.P. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci., 2005, 102(43), 15545-15550.
[http://dx.doi.org/10.1073/pnas.0506580102] [PMID: 16199517]
[20]
Chen, B.; Khodadoust, M.S.; Liu, C.L.; Newman, A.M.; Alizadeh, A.A. Profiling Tumor Infiltrating Immune Cells with CIBERSORT. Methods Mol. Biol., 2018, 1711, 243-259.
[http://dx.doi.org/10.1007/978-1-4939-7493-1_12] [PMID: 29344893]
[21]
Fu, J.; Li, K.; Zhang, W.; Wan, C.; Zhang, J.; Jiang, P.; Liu, X.S. Large-scale public data reuse to model immunotherapy response and resistance. Genome Med., 2020, 12(1), 21.
[http://dx.doi.org/10.1186/s13073-020-0721-z] [PMID: 32102694]
[22]
Yang, W.; Soares, J.; Greninger, P.; Edelman, E.J.; Lightfoot, H.; Forbes, S.; Bindal, N.; Beare, D.; Smith, J.A.; Thompson, I.R.; Ramaswamy, S.; Futreal, P.A.; Haber, D.A.; Stratton, M.R.; Benes, C.; McDermott, U.; Garnett, M.J. Genomics of Drug Sensitivity in Cancer (GDSC): A resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res., 2013, 41(Database issue), D955-D961.
[PMID: 23180760]
[23]
McEligot, A.J.; Poynor, V.; Sharma, R.; Panangadan, A. Logistic LASSO regression for dietary intakes and breast cancer. Nutrients, 2020, 12(9), 2652.
[http://dx.doi.org/10.3390/nu12092652] [PMID: 32878103]
[24]
Brody, H. Lung cancer. Nature, 2020, 587(7834), S7.
[http://dx.doi.org/10.1038/d41586-020-03152-0] [PMID: 33208969]
[25]
Reina-Campos, M.; Moscat, J.; Diaz-Meco, M. Metabolism shapes the tumor microenvironment. Curr. Opin. Cell Biol., 2017, 48, 47-53.
[http://dx.doi.org/10.1016/j.ceb.2017.05.006] [PMID: 28605656]
[26]
Wang, G.; Qiu, M.; Xing, X.; Zhou, J.; Yao, H.; Li, M.; Yin, R.; Hou, Y.; Li, Y.; Pan, S.; Huang, Y.; Yang, F.; Bai, F.; Nie, H.; Di, S.; Guo, L.; Meng, Z.; Wang, J.; Yin, Y. Lung cancer scRNA-seq and lipidomics reveal aberrant lipid metabolism for early-stage diagnosis. Sci. Transl. Med., 2022, 14(630), eabk2756.
[http://dx.doi.org/10.1126/scitranslmed.abk2756] [PMID: 35108060]
[27]
Shi, Y.; Wang, Y.; Huang, W.; Wang, Y.; Wang, R.; Yuan, Y. Integration of metabolomics and transcriptomics to reveal metabolic characteristics and key targets associated with cisplatin resistance in nonsmall cell lung cancer. J. Proteome Res., 2019, 18(9), 3259-3267.
[http://dx.doi.org/10.1021/acs.jproteome.9b00209] [PMID: 31373204]
[28]
Lin, M.; Li, Y.; Wang, S.; Cao, B.; Li, C.; Li, G. Sphingolipid metabolism and signaling in lung cancer: a potential therapeutic target. J. Oncol., 2022, 2022, 1-10.
[http://dx.doi.org/10.1155/2022/9099612] [PMID: 35799611]
[29]
Zhong, Y.; Yang, L.; Xiong, F.; He, Y.; Tang, Y.; Shi, L.; Fan, S.; Li, Z.; Zhang, S.; Gong, Z.; Guo, C.; Liao, Q.; Zhou, Y.; Zhou, M.; Xiang, B.; Li, X.; Li, Y.; Zeng, Z.; Li, G.; Xiong, W. Long non-coding RNA AFAP1-AS1 accelerates lung cancer cells migration and invasion by interacting with SNIP1 to upregulate c-Myc. Signal Transduct. Target. Ther., 2021, 6(1), 240.
[http://dx.doi.org/10.1038/s41392-021-00562-y] [PMID: 34168109]
[30]
Qian, X.; Yang, J.; Qiu, Q.; Li, X.; Jiang, C.; Li, J.; Dong, L.; Ying, K.; Lu, B.; Chen, E.; Liu, P.; Lu, Y. LCAT3, a novel m6A-regulated long non-coding RNA, plays an oncogenic role in lung cancer via binding with FUBP1 to activate c-MYC. J. Hematol. Oncol., 2021, 14(1), 112.
[http://dx.doi.org/10.1186/s13045-021-01123-0] [PMID: 34274028]
[31]
Hung, S.Y.; Lin, S.C.; Wang, S.; Chang, T.J.; Tung, Y.T.; Lin, C.C.; Ho, C.T.; Li, S. Bavachinin induces G2/M cell cycle arrest and apoptosis via the ATM/ATR signaling pathway in human small cell lung cancer and shows an antitumor effect in the xenograft model. J. Agric. Food Chem., 2021, 69(22), 6260-6270.
[http://dx.doi.org/10.1021/acs.jafc.1c01657] [PMID: 34043345]
[32]
Li, B.; Yang, H.; Shen, B.; Huang, J.; Qin, Z. Procollagen lysine, 2 oxoglutarate 5 dioxygenase 1 increases cellular proliferation and colony formation capacity in lung cancer via activation of E2F transcription factor 1. Oncol. Lett., 2021, 22(6), 851.
[http://dx.doi.org/10.3892/ol.2021.13112] [PMID: 34733369]
[33]
Thompson, J.C.; Hwang, W.T.; Davis, C.; Deshpande, C.; Jeffries, S.; Rajpurohit, Y.; Krishna, V.; Smirnov, D.; Verona, R.; Lorenzi, M.V.; Langer, C.J.; Albelda, S.M. Gene signatures of tumor inflammation and epithelial-to-mesenchymal transition (EMT) predict responses to immune checkpoint blockade in lung cancer with high accuracy. Lung Cancer, 2020, 139, 1-8.
[http://dx.doi.org/10.1016/j.lungcan.2019.10.012] [PMID: 31683225]
[34]
Mateu-Jimenez, M.; Curull, V.; Pijuan, L.; Sánchez-Font, A.; Rivera-Ramos, H.; Rodríguez-Fuster, A. Systemic and tumor Th1 and Th2 inflammatory profile and macrophages in lung cancer: Influence of underlying chronic respiratory disease. J. Thorac. Oncol., 2017, 12(2), 235-248.
[35]
Jie, X.; Chen, Y.; Zhao, Y.; Yang, X.; Xu, Y.; Wang, J.; Meng, R.; Zhang, S.; Dong, X.; Zhang, T.; Yang, K.; Xu, S.; Wu, G. Targeting KDM4C enhances CD8 + T cell mediated antitumor immunity by activating chemokine CXCL10 transcription in lung cancer. J. Immunother. Cancer, 2022, 10(2), e003716.
[http://dx.doi.org/10.1136/jitc-2021-003716] [PMID: 35121645]
[36]
Lin, M.; Luo, H.; Liang, S.; Chen, J.; Liu, A.; Niu, L.; Jiang, Y. Pembrolizumab plus allogeneic NK cells in advanced non–small cell lung cancer patients. J. Clin. Invest., 2020, 130(5), 2560-2569.
[http://dx.doi.org/10.1172/JCI132712] [PMID: 32027620]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy