Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

General Review Article

Differentiated Embryo-Chondrocyte Expressed Gene1 and Parkinson’s Disease: New Insights and Therapeutic Perspectives

Author(s): Chun-Yan Wang, Zheng-Jie Qiu, Ping Zhang and Xiao-Qing Tang*

Volume 21, Issue 11, 2023

Published on: 05 July, 2023

Page: [2251 - 2265] Pages: 15

DOI: 10.2174/1570159X21666230502123729

Price: $65

Abstract

Differentiated embryo-chondrocyte expressed gene1 (DEC1), an important transcription factor with a basic helix-loop-helix domain, is ubiquitously expressed in both human embryonic and adult tissues. DEC1 is involved in neural differentiation and neural maturation in the central nervous system (CNS). Recent studies suggest that DEC1 protects against Parkinson's disease (PD) by regulating apoptosis, oxidative stress, lipid metabolism, immune system, and glucose metabolism disorders. In this review, we summarize the recent progress on the role of DEC1 in the pathogenesis of PD and provide new insights into the prevention and treatment of PD and neurodegenerative diseases.

Graphical Abstract

[1]
Dorsey, E.R.; Elbaz, A.; Nichols, E.; Abbasi, N.; Abd-Allah, F.; Abdelalim, A.; Adsuar, J.C.; Ansha, M.G.; Brayne, C.; Choi, JY.J.; Collado-Mateo, D.; Dahodwala, N.; Do, H.P.; Edessa, D.; Endres, M.; Fereshtehnejad, S-M.; Foreman, K.J.; Gankpe, F.G.; Gupta, R.; Hamidi, S.; Hankey, G.J.; Hay, S.I.; Hegazy, M.I.; Hibstu, D.T.; Kasaeian, A.; Khader, Y.; Khalil, I.; Khang, Y-H.; Kim, Y.J.; Kokubo, Y.; Logroscino, G.; Massano, J.; Mohamed Ibrahim, N.; Mohammed, M.A.; Mohammadi, A.; Moradi-Lakeh, M.; Naghavi, M.; Nguyen, B.T.; Nirayo, Y.L.; Ogbo, F.A.; Owolabi, M.O.; Pereira, D.M.; Postma, M.J.; Qorbani, M.; Rahman, M.A.; Roba, K.T.; Safari, H.; Safiri, S.; Satpathy, M.; Sawhney, M.; Shafieesabet, A.; Shiferaw, M.S.; Smith, M.; Szoeke, C.E.I.; Tabarés-Seisdedos, R.; Truong, N.T.; Ukwaja, K.N.; Venketasubramanian, N.; Villafaina, S.; weldegwergs, K.; Westerman, R.; Wijeratne, T.; Winkler, A.S.; Xuan, B.T.; Yonemoto, N.; Feigin, V.L.; Vos, T.; Murray, C.J.L. Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol., 2018, 17(11), 939-953.
[http://dx.doi.org/10.1016/S1474-4422(18)30295-3] [PMID: 30287051]
[2]
Ascherio, A.; Schwarzschild, M.A. The epidemiology of Parkinson’s disease: risk factors and prevention. Lancet Neurol., 2016, 15(12), 1257-1272.
[http://dx.doi.org/10.1016/S1474-4422(16)30230-7] [PMID: 27751556]
[3]
Armstrong, M.J.; Okun, M.S. Diagnosis and Treatment of Parkinson Disease. JAMA, 2020, 323(6), 548-560.
[http://dx.doi.org/10.1001/jama.2019.22360] [PMID: 32044947]
[4]
Atchley, W.R.; Fitch, W.M. A natural classification of the basic helix–loop–helix class of transcription factors. Proc. Natl. Acad. Sci. USA, 1997, 94(10), 5172-5176.
[http://dx.doi.org/10.1073/pnas.94.10.5172] [PMID: 9144210]
[5]
Ledent, V.; Vervoort, M. The basic helix-loop-helix protein family: comparative genomics and phylogenetic analysis. Genome Res., 2001, 11(5), 754-770.
[http://dx.doi.org/10.1101/gr.177001] [PMID: 11337472]
[6]
Teramoto, M.; Nakamasu, K.; Noshiro, M.; Matsuda, Y.; Gotoh, O.; Shen, M.; Tsutsumi, S.; Kawamoto, T.; Iwamoto, Y.; Kato, Y. Gene structure and chromosomal location of a human bHLH transcriptional factor DEC1 x Stra13 x SHARP-2/BHLHB2. J. Biochem., 2001, 129(3), 391-396.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a002869] [PMID: 11226878]
[7]
Shen, M.; Kawamoto, T.; Yan, W.; Nakamasu, K.; Tamagami, M.; Koyano, Y.; Noshiro, M.; Kato, Y. Molecular characterization of the novel basic helix-loop-helix protein DEC1 expressed in differentiated human embryo chondrocytes. Biochem. Biophys. Res. Commun., 1997, 236(2), 294-298.
[http://dx.doi.org/10.1006/bbrc.1997.6960] [PMID: 9240428]
[8]
Boudjelal, M.; Taneja, R.; Matsubara, S.; Bouillet, P.; Dollé, P.; Chambon, P. Overexpression of Stra13, a novel retinoic acid-inducible gene of the basic helix–loop–helix family, inhibits mesodermal and promotes neuronal differentiation of P19 cells. Genes Dev., 1997, 11(16), 2052-2065.
[http://dx.doi.org/10.1101/gad.11.16.2052] [PMID: 9284045]
[9]
Rossner, M.J.; Dörr, J.; Gass, P.; Schwab, M.H.; Nave, K.A. SHARPs: mammalian enhancer-of-split- and hairy-related proteins coupled to neuronal stimulation. Mol. Cell. Neurosci., 1997, 9(5-6), 460-475.
[http://dx.doi.org/10.1006/mcne.1997.0640] [PMID: 9532582]
[10]
Iwata, T.; Kawamoto, T.; Sasabe, E.; Miyazaki, K.; Fujimoto, K.; Noshiro, M.; Kurihara, H.; Kato, Y. Effects of overexpression of basic helix–loop–helix transcription factor Dec1 on osteogenic and adipogenic differentiation of mesenchymal stem cells. Eur. J. Cell Biol., 2006, 85(5), 423-431.
[http://dx.doi.org/10.1016/j.ejcb.2005.12.007] [PMID: 16487626]
[11]
Nakashima, A.; Kawamoto, T.; Honda, K.K.; Ueshima, T.; Noshiro, M.; Iwata, T.; Fujimoto, K.; Kubo, H.; Honma, S.; Yorioka, N.; Kohno, N.; Kato, Y. DEC1 modulates the circadian phase of clock gene expression. Mol. Cell. Biol., 2008, 28(12), 4080-4092.
[http://dx.doi.org/10.1128/MCB.02168-07] [PMID: 18411297]
[12]
Lei, J.; Hasegawa, H.; Matsumoto, T.; Yasukawa, M. Peroxisome proliferator-activated receptor α and γ agonists together with TGF-β convert human CD4+CD25- T cells into functional Foxp3+ regulatory T cells. J Immunol, 2010, 185(12), 7186-7198.
[http://dx.doi.org/10.4049/jimmunol.1001437] [PMID: 21057085]
[13]
Iizuka, K.; Horikawa, Y. Regulation of lipogenesis via BHLHB2/DEC1 and ChREBP feedback looping. Biochem. Biophys. Res. Commun., 2008, 374(1), 95-100.
[http://dx.doi.org/10.1016/j.bbrc.2008.06.101] [PMID: 18602890]
[14]
Qian, Y.; Jung, Y.S.; Chen, X. Differentiated embryo-chondrocyte expressed gene 1 regulates p53-dependent cell survival versus cell death through macrophage inhibitory cytokine-1. Proc. Natl. Acad. Sci. USA, 2012, 109(28), 11300-11305.
[http://dx.doi.org/10.1073/pnas.1203185109] [PMID: 22723347]
[15]
Wu, Y.; Sato, F.; Bhawal, U.K.; Kawamoto, T.; Fujimoto, K.; Noshiro, M.; Morohashi, S.; Kato, Y.; Kijima, H. Basic helix-loop-helix transcription factors DEC1 and DEC2 regulate the paclitaxel-induced apoptotic pathway of MCF-7 human breast cancer cells. Int. J. Mol. Med., 2011, 27(4), 491-495.
[PMID: 21327324]
[16]
Sun, H.; Taneja, R. Stra13 expression is associated with growth arrest and represses transcription through histone deacetylase (HDAC)-dependent and HDAC-independent mechanisms. Proc. Natl. Acad. Sci. USA, 2000, 97(8), 4058-4063.
[http://dx.doi.org/10.1073/pnas.070526297] [PMID: 10737769]
[17]
Xu, Q.; Ma, P.; Hu, C.; Chen, L.; Xue, L.; Wang, Z.; Liu, M.; Zhu, H.; Xu, N.; Lu, N. Overexpression of the DEC1 protein induces senescence in vitro and is related to better survival in esophageal squamous cell carcinoma. PLoS One, 2012, 7(7), e41862.
[http://dx.doi.org/10.1371/journal.pone.0041862] [PMID: 22844531]
[18]
Peng, Y.; Liu, W.; Xiong, J.; Gui, H.Y.; Feng, X.M.; Chen, R.N.; Hu, G.; Yang, J. Down regulation of differentiated embryonic chondrocytes 1 (DEC1) is involved in 8-methoxypsoralen-induced apoptosis in HepG2 cells. Toxicology, 2012, 301(1-3), 58-65.
[http://dx.doi.org/10.1016/j.tox.2012.06.022] [PMID: 22796345]
[19]
Martínez-Llordella, M.; Esensten, J.H.; Bailey-Bucktrout, S.L.; Lipsky, R.H.; Marini, A.; Chen, J.; Mughal, M.; Mattson, M.P.; Taub, D.D.; Bluestone, J.A. CD28-inducible transcription factor DEC1 is required for efficient autoreactive CD4+ T cell response. J. Exp. Med., 2013, 210(8), 1603-1619.
[http://dx.doi.org/10.1084/jem.20122387] [PMID: 23878307]
[20]
Lv, W.; Li, Q.; Jia, B.; He, Y.; Ru, Y.; Guo, Q.; Li, X.; Lin, W. Differentiated embryonic chondrocyte-expressed gene 1 promotes temozolomide resistance by modulating the SP1-MGMT axis in glioblastoma. Am. J. Transl. Res., 2021, 13(4), 2331-2349.
[PMID: 34017393]
[21]
Baier, P.C.; Brzózka, M.M.; Shahmoradi, A.; Reinecke, L.; Kroos, C.; Wichert, S.P.; Oster, H.; Wehr, M.C.; Taneja, R.; Hirrlinger, J.; Rossner, M.J. Mice lacking the circadian modulators SHARP1 and SHARP2 display altered sleep and mixed state endophenotypes of psychiatric disorders. PLoS One, 2014, 9(10), e110310.
[http://dx.doi.org/10.1371/journal.pone.0110310] [PMID: 25340473]
[22]
Li, Y.; Xie, M.; Song, X.; Gragen, S.; Sachdeva, K.; Wan, Y.; Yan, B. DEC1 negatively regulates the expression of DEC2 through binding to the E-box in the proximal promoter. J. Biol. Chem., 2003, 278(19), 16899-16907.
[http://dx.doi.org/10.1074/jbc.M300596200] [PMID: 12624110]
[23]
Ivanova, A.V.; Ivanov, S.V.; Danilkovitch-Miagkova, A.; Lerman, M.I. Regulation of STRA13 by the von Hippel-Lindau tumor suppressor protein, hypoxia, and the UBC9/ubiquitin proteasome degradation pathway. J. Biol. Chem., 2001, 276(18), 15306-15315.
[http://dx.doi.org/10.1074/jbc.M010516200] [PMID: 11278694]
[24]
Zawel, L.; Yu, J.; Torrance, C.J.; Markowitz, S.; Kinzler, K.W.; Vogelstein, B.; Zhou, S. DEC1 is a downstream target of TGF-β with sequence-specific transcriptional repressor activities. Proc. Natl. Acad. Sci. USA, 2002, 99(5), 2848-2853.
[http://dx.doi.org/10.1073/pnas.261714999] [PMID: 11880636]
[25]
Shen, M.; Yoshida, E.; Yan, W.; Kawamoto, T.; Suardita, K.; Koyano, Y.; Fujimoto, K.; Noshiro, M.; Kato, Y. Basic helix-loop-helix protein DEC1 promotes chondrocyte differentiation at the early and terminal stages. J. Biol. Chem., 2002, 277(51), 50112-50120.
[http://dx.doi.org/10.1074/jbc.M206771200] [PMID: 12384505]
[26]
Li, Y.; Xie, M.; Yang, J.; Yang, D.; Deng, R.; Wan, Y.; Yan, B. The expression of antiapoptotic protein survivin is transcriptionally upregulated by DEC1 primarily through multiple sp1 binding sites in the proximal promoter. Oncogene, 2006, 25(23), 3296-3306.
[http://dx.doi.org/10.1038/sj.onc.1209363] [PMID: 16462771]
[27]
Qian, Y.; Jung, Y.S.; Chen, X. DeltaNp63, a target of DEC1 and histone deacetylase 2, modulates the efficacy of histone deacetylase inhibitors in growth suppression and keratinocyte differentiation. J. Biol. Chem., 2011, 286(14), 12033-12041.
[http://dx.doi.org/10.1074/jbc.M110.207241] [PMID: 21317427]
[28]
Qian, Y.; Zhang, J.; Jung, Y.S.; Chen, X. DEC1 coordinates with HDAC8 to differentially regulate TAp73 and ΔNp73 expression. PLoS One, 2014, 9(1), e84015.
[http://dx.doi.org/10.1371/journal.pone.0084015] [PMID: 24404147]
[29]
Sato, F.; Kawamoto, T.; Fujimoto, K.; Noshiro, M.; Honda, K.K.; Honma, S.; Honma, K.; Kato, Y. Functional analysis of the basic helix-loop-helix transcription factor DEC1 in circadian regulation. Interaction with BMAL1. Eur. J. Biochem., 2004, 271(22), 4409-4419.
[http://dx.doi.org/10.1111/j.1432-1033.2004.04379.x] [PMID: 15560782]
[30]
Hsiao, S.P.; Huang, K.M.; Chang, H.Y.; Chen, S.L. P/CAF rescues the Bhlhe40-mediated repression of MyoD transactivation. Biochem. J., 2009, 422(2), 343-352.
[http://dx.doi.org/10.1042/BJ20090072] [PMID: 19522704]
[31]
Jiang, X.; Tian, F.; Du, Y.; Copeland, N.G.; Jenkins, N.A.; Tessarollo, L.; Wu, X.; Pan, H.; Hu, X.Z.; Xu, K.; Kenney, H.; Egan, S.E.; Turley, H.; Harris, A.L.; Marini, A.M.; Lipsky, R.H. BHLHB2 controls Bdnf promoter 4 activity and neuronal excitability. J. Neurosci., 2008, 28(5), 1118-1130.
[http://dx.doi.org/10.1523/JNEUROSCI.2262-07.2008] [PMID: 18234890]
[32]
Yamada, K.; Miyamoto, K. Basic helix-loop-helix transcription factors, BHLHB2 and BHLHB3; their gene expressions are regulated by multiple extracellular stimuli. Front. Biosci., 2005, 10, 3151-3171.
[http://dx.doi.org/10.2741/1772] [PMID: 15970569]
[33]
Ivanova, A.V.; Ivanov, S.V.; Lerman, M.L. Association, mutual stabilization, and transcriptional activity of the STRA13 and MSP58 proteins. Cell. Mol. Life Sci., 2005, 62(4), 471-484.
[http://dx.doi.org/10.1007/s00018-004-4423-2] [PMID: 15719173]
[34]
Davidovic, L.; Bechara, E.; Gravel, M.; Jaglin, X.H.; Tremblay, S.; Sik, A.; Bardoni, B.; Khandjian, E.W. The nuclear MicroSpherule protein 58 is a novel RNA-binding protein that interacts with fragile X mental retardation protein in polyribosomal mRNPs from neurons. Hum. Mol. Genet., 2006, 15(9), 1525-1538.
[http://dx.doi.org/10.1093/hmg/ddl074] [PMID: 16571602]
[35]
Hendriks, I.A.; D’Souza, R.C.J.; Yang, B.; Verlaan-de Vries, M.; Mann, M.; Vertegaal, A.C.O. Uncovering global SUMOylation signaling networks in a site-specific manner. Nat. Struct. Mol. Biol., 2014, 21(10), 927-936.
[http://dx.doi.org/10.1038/nsmb.2890] [PMID: 25218447]
[36]
Kim, J.; D’Annibale, S.; Magliozzi, R.; Low, T.Y.; Jansen, P.; Shaltiel, I.A.; Mohammed, S.; Heck, A.J.R.; Medema, R.H.; Guardavaccaro, D. USP17- and SCFβTrCP--regulated degradation of DEC1 controls the DNA damage response. Mol. Cell. Biol., 2014, 34(22), 4177-4185.
[http://dx.doi.org/10.1128/MCB.00530-14] [PMID: 25202122]
[37]
McNaught, K.S.P.; Jenner, P. Proteasomal function is impaired in substantia nigra in Parkinson’s disease. Neurosci. Lett., 2001, 297(3), 191-194.
[http://dx.doi.org/10.1016/S0304-3940(00)01701-8] [PMID: 11137760]
[38]
Gonzalez-Hunt, C.P.; Sanders, L.H. DNA damage and repair in Parkinson’s disease: Recent advances and new opportunities. J. Neurosci. Res., 2021, 99(1), 180-189.
[http://dx.doi.org/10.1002/jnr.24592] [PMID: 32048327]
[39]
Hong, Y.; Xing, X.; Li, S.; Bi, H.; Yang, C.; Zhao, F.; Liu, Y.; Ao, X.; Chang, A.K.; Wu, H. Sumoylation of DEC1 protein regulates its transcriptional activity and enhances its stability. PLoS One, 2011, 6(8), e23046.
[http://dx.doi.org/10.1371/journal.pone.0023046] [PMID: 21829689]
[40]
Kunz, K.; Wagner, K.; Mendler, L.; Hölper, S.; Dehne, N.; Müller, S. SUMO Signaling by Hypoxic Inactivation of SUMO-Specific Isopeptidases. Cell Rep., 2016, 16(11), 3075-3086.
[http://dx.doi.org/10.1016/j.celrep.2016.08.031] [PMID: 27626674]
[41]
Guo, C.; Hildick, K.L.; Luo, J.; Dearden, L.; Wilkinson, K.A.; Henley, J.M. SENP3-mediated deSUMOylation of dynamin-related protein 1 promotes cell death following ischaemia. EMBO J., 2013, 32(11), 1514-1528.
[http://dx.doi.org/10.1038/emboj.2013.65] [PMID: 23524851]
[42]
Loftus, L.T.; Gala, R.; Yang, T.; Jessick, V.J.; Ashley, M.D.; Ordonez, A.N.; Thompson, S.J.; Simon, R.P.; Meller, R. Sumo-2/3-ylation following in vitro modeled ischemia is reduced in delayed ischemic tolerance. Brain Res., 2009, 1272, 71-80.
[http://dx.doi.org/10.1016/j.brainres.2009.03.034] [PMID: 19332039]
[43]
Yang, W.; Sheng, H.; Warner, D.S.; Paschen, W. Transient global cerebral ischemia induces a massive increase in protein sumoylation. J. Cereb. Blood Flow Metab., 2008, 28(2), 269-279.
[http://dx.doi.org/10.1038/sj.jcbfm.9600523] [PMID: 17565359]
[44]
Burtscher, J.; Mallet, R.T.; Burtscher, M.; Millet, G.P. Hypoxia and brain aging: Neurodegeneration or neuroprotection? Ageing Res. Rev., 2021, 68, 101343.
[http://dx.doi.org/10.1016/j.arr.2021.101343] [PMID: 33862277]
[45]
Bain, G.; Ray, W.J.; Yao, M.; Gottlieb, D.I. From embryonal carcinoma cells to neurons: The P19 pathway. BioEssays, 1994, 16(5), 343-348.
[http://dx.doi.org/10.1002/bies.950160509] [PMID: 8024542]
[46]
Honma, S.; Kawamoto, T.; Takagi, Y.; Fujimoto, K.; Sato, F.; Noshiro, M.; Kato, Y.; Honma, K. Dec1 and Dec2 are regulators of the mammalian molecular clock. Nature, 2002, 419(6909), 841-844.
[http://dx.doi.org/10.1038/nature01123] [PMID: 12397359]
[47]
Kawamoto, T.; Noshiro, M.; Sato, F.; Maemura, K.; Takeda, N.; Nagai, R.; Iwata, T.; Fujimoto, K.; Furukawa, M.; Miyazaki, K.; Honma, S.; Honma, K.; Kato, Y. A novel autofeedback loop of Dec1 transcription involved in circadian rhythm regulation. Biochem. Biophys. Res. Commun., 2004, 313(1), 117-124.
[http://dx.doi.org/10.1016/j.bbrc.2003.11.099] [PMID: 14672706]
[48]
Pérez-Lloret, S.; Cardinali, D.P. Melatonin as a Chronobiotic and Cytoprotective Agent in Parkinson’s Disease. Front. Pharmacol., 2021, 12, 650597.
[http://dx.doi.org/10.3389/fphar.2021.650597] [PMID: 33935759]
[49]
Satyanarayanan, S.K.; Chien, Y.C.; Chang, J.P.C.; Huang, S.Y.; Guu, T.W.; Su, H.; Su, K.P. Melatonergic agonist regulates circadian clock genes and peripheral inflammatory and neuroplasticity markers in patients with depression and anxiety. Brain Behav. Immun., 2020, 85, 142-151.
[http://dx.doi.org/10.1016/j.bbi.2019.03.003] [PMID: 30851380]
[50]
Abe, M.; Herzog, E.D.; Yamazaki, S.; Straume, M.; Tei, H.; Sakaki, Y.; Menaker, M.; Block, G.D. Circadian rhythms in isolated brain regions. J. Neurosci., 2002, 22(1), 350-356.
[http://dx.doi.org/10.1523/JNEUROSCI.22-01-00350.2002] [PMID: 11756518]
[51]
Marpegan, L.; Swanstrom, A.E.; Chung, K.; Simon, T.; Haydon, P.G.; Khan, S.K.; Liu, A.C.; Herzog, E.D.; Beaulé, C. Circadian regulation of ATP release in astrocytes. J. Neurosci., 2011, 31(23), 8342-8350.
[http://dx.doi.org/10.1523/JNEUROSCI.6537-10.2011] [PMID: 21653839]
[52]
Malik, A.; Kondratov, R.V.; Jamasbi, R.J.; Geusz, M.E. Circadian Clock Genes Are Essential for Normal Adult Neurogenesis, Differentiation, and Fate Determination. PLoS One, 2015, 10(10), e0139655.
[http://dx.doi.org/10.1371/journal.pone.0139655] [PMID: 26439128]
[53]
Rakai, B.D.; Chrusch, M.J.; Spanswick, S.C.; Dyck, R.H.; Antle, M.C. Survival of adult generated hippocampal neurons is altered in circadian arrhythmic mice. PLoS One, 2014, 9(6), e99527.
[http://dx.doi.org/10.1371/journal.pone.0099527] [PMID: 24941219]
[54]
Martin-Fairey, C.A.; Nunez, A.A. Circadian modulation of memory and plasticity gene products in a diurnal species. Brain Res., 2014, 1581, 30-39.
[http://dx.doi.org/10.1016/j.brainres.2014.07.020] [PMID: 25063362]
[55]
Lauretti, E.; Di Meco, A.; Merali, S.; Praticò, D. Circadian rhythm dysfunction: a novel environmental risk factor for Parkinson’s disease. Mol. Psychiatry, 2017, 22(2), 280-286.
[http://dx.doi.org/10.1038/mp.2016.47] [PMID: 27046648]
[56]
Struck, L.K.; Rodnitzky, R.L.; Dobson, J.K. Circadian fluctuations of contrast sensitivity in Parkinson’s disease. Neurology, 1990, 40(3 Part 1), 467-470.
[http://dx.doi.org/10.1212/WNL.40.3_Part_1.467] [PMID: 2314590]
[57]
Stuebner, E.; Vichayanrat, E.; Low, D.A.; Mathias, C.J.; Isenmann, S.; Haensch, C.A. Twenty-four hour non-invasive ambulatory blood pressure and heart rate monitoring in Parkinson’s disease. Front. Neurol., 2013, 4, 49.
[http://dx.doi.org/10.3389/fneur.2013.00049] [PMID: 23720648]
[58]
Leng, Y.; Goldman, S.M.; Cawthon, P.M.; Stone, K.L.; Ancoli-Israel, S.; Yaffe, K. Excessive daytime sleepiness, objective napping and 11-year risk of Parkinson’s disease in older men. Int. J. Epidemiol., 2018, 47(5), 1679-1686.
[http://dx.doi.org/10.1093/ije/dyy098] [PMID: 29873737]
[59]
Musiek, E.S.; Bhimasani, M.; Zangrilli, M.A.; Morris, J.C.; Holtzman, D.M.; Ju, Y.E.S. Circadian Rest-Activity Pattern Changes in Aging and Preclinical Alzheimer Disease. JAMA Neurol., 2018, 75(5), 582-590.
[http://dx.doi.org/10.1001/jamaneurol.2017.4719] [PMID: 29379963]
[60]
Lazar, A.S.; Panin, F.; Goodman, A.O.G.; Lazic, S.E.; Lazar, Z.I.; Mason, S.L.; Rogers, L.; Murgatroyd, P.R.; Watson, L.P.E.; Singh, P.; Borowsky, B.; Shneerson, J.M.; Barker, R.A. Sleep deficits but no metabolic deficits in premanifest H untington’s disease. Ann. Neurol., 2015, 78(4), 630-648.
[http://dx.doi.org/10.1002/ana.24495] [PMID: 26224419]
[61]
Zahed, H.; Zuzuarregui, J.R.P.; Gilron, R.; Denison, T.; Starr, P.A.; Little, S. The neurophysiology of sleep in Parkinson’s disease. Mov. Disord., 2021, 36(7), 1526-1542.
[http://dx.doi.org/10.1002/mds.28562] [PMID: 33826171]
[62]
Breen, D.P.; Vuono, R.; Nawarathna, U.; Fisher, K.; Shneerson, J.M.; Reddy, A.B.; Barker, R.A. Sleep and circadian rhythm regulation in early Parkinson disease. JAMA Neurol., 2014, 71(5), 589-595.
[http://dx.doi.org/10.1001/jamaneurol.2014.65] [PMID: 24687146]
[63]
Niwa, F.; Kuriyama, N.; Nakagawa, M.; Imanishi, J. Circadian rhythm of rest activity and autonomic nervous system activity at different stages in Parkinson’s disease. Auton. Neurosci., 2011, 165(2), 195-200.
[http://dx.doi.org/10.1016/j.autneu.2011.07.010] [PMID: 21871844]
[64]
Yujnovsky, I.; Hirayama, J.; Doi, M.; Borrelli, E.; Sassone-Corsi, P. Signaling mediated by the dopamine D2 receptor potentiates circadian regulation by CLOCK:BMAL1. Proc. Natl. Acad. Sci. USA, 2006, 103(16), 6386-6391.
[http://dx.doi.org/10.1073/pnas.0510691103] [PMID: 16606840]
[65]
Hood, S.; Cassidy, P.; Cossette, M.P.; Weigl, Y.; Verwey, M.; Robinson, B.; Stewart, J.; Amir, S. Endogenous dopamine regulates the rhythm of expression of the clock protein PER2 in the rat dorsal striatum via daily activation of D2 dopamine receptors. J. Neurosci., 2010, 30(42), 14046-14058.
[http://dx.doi.org/10.1523/JNEUROSCI.2128-10.2010] [PMID: 20962226]
[66]
Cai, Y.; Liu, S.; Sothern, R.B.; Xu, S.; Chan, P. Expression of clock genes Per1 and Bmal1 in total leukocytes in health and Parkinson’s disease. Eur. J. Neurol., 2010, 17(4), 550-554.
[http://dx.doi.org/10.1111/j.1468-1331.2009.02848.x] [PMID: 19912323]
[67]
Hunt, J.; Coulson, E.J.; Rajnarayanan, R.; Oster, H.; Videnovic, A.; Rawashdeh, O. Sleep and circadian rhythms in Parkinson’s disease and preclinical models. Mol. Neurodegener., 2022, 17(1), 2.
[http://dx.doi.org/10.1186/s13024-021-00504-w] [PMID: 35000606]
[68]
Dudek, H.; Datta, S.R.; Franke, T.F.; Birnbaum, M.J.; Yao, R.; Cooper, G.M.; Segal, R.A.; Kaplan, D.R.; Greenberg, M.E. Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science, 1997, 275(5300), 661-665.
[http://dx.doi.org/10.1126/science.275.5300.661] [PMID: 9005851]
[69]
Cen, X.; Nitta, A.; Ohya, S.; Zhao, Y.; Ozawa, N.; Mouri, A.; Ibi, D.; Wang, L.; Suzuki, M.; Saito, K.; Ito, Y.; Kawagoe, T.; Noda, Y.; Ito, Y.; Furukawa, S.; Nabeshima, T. An analog of a dipeptide-like structure of FK506 increases glial cell line-derived neurotrophic factor expression through cAMP response element-binding protein activated by heat shock protein 90/Akt signaling pathway. J. Neurosci., 2006, 26(12), 3335-3344.
[http://dx.doi.org/10.1523/JNEUROSCI.5010-05.2006] [PMID: 16554484]
[70]
Xu, X.; Zhang, A.; Zhu, Y.; He, W.; Di, W.; Fang, Y.; Shi, X. MFG‐E8 reverses microglial‐induced neurotoxic astrocyte (A1) via NF‐κB and PI3K‐Akt pathways. J. Cell. Physiol., 2019, 234(1), 904-914.
[http://dx.doi.org/10.1002/jcp.26918] [PMID: 30076715]
[71]
Beaulieu, J.M.; Gainetdinov, R.R.; Caron, M.G. The Akt–GSK-3 signaling cascade in the actions of dopamine. Trends Pharmacol. Sci., 2007, 28(4), 166-172.
[http://dx.doi.org/10.1016/j.tips.2007.02.006] [PMID: 17349698]
[72]
Timmons, S.; Coakley, M.F.; Moloney, A.M.; O’ Neill, C. Akt signal transduction dysfunction in Parkinson’s disease. Neurosci. Lett., 2009, 467(1), 30-35.
[http://dx.doi.org/10.1016/j.neulet.2009.09.055] [PMID: 19800394]
[73]
Zhu, Z.; Yichen, W.; Ziheng, Z.; Dinghao, G.; Ming, L.; Wei, L.; Enfang, S.; Gang, H.; Honda, H.; Jian, Y. The loss of dopaminergic neurons in DEC1 deficient mice potentially involves the decrease of PI3K/Akt/GSK3β signaling. Aging (Albany NY), 2019, 11(24), 12733-12753.
[http://dx.doi.org/10.18632/aging.102599] [PMID: 31884423]
[74]
Zhu, Z.; Wang, Y.W.; Ge, D.H.; Lu, M.; Liu, W.; Xiong, J.; Hu, G.; Li, X.P.; Yang, J. Downregulation of DEC1 contributes to the neurotoxicity induced by MPP + by suppressing PI3K/Akt/GSK3β pathway. CNS Neurosci. Ther., 2017, 23(9), 736-747.
[http://dx.doi.org/10.1111/cns.12717] [PMID: 28734031]
[75]
Theofilopoulos, S.; Wang, Y.; Kitambi, S.S.; Sacchetti, P.; Sousa, K.M.; Bodin, K.; Kirk, J.; Saltó, C.; Gustafsson, M.; Toledo, E.M.; Karu, K.; Gustafsson, J.Å.; Steffensen, K.R.; Ernfors, P.; Sjövall, J.; Griffiths, W.J.; Arenas, E. Brain endogenous liver X receptor ligands selectively promote midbrain neurogenesis. Nat. Chem. Biol., 2013, 9(2), 126-133.
[http://dx.doi.org/10.1038/nchembio.1156] [PMID: 23292650]
[76]
Kim, H.J. Fan, X.; Gabbi, C.; Yakimchuk, K.; Parini, P.; Warner, M.; Gustafsson, J.Å. Liver X receptor β (LXRβ): A link between β-sitosterol and amyotrophic lateral sclerosis–Parkinson’s dementia. Proc. Natl. Acad. Sci. USA, 2008, 105(6), 2094-2099.
[http://dx.doi.org/10.1073/pnas.0711599105] [PMID: 18238900]
[77]
Edwards, P.A.; Kast, H.R.; Anisfeld, A.M. BAREing it all: the adoption of LXR and FXR and their roles in lipid homeostasis. J. Lipid Res., 2002, 43(1), 2-12.
[http://dx.doi.org/10.1016/S0022-2275(20)30180-2] [PMID: 11792716]
[78]
Annicotte, J.S.; Schoonjans, K.; Auwerx, J. Expression of the liver X receptor? and? in embryonic and adult mice. Anat. Rec., 2004, 277A(2), 312-316.
[http://dx.doi.org/10.1002/ar.a.20015] [PMID: 15052659]
[79]
Dai, Y.; Tan, X.; Wu, W.; Warner, M.; Gustafsson, J.Å. Liver X receptor β protects dopaminergic neurons in a mouse model of Parkinson disease. Proc. Natl. Acad. Sci. USA, 2012, 109(32), 13112-13117.
[http://dx.doi.org/10.1073/pnas.1210833109] [PMID: 22826221]
[80]
Wu, D.C.; Jackson-Lewis, V.; Vila, M.; Tieu, K.; Teismann, P.; Vadseth, C.; Choi, D.K.; Ischiropoulos, H.; Przedborski, S. Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J. Neurosci., 2002, 22(5), 1763-1771.
[http://dx.doi.org/10.1523/JNEUROSCI.22-05-01763.2002] [PMID: 11880505]
[81]
Steffensen, K.R.; Neo, S.Y.; Stulnig, T.M.; Vega, V.B.; Rahman, S.S.; Schuster, G.U.; Gustafsson, J.Å.; Liu, E.T. Genome-wide expression profiling; a panel of mouse tissues discloses novel biological functions of liver X receptors in adrenals. J. Mol. Endocrinol., 2004, 33(3), 609-622.
[http://dx.doi.org/10.1677/jme.1.01508] [PMID: 15591022]
[82]
Noshiro, M.; Usui, E.; Kawamoto, T.; Sato, F.; Nakashima, A.; Ueshima, T.; Honda, K.; Fujimoto, K.; Honma, S.; Honma, K.; Makishima, M.; Kato, Y. Liver X receptors (LXRalpha and LXRbeta) are potent regulators for hepatic Dec1 expression: Genes to Cells. Devoted to Molecular & Cellular Mechanisms, 2009, 14(1), 29-40.
[http://dx.doi.org/10.1111/j.1365-2443.2008.01247.x]
[83]
Wu, L.H.; Cheng, W.; Yu, M.; He, B.M.; Sun, H.; Chen, Q.; Dong, Y.W.; Shao, X.T.; Cai, Q.Q.; Peng, M.; Wu, X.Z. Nr3C1-Bhlhb2 axis dysregulation is involved in the development of attention deficit hyperactivity. Mol. Neurobiol., 2017, 54(2), 1196-1212.
[http://dx.doi.org/10.1007/s12035-015-9679-z] [PMID: 26820676]
[84]
Fleisher, T.A. Apoptosis. Ann. Allergy Asthma Immunol., 1997, 78(3), 245-250.
[http://dx.doi.org/10.1016/S1081-1206(10)63176-6] [PMID: 9087147]
[85]
Lev, N.; Melamed, E.; Offen, D. Apoptosis and Parkinson’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2003, 27(2), 245-250.
[http://dx.doi.org/10.1016/S0278-5846(03)00019-8] [PMID: 12657363]
[86]
Tompkins, M.M.; Basgall, E.J.; Zamrini, E.; Hill, W.D. Apoptotic-like changes in Lewy-body-associated disorders and normal aging in substantia nigral neurons. Am. J. Pathol., 1997, 150(1), 119-131.
[PMID: 9006329]
[87]
Blum, D.; Torch, S.; Lambeng, N.; Nissou, M.F.; Benabid, A.L.; Sadoul, R.; Verna, J.M. Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson’s disease. Prog. Neurobiol., 2001, 65(2), 135-172.
[http://dx.doi.org/10.1016/S0301-0082(01)00003-X] [PMID: 11403877]
[88]
Li, Y.; Zhang, H.; Xie, M.; Hu, M.; Ge, S.; Yang, D.; Wan, Y.; Yan, B. Abundant expression of Dec1/stra13/sharp2 in colon carcinoma: its antagonizing role in serum deprivation-induced apoptosis and selective inhibition of procaspase activation. Biochem. J., 2002, 367(2), 413-422.
[http://dx.doi.org/10.1042/bj20020514] [PMID: 12119049]
[89]
Ming, X.; Bao, C.; Hong, T.; Yang, Y.; Chen, X.; Jung, Y.S.; Qian, Y. Clusterin, a Novel DEC1 Target, Modulates DNA Damage–Mediated Cell Death. Mol. Cancer Res., 2018, 16(11), 1641-1651.
[http://dx.doi.org/10.1158/1541-7786.MCR-18-0070] [PMID: 30002194]
[90]
Baratchi, S.; Kanwar, R.K.; Kanwar, J.R. Survivin: A target from brain cancer to neurodegenerative disease. Crit. Rev. Biochem. Mol. Biol., 2010, 45(6), 535-554.
[http://dx.doi.org/10.3109/10409238.2010.516740] [PMID: 20925597]
[91]
Jia, Y.; Hu, R.; Li, P.; Zheng, Y.; Wang, Y.; Ma, X. DEC1 is required for anti-apoptotic activity of gastric cancer cells under hypoxia by promoting Survivin expression. Gastric Cancer, 2018, 21(4), 632-642.
[http://dx.doi.org/10.1007/s10120-017-0780-z] [PMID: 29204860]
[92]
Castelo-Branco, G.; Wagner, J.; Rodriguez, F.J.; Kele, J.; Sousa, K.; Rawal, N.; Pasolli, H.A.; Fuchs, E.; Kitajewski, J.; Arenas, E. Differential regulation of midbrain dopaminergic neuron development by Wnt-1, Wnt-3a, and Wnt-5a. Proc. Natl. Acad. Sci. USA, 2003, 100(22), 12747-12752.
[http://dx.doi.org/10.1073/pnas.1534900100] [PMID: 14557550]
[93]
Yang, J.; Brown, A.; Ellisor, D.; Paul, E.; Hagan, N.; Zervas, M. Dynamic temporal requirement of Wnt1 in midbrain dopamine neuron development. Development, 2013, 140(6), 1342-1352.
[http://dx.doi.org/10.1242/dev.080630] [PMID: 23444360]
[94]
Chiu, C.C.; Weng, Y.H.; Huang, Y.Z.; Chen, R.S.; Liu, Y.C.; Yeh, T.H.; Lu, C.S.; Lin, Y.W.; Chen, Y.J.; Hsu, C.C.; Chiu, C.H.; Wang, Y.T.; Chen, W.S.; Liu, S.Y.; Wang, H.L. (D620N) VPS35 causes the impairment of Wnt/β-catenin signaling cascade and mitochondrial dysfunction in a PARK17 knockin mouse model. Cell Death Dis., 2020, 11(11), 1018.
[http://dx.doi.org/10.1038/s41419-020-03228-9] [PMID: 33257649]
[95]
Yi, Y.; Liao, B.; Zheng, Z.; Yang, X.; Yang, Y.; Zhou, Y.; Tan, B.; Yang, X. Downregulation of DEC1 inhibits proliferation, migration and invasion, and induces apoptosis in ovarian cancer cells via regulation of Wnt/β-catenin signaling pathway. Exp. Ther. Med., 2021, 21(4), 372.
[http://dx.doi.org/10.3892/etm.2021.9803] [PMID: 33732345]
[96]
Jiang, T.; Sun, Q.; Chen, S. Oxidative stress: A major pathogenesis and potential therapeutic target of antioxidative agents in Parkinson’s disease and Alzheimer’s disease. Prog. Neurobiol., 2016, 147, 1-19.
[http://dx.doi.org/10.1016/j.pneurobio.2016.07.005] [PMID: 27769868]
[97]
Vercherat, C.; Chung, T.K.; Yalcin, S.; Gulbagci, N.; Gopinadhan, S.; Ghaffari, S.; Taneja, R. Stra13 regulates oxidative stress mediated skeletal muscle degeneration. Hum. Mol. Genet., 2009, 18(22), 4304-4316.
[http://dx.doi.org/10.1093/hmg/ddp383] [PMID: 19679564]
[98]
Neale, T.J.; Ullrich, R.; Ojha, P.; Poczewski, H.; Verhoeven, A.J.; Kerjaschki, D. Reactive oxygen species and neutrophil respiratory burst cytochrome b558 are produced by kidney glomerular cells in passive Heymann nephritis. Proc. Natl. Acad. Sci. USA, 1993, 90(8), 3645-3649.
[http://dx.doi.org/10.1073/pnas.90.8.3645] [PMID: 8475113]
[99]
Bek, M.J.; Wahle, S.; Müller, B.; Benzing, T.; Huber, T.B.; Kretzler, M.; Cohen, C.; Busse-Grawitz, A.; Pavenstädt, H. Stra13, a prostaglandin E 2 ‐induced gene, regulates the cellular redox state of podocytes. FASEB J., 2003, 17(6), 682-684.
[http://dx.doi.org/10.1096/fj.02-0250fje] [PMID: 12594185]
[100]
Puigserver, P.; Wu, Z.; Park, C.W.; Graves, R.; Wright, M.; Spiegelman, B.M. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell, 1998, 92(6), 829-839.
[http://dx.doi.org/10.1016/S0092-8674(00)81410-5] [PMID: 9529258]
[101]
LaGory, E.L.; Wu, C.; Taniguchi, C.M.; Ding, C.K.C.; Chi, J.T.; von Eyben, R.; Scott, D.A.; Richardson, A.D.; Giaccia, A.J. Suppression of PGC-1α Is Critical for Reprogramming Oxidative Metabolism in Renal Cell Carcinoma. Cell Rep., 2015, 12(1), 116-127.
[http://dx.doi.org/10.1016/j.celrep.2015.06.006] [PMID: 26119730]
[102]
Klemann, C.J.H.M.; Martens, G.J.M.; Sharma, M.; Martens, M.B.; Isacson, O.; Gasser, T.; Visser, J.E.; Poelmans, G. Integrated molecular landscape of Parkinson’s disease. NPJ Parkinsons Dis., 2017, 3(1), 14.
[http://dx.doi.org/10.1038/s41531-017-0015-3] [PMID: 28649614]
[103]
Hallett, P.J.; Engelender, S.; Isacson, O. Lipid and immune abnormalities causing age-dependent neurodegeneration and Parkinson’s disease. J. Neuroinflammation, 2019, 16(1), 153.
[http://dx.doi.org/10.1186/s12974-019-1532-2] [PMID: 31331333]
[104]
Ivatt, R.M.; Whitworth, A.J. SREBF1 links lipogenesis to mitophagy and sporadic Parkinson disease. Autophagy, 2014, 10(8), 1476-1477.
[http://dx.doi.org/10.4161/auto.29642] [PMID: 24991824]
[105]
Choi, S.M.; Cho, H.J.; Cho, H.; Kim, K.H.; Kim, J.B.; Park, H. Stra13/DEC1 and DEC2 inhibit sterol regulatory element binding protein-1c in a hypoxia-inducible factor-dependent mechanism. Nucleic Acids Res., 2008, 36(20), 6372-6385.
[http://dx.doi.org/10.1093/nar/gkn620] [PMID: 18838394]
[106]
Zhou, X.; He, W.; Huang, Z.; Gotto, A.M., Jr; Hajjar, D.P.; Han, J. Genetic deletion of low density lipoprotein receptor impairs sterol-induced mouse macrophage ABCA1 expression. A new SREBP1-dependent mechanism. J. Biol. Chem., 2008, 283(4), 2129-2138.
[http://dx.doi.org/10.1074/jbc.M706636200] [PMID: 18029360]
[107]
Shulman, A.I.; Mangelsdorf, D.J. Retinoid x receptor heterodimers in the metabolic syndrome. N. Engl. J. Med., 2005, 353(6), 604-615.
[http://dx.doi.org/10.1056/NEJMra043590] [PMID: 16093469]
[108]
Szanto, A.; Narkar, V.; Shen, Q.; Uray, I.P.; Davies, P.J.A.; Nagy, L. Retinoid X receptors: X-ploring their (patho)physiological functions. Cell Death Differ., 2004, 11(S2)(Suppl. 2), S126-S143.
[http://dx.doi.org/10.1038/sj.cdd.4401533] [PMID: 15608692]
[109]
Nakatani, T.; Katsumata, A.; Miura, S.; Kamei, Y.; Ezaki, O. Effects of fish oil feeding and fasting on LXRalpha/RXRalpha binding to LXRE in the SREBP-1c promoter in mouse liver. Biochim. Biophys. Acta, 2005, 1736(1), 77-86.
[PMID: 16112614]
[110]
Yoshikawa, T.; Shimano, H.; Amemiya-Kudo, M.; Yahagi, N.; Hasty, A.H.; Matsuzaka, T.; Okazaki, H.; Tamura, Y.; Iizuka, Y.; Ohashi, K.; Osuga, J.I.; Harada, K.; Gotoda, T.; Kimura, S.; Ishibashi, S.; Yamada, N. Identification of liver X receptor-retinoid X receptor as an activator of the sterol regulatory element-binding protein 1c gene promoter. Mol. Cell. Biol., 2001, 21(9), 2991-3000.
[http://dx.doi.org/10.1128/MCB.21.9.2991-3000.2001] [PMID: 11287605]
[111]
Kamei, Y.; Miura, S.; Suganami, T.; Akaike, F.; Kanai, S.; Sugita, S.; Katsumata, A.; Aburatani, H.; Unterman, T.G.; Ezaki, O.; Ogawa, Y. Regulation of SREBP1c gene expression in skeletal muscle: role of retinoid X receptor/liver X receptor and forkhead-O1 transcription factor. Endocrinology, 2008, 149(5), 2293-2305.
[http://dx.doi.org/10.1210/en.2007-1461] [PMID: 18202130]
[112]
Litwa, E.; Rzemieniec, J.; Wnuk, A.; Lason, W.; Krzeptowski, W.; Kajta, M. RXRα, PXR and CAR xenobiotic receptors mediate the apoptotic and neurotoxic actions of nonylphenol in mouse hippocampal cells. J. Steroid Biochem. Mol. Biol., 2016, 156, 43-52.
[http://dx.doi.org/10.1016/j.jsbmb.2015.11.018] [PMID: 26643981]
[113]
Cho, Y.; Noshiro, M.; Choi, M.; Morita, K.; Kawamoto, T.; Fujimoto, K.; Kato, Y.; Makishima, M. The basic helix-loop-helix proteins differentiated embryo chondrocyte (DEC) 1 and DEC2 function as corepressors of retinoid X receptors. Mol. Pharmacol., 2009, 76(6), 1360-1369.
[http://dx.doi.org/10.1124/mol.109.057000] [PMID: 19786558]
[114]
Stocco, D.M.; Wang, X.; Jo, Y.; Manna, P.R. Multiple signaling pathways regulating steroidogenesis and steroidogenic acute regulatory protein expression: more complicated than we thought. Mol. Endocrinol., 2005, 19(11), 2647-2659.
[http://dx.doi.org/10.1210/me.2004-0532] [PMID: 15831519]
[115]
Alvarez, J.D.; Hansen, A.; Ord, T.; Bebas, P.; Chappell, P.E.; Giebultowicz, J.M.; Williams, C.; Moss, S.; Sehgal, A. The circadian clock protein BMAL1 is necessary for fertility and proper testosterone production in mice. J. Biol. Rhythms, 2008, 23(1), 26-36.
[http://dx.doi.org/10.1177/0748730407311254] [PMID: 18258755]
[116]
Korytowski, W.; Wawak, K.; Pabisz, P.; Schmitt, J.C.; Girotti, A.W. Macrophage mitochondrial damage from StAR transport of 7-hydroperoxycholesterol: Implications for oxidative stress-impaired reverse cholesterol transport. FEBS Lett., 2014, 588(1), 65-70.
[http://dx.doi.org/10.1016/j.febslet.2013.10.051] [PMID: 24269887]
[117]
Ning, Y.; Bai, Q.; Lu, H.; Li, X.; Pandak, W.M.; Zhao, F.; Chen, S.; Ren, S.; Yin, L. Overexpression of mitochondrial cholesterol delivery protein, StAR, decreases intracellular lipids and inflammatory factors secretion in macrophages. Atherosclerosis, 2009, 204(1), 114-120.
[http://dx.doi.org/10.1016/j.atherosclerosis.2008.09.006] [PMID: 18945429]
[118]
Baburski, A.Z.; Andric, S.A.; Kostic, T.S. Luteinizing hormone signaling is involved in synchronization of Leydig cell’s clock and is crucial for rhythm robustness of testosterone production. Biol. Reprod., 2019, 100(5), 1406-1415.
[http://dx.doi.org/10.1093/biolre/ioz020] [PMID: 30722003]
[119]
Park, Y.K.; Park, H. Differentiated embryo chondrocyte 1 (DEC1) represses PPARγ2 gene through interacting with CCAAT/enhancer binding protein β (C/EBPβ). Mol. Cells, 2012, 33(6), 575-581.
[http://dx.doi.org/10.1007/s10059-012-0002-9] [PMID: 22610404]
[120]
Yun, Z.; Maecker, H.L.; Johnson, R.S.; Giaccia, A.J. Inhibition of PPAR gamma 2 gene expression by the HIF-1-regulated gene DEC1/Stra13: a mechanism for regulation of adipogenesis by hypoxia. Dev. Cell, 2002, 2(3), 331-341.
[http://dx.doi.org/10.1016/S1534-5807(02)00131-4] [PMID: 11879638]
[121]
Williams, G.P.; Schonhoff, A.M.; Jurkuvenaite, A.; Gallups, N.J.; Standaert, D.G.; Harms, A.S. CD4 T cells mediate brain inflammation and neurodegeneration in a mouse model of Parkinson’s disease. Brain, 2021, 144(7), 2047-2059.
[http://dx.doi.org/10.1093/brain/awab103] [PMID: 33704423]
[122]
Sulzer, D.; Alcalay, R.N.; Garretti, F.; Cote, L.; Kanter, E.; Agin-Liebes, J.; Liong, C.; McMurtrey, C.; Hildebrand, W.H.; Mao, X.; Dawson, V.L.; Dawson, T.M.; Oseroff, C.; Pham, J.; Sidney, J.; Dillon, M.B.; Carpenter, C.; Weiskopf, D.; Phillips, E.; Mallal, S.; Peters, B.; Frazier, A.; Lindestam Arlehamn, C.S.; Sette, A. T cells from patients with Parkinson’s disease recognize α-synuclein peptides. Nature, 2017, 546(7660), 656-661.
[http://dx.doi.org/10.1038/nature22815] [PMID: 28636593]
[123]
Lindestam Arlehamn, C.S.; Dhanwani, R.; Pham, J.; Kuan, R.; Frazier, A.; Rezende Dutra, J.; Phillips, E.; Mallal, S.; Roederer, M.; Marder, K.S.; Amara, A.W.; Standaert, D.G.; Goldman, J.G.; Litvan, I.; Peters, B.; Sulzer, D.; Sette, A. α-Synuclein-specific T cell reactivity is associated with preclinical and early Parkinson’s disease. Nat. Commun., 2020, 11(1), 1875.
[http://dx.doi.org/10.1038/s41467-020-15626-w] [PMID: 32313102]
[124]
Yuan, N.L.; Liu, Y.; Zhang, D. Role of differentiated embryo-chondrocyte expressed gene 1 (DEC1) in immunity. Int. Immunopharmacol., 2022, 102, 107892.
[http://dx.doi.org/10.1016/j.intimp.2021.107892] [PMID: 34215553]
[125]
Sun, H.; Lu, B.; Li, R.Q.; Flavell, R.A.; Taneja, R. Defective T cell activation and autoimmune disorder in Stra13-deficient mice. Nat. Immunol., 2001, 2(11), 1040-1047.
[http://dx.doi.org/10.1038/ni721] [PMID: 11668339]
[126]
Álvarez-Luquín, D.D.; Arce-Sillas, A.; Leyva-Hernández, J.; Sevilla-Reyes, E.; Boll, M.C.; Montes-Moratilla, E.; Vivas-Almazán, V.; Pérez-Correa, C.; Rodríguez-Ortiz, U.; Espinoza-Cárdenas, R.; Fragoso, G.; Sciutto, E.; Adalid-Peralta, L. Regulatory impairment in untreated Parkinson’s disease is not restricted to Tregs: other regulatory populations are also involved. J. Neuroinflammation, 2019, 16(1), 212.
[http://dx.doi.org/10.1186/s12974-019-1606-1] [PMID: 31711508]
[127]
Dansokho, C.; Ait Ahmed, D.; Aid, S.; Toly-Ndour, C.; Chaigneau, T.; Calle, V.; Cagnard, N.; Holzenberger, M.; Piaggio, E.; Aucouturier, P.; Dorothée, G. Regulatory T cells delay disease progression in Alzheimer-like pathology. Brain, 2016, 139(4), 1237-1251.
[http://dx.doi.org/10.1093/brain/awv408] [PMID: 26912648]
[128]
Henkel, J.S.; Beers, D.R.; Wen, S.; Rivera, A.L.; Toennis, K.M.; Appel, J.E.; Zhao, W.; Moore, D.H.; Powell, S.Z.; Appel, S.H. Regulatory T‐lymphocytes mediate amyotrophic lateral sclerosis progression and survival. EMBO Mol. Med., 2013, 5(1), 64-79.
[http://dx.doi.org/10.1002/emmm.201201544] [PMID: 23143995]
[129]
Beers, D.R.; Henkel, J.S.; Zhao, W.; Wang, J.; Huang, A.; Wen, S.; Liao, B.; Appel, S.H. Endogenous regulatory T lymphocytes ameliorate amyotrophic lateral sclerosis in mice and correlate with disease progression in patients with amyotrophic lateral sclerosis. Brain, 2011, 134(5), 1293-1314.
[http://dx.doi.org/10.1093/brain/awr074] [PMID: 21596768]
[130]
Miyazaki, K.; Miyazaki, M.; Guo, Y.; Yamasaki, N.; Kanno, M.; Honda, Z.; Oda, H.; Kawamoto, H.; Honda, H. The role of the basic helix-loop-helix transcription factor Dec1 in the regulatory T cells. J. Immunol., 2010, 185(12), 7330-7339.
[http://dx.doi.org/10.4049/jimmunol.1001381] [PMID: 21057086]
[131]
Cereda, E.; Barichella, M.; Pedrolli, C.; Klersy, C.; Cassani, E.; Caccialanza, R.; Pezzoli, G. Diabetes and risk of Parkinson’s disease: a systematic review and meta-analysis. Diabetes Care, 2011, 34(12), 2614-2623.
[http://dx.doi.org/10.2337/dc11-1584] [PMID: 22110170]
[132]
Cereda, E.; Barichella, M.; Cassani, E.; Caccialanza, R.; Pezzoli, G. Clinical features of Parkinson disease when onset of diabetes came first: A case-control study. Neurology, 2012, 78(19), 1507-1511.
[http://dx.doi.org/10.1212/WNL.0b013e3182553cc9] [PMID: 22539572]
[133]
Kotagal, V.; Albin, R.L.; Müller, M.L.T.M.; Koeppe, R.A.; Frey, K.A.; Bohnen, N.I. Diabetes is associated with postural instability and gait difficulty in Parkinson disease. Parkinsonism Relat. Disord., 2013, 19(5), 522-526.
[http://dx.doi.org/10.1016/j.parkreldis.2013.01.016] [PMID: 23462483]
[134]
Yang, L.; Chen, Z.; Li, B.; Wang, M.; Yu, L.; Wan, Y.; Gan, J.; Zhang, Y.; Liu, Z.; Wang, X. Multiple Evidences for Association between Cognitive Impairment and Dysglycemia in Parkinson’s Disease: Implications for Clinical Practice. Front. Aging Neurosci., 2017, 9, 355.
[http://dx.doi.org/10.3389/fnagi.2017.00355] [PMID: 29163137]
[135]
Yamada, K.; Ogata-Kawata, H.; Matsuura, K.; Miyamoto, K. SHARP-2/Stra13/DEC1 as a potential repressor of phosphoenolpyruvate carboxykinase gene expression. FEBS Lett., 2005, 579(6), 1509-1514.
[http://dx.doi.org/10.1016/j.febslet.2005.01.060] [PMID: 15733865]
[136]
Yamada, K.; Kawata, H.; Shou, Z.; Mizutani, T.; Noguchi, T.; Miyamoto, K. Insulin induces the expression of the SHARP-2/Stra13/DEC1 gene via a phosphoinositide 3-kinase pathway. J. Biol. Chem., 2003, 278(33), 30719-30724.
[http://dx.doi.org/10.1074/jbc.M301597200] [PMID: 12796501]
[137]
Rome, S.; Meugnier, E.; Lecomte, V.; Berbe, V.; Besson, J.; Cerutti, C.; Pesenti, S.; Granjon, A.; Disse, E.; Clement, K.; Lefai, E.; Laville, M.; Vidal, H. Microarray analysis of genes with impaired insulin regulation in the skeletal muscle of type 2 diabetic patients indicates the involvement of basic helix-loop-helix domain-containing, class B, 2 protein (BHLHB2). Diabetologia, 2009, 52(9), 1899-1912.
[http://dx.doi.org/10.1007/s00125-009-1442-4] [PMID: 19590847]
[138]
Kawamoto, T.; Noshiro, M.; Furukawa, M.; Honda, K.K.; Nakashima, A.; Ueshima, T.; Usui, E.; Katsura, Y.; Fujimoto, K.; Honma, S.; Honma, K.; Hamada, T.; Kato, Y. Effects of fasting and re-feeding on the expression of Dec1, Per1, and other clock-related genes. J. Biochem., 2006, 140(3), 401-408.
[http://dx.doi.org/10.1093/jb/mvj165] [PMID: 16873396]
[139]
Baranowski, M. Biological role of liver X receptors. J Physiol Pharmacol, 2008, 59(Suppl 7), 31-55.
[PMID: 19258656]
[140]
Hayes, M.W.; Fung, V.S.C.; Kimber, T.E.; O’Sullivan, J.D. Updates and advances in the treatment of Parkinson disease. Med. J. Aust., 2019, 211(6), 277-283.
[http://dx.doi.org/10.5694/mja2.50224] [PMID: 31203580]
[141]
Polissidis, A.; Petropoulou-Vathi, L.; Nakos-Bimpos, M.; Rideout, H.J. The future of targeted gene-based treatment strategies and biomarkers in Parkinson’s disease. Biomolecules, 2020, 10(6), 912.
[http://dx.doi.org/10.3390/biom10060912] [PMID: 32560161]
[142]
Qian, Y.; Zhang, J.; Yan, B.; Chen, X. DEC1, a basic helix-loop-helix transcription factor and a novel target gene of the p53 family, mediates p53-dependent premature senescence. J. Biol. Chem., 2008, 283(5), 2896-2905.
[http://dx.doi.org/10.1074/jbc.M708624200] [PMID: 18025081]
[143]
Kotolloshi, R.; Mirzakhani, K.; Ahlburg, J.; Kraft, F.; Pungsrinont, T.; Baniahmad, A. Thyroid hormone induces cellular senescence in prostate cancer cells through induction of DEC1. J. Steroid Biochem. Mol. Biol., 2020, 201, 105689.
[http://dx.doi.org/10.1016/j.jsbmb.2020.105689] [PMID: 32360904]
[144]
Chakrabarti, J.; Turley, H.; Campo, L.; Han, C.; Harris, A.L.; Gatter, K.C.; Fox, S.B. The transcription factor DEC1 (stra13, SHARP2) is associated with the hypoxic response and high tumour grade in human breast cancers. Br. J. Cancer, 2004, 91(5), 954-958.
[http://dx.doi.org/10.1038/sj.bjc.6602059] [PMID: 15328513]
[145]
Zheng, Y.; Jia, Y.; Wang, Y.; Wang, M.; Li, B.; Shi, X.; Ma, X.; Xiao, D.; Sun, Y. The hypoxia-regulated transcription factor DEC1 (Stra13, SHARP-2) and its expression in gastric cancer. OMICS, 2009, 13(4), 301-306.
[http://dx.doi.org/10.1089/omi.2009.0014] [PMID: 19624270]
[146]
Giatromanolaki, A.; Koukourakis, M.I.; Sivridis, E.; Turley, H.; Wykoff, C.C.; Gatter, K.C.; Harris, A.L. DEC1 (STRA13) protein expression relates to hypoxia- inducible factor 1-alpha and carbonic anhydrase-9 overexpression in non-small cell lung cancer. J. Pathol., 2003, 200(2), 222-228.
[http://dx.doi.org/10.1002/path.1330] [PMID: 12754744]
[147]
Shi, X.H.; Zheng, Y.; Sun, Q.; Cui, J.; Liu, Q.H.; Qü, F.; Wang, Y.S. DEC1 nuclear expression: A marker of differentiation grade in hepatocellular carcinoma. World J. Gastroenterol., 2011, 17(15), 2037-2043.
[http://dx.doi.org/10.3748/wjg.v17.i15.2037] [PMID: 21528084]
[148]
Preusser, M.; Birner, P.; Ambros, I.M.; Ambros, P.F.; Budka, H.; Harris, A.L.; Hainfellner, J.A. DEC1 expression in 1p-aberrant oligodendroglial neoplasms. Histol. Histopathol., 2005, 20(4), 1173-1177.
[PMID: 16136500]
[149]
Cao, S.; Zheng, J.; Liu, X.; Liu, Y.; Ruan, X.; Ma, J.; Liu, L.; Wang, D.; Yang, C.; Cai, H.; Li, Z.; Feng, Z.; Xue, Y. FXR1 promotes the malignant biological behavior of glioma cells via stabilizing MIR17HG. Journal of experimental & clinical cancer research. CR (East Lansing Mich.), 2019, 38(1), 37.
[150]
Camponeschi, A.; Todi, L.; Cristofoletti, C.; Lazzeri, C.; Carbonari, M.; Mitrevski, M.; Marrapodi, R.; Del Padre, M.; Fiorilli, M.; Casato, M.; Visentini, M. DEC1/STRA13 is a key negative regulator of activation-induced proliferation of human B cells highly expressed in anergic cells. Immunol. Lett., 2018, 198, 7-11.
[http://dx.doi.org/10.1016/j.imlet.2018.03.014] [PMID: 29601939]
[151]
Li, R.; Tropea, T.F.; Baratta, L.R.; Zuroff, L.; Diaz-Ortiz, M.E.; Zhang, B.; Shinoda, K.; Rezk, A.; Alcalay, R.N.; Chen-Plotkin, A.; Bar-Or, A. Abnormal B-Cell and Tfh-Cell profiles in patients with parkinson disease: A cross-sectional study. Neurol Neuroimmunol. Neuroinflamm., 2021, 9(2), e1125.
[http://dx.doi.org/10.1212/NXI.0000000000001125] [PMID: 34955458]
[152]
Rostamian Delavar, M.; Baghi, M.; Safaeinejad, Z.; Kiani-Esfahani, A.; Ghaedi, K.; Nasr-Esfahani, M.H. Differential expression of miR-34a, miR-141, and miR-9 in MPP+-treated differentiated PC12 cells as a model of Parkinson’s disease. Gene, 2018, 662, 54-65.
[http://dx.doi.org/10.1016/j.gene.2018.04.010] [PMID: 29631008]
[153]
Yoshida, K.; Wang, X.; Bhawal, U.K. Dec1 deficiency restores the age-related dysfunctions of submandibular glands. J Physiol Pharmacol, 2021, 72(4)
[http://dx.doi.org/10.26402/jpp.2021.4.09] [PMID: 34987131]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy