Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

Introduction of Novel Drug Targets against Staphylococcus aureus and Proposing Putative Inhibitors against Adenine N1 (m1A22)-tRNA Methyltransferase (TrmK) using Computer-aided Drug Discovery

Author(s): Masoumeh Beig, Tahereh Ebrahimi, Narjes Noori Goodarzi, Sepideh Fereshteh, Mehri Habibi and Farzad Badmasti*

Volume 29, Issue 14, 2023

Published on: 08 May, 2023

Page: [1135 - 1147] Pages: 13

DOI: 10.2174/1381612829666230428105643

Price: $65

Abstract

Background: Nowadays, the emergence of methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant S. aureus (VRSA) strains has dramatically restricted the treatment options against this microorganism.

Aim: In this study, we aimed to discover new drug targets and inhibitors against S. aureus.

Methods: This study consists of two major sections. In the upstream evaluation, after a comprehensive coreproteome analysis, essential cytoplasmic proteins with no similarity to the human proteome were selected. Then the S. aureus metabolome-specific proteins were selected, and novel drug targets were identified using the DrugBank database. In the downstream analysis, a structure-based virtual screening approach was performed to reveal potential hit compounds against adenine N1 (m1A22)-tRNA methyltransferase (TrmK) using the StreptomeDB library and AutoDock Vina software. The compounds with a binding affinity > -9 kcal/mol were analyzed based on ADMET properties. Finally, the hit compounds were selected based on Lipinski’s rule of five (RO5).

Results: Three proteins, including glycine glycosyltransferase (FemA), TrmK, and heptaprenyl pyrophosphate synthase subunit A (HepS1), were selected as feasible and promising drug targets based on PDB file availability and their essential role in the survival of the S. aureus. Finally, seven hit compounds, including Nocardioazine_ A, Geninthiocin_D, Citreamicin_delta, Quinaldopeptin, Rachelmycin, Di-AFN_A1 and Naphthomycin_ K were introduced against the binding cavity of TrmK, as a feasible drug target.

Conclusion: The results of this study provided three feasible drug targets against S. aureus. In the following, seven hit compounds were introduced as potential inhibitors of TrmK, and Geninthiocin_D was identified as the most desirable agent. However, in vivo and in vitro investigations are needed to confirm the inhibitory effect of these agents on S. aureus.

[1]
Algammal AM, Hetta HF, Elkelish A, et al. Methicillin-Resistant Staphylococcus aureus (MRSA): One health perspective approach to the bacterium epidemiology, virulence factors, antibiotic-resistance, and zoonotic impact. Infect Drug Resist 2020; 13: 3255-65.
[http://dx.doi.org/10.2147/IDR.S272733] [PMID: 33061472]
[2]
Ghassemi MR, Doust RH, Haghight S, Akhgari M, Nazparvar B. Evaluation of the toxic shock syndrome gene (TSSTI) of Staphylococcus aureus in deceased neonates of Tehran forensic medicine organization from October 2017 to October 2018. Arch Pharm Pract 2020; 1: 176.
[3]
Lee AS, de Lencastre H, Garau J, et al. Methicillin-resistant Staphylococcus aureus. Nat Rev Dis Primers 2018; 4(1): 18033.
[http://dx.doi.org/10.1038/nrdp.2018.33] [PMID: 29849094]
[4]
Sarrafzadeh F, Sohrevardi SM, Abousaidi H, Mirzaei H. Prevalence of methicillin-resistant Staphylococcus aureus in Iranian children: A systematic review and meta-analysis. Clin Experiment Pediat 2021; 64(8): 415-21.
[http://dx.doi.org/10.3345/cep.2020.00255] [PMID: 33227182]
[5]
Ullah A, Qasim M, Rahman H, et al. High frequency of methicillin-resistant Staphylococcus aureus in Peshawar Region of Pakistan. Springerplus 2016; 5(1): 600.
[http://dx.doi.org/10.1186/s40064-016-2277-3] [PMID: 27247896]
[6]
Harkins CP, Pichon B, Doumith M, et al. Methicillin-resistant Staphylococcus aureus emerged long before the introduction of methicillin into clinical practice. Genome Biol 2017; 18(1): 130.
[http://dx.doi.org/10.1186/s13059-017-1252-9] [PMID: 28724393]
[7]
Zafari M, Adibi M, Chiani M, et al. Effects of cefazolin-containing niosome nanoparticles against methicillin-resistant Staphylococcus aureus biofilm formed on chronic wounds. Biomed Mater 2021; 16(3): 035001.
[http://dx.doi.org/10.1088/1748-605X/abc7f2] [PMID: 33650546]
[8]
CDC. Antibiotic Resistance Threats in the United States, 2019. Atlanta, GA: U.S. Department of Health and Human Services, CDC. 2019. Available from: www.cdc.gov/DrugResistance/Biggest-Threats.html
[9]
Sharma R, Hammerschlag MR. Treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections in children: A reappraisal of vancomycin. Curr Infect Dis Rep 2019; 21(10): 37.
[http://dx.doi.org/10.1007/s11908-019-0695-4] [PMID: 31486979]
[10]
Cong Y, Yang S, Rao X. Vancomycin resistant Staphylococcus aureus infections: A review of case updating and clinical features. J Adv Res 2020; 21: 169-76.
[http://dx.doi.org/10.1016/j.jare.2019.10.005] [PMID: 32071785]
[11]
McGuinness WA, Malachowa N, DeLeo FR. Focus: infectious diseases: Vancomycin resistance in Staphylococcus aureus. Yale J Biol Med 2017; 90(2): 269-81.
[PMID: 28656013]
[12]
Shaker B, Ahmad S, Lee J, Jung C, Na D. In silico methods and tools for drug discovery. Comput Biol Med 2021; 137: 104851.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104851] [PMID: 34520990]
[13]
Boike L, Henning NJ, Nomura DK. Advances in covalent drug discovery. Nat Rev Drug Discov 2022; 21(12): 881-98.
[http://dx.doi.org/10.1038/s41573-022-00542-z] [PMID: 36008483]
[14]
Atatreh N, Ghattas MA, Bardaweel SK, Al Rawashdeh S, Al Sorkhy M. Identification of new inhibitors of Mdm2-p53 interaction via pharmacophore and structure-based virtual screening. Drug Des Devel Ther 2018; 12: 3741-52.
[http://dx.doi.org/10.2147/DDDT.S182444] [PMID: 30464405]
[15]
Kraft E, Franke Y, Heeringa K, Shriver S, Zilberleyb I, Kugel C. Semiautomated small-scale purification method for high-throughput expression analysis of recombinant proteins. Methods Mol Biol 2019; 2025: 51-68.
[http://dx.doi.org/10.1007/978-1-4939-9624-7_3]
[16]
Fereshteh S, Kalhor H, Sepehr A, et al. Rational design of inhibitors against LpxA protein of Acinetobacter baumannii using a virtual screening method. J Indian Chem Soc 2022; 99(2): 100319.
[http://dx.doi.org/10.1016/j.jics.2021.100319]
[17]
Li J, Fu A, Zhang L. An overview of scoring functions used for protein-ligand interactions in molecular docking. Interdiscip Sci 2019; 11(2): 320-8.
[http://dx.doi.org/10.1007/s12539-019-00327-w] [PMID: 30877639]
[18]
Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Rapp BA, Wheeler DL. GenBank. Nucleic Acids Res 2000; 28(1): 15-8.
[http://dx.doi.org/10.1093/nar/28.1.15] [PMID: 10592170]
[19]
Chaudhari NM, Gupta VK, Dutta C. BPGA- an ultra-fast pan-genome analysis pipeline. Sci Rep 2016; 6(1): 24373.
[http://dx.doi.org/10.1038/srep24373] [PMID: 28442746]
[20]
Yu NY, Wagner JR, Laird MR, et al. PSORTb 3.0: Improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 2010; 26(13): 1608-15.
[http://dx.doi.org/10.1093/bioinformatics/btq249] [PMID: 20472543]
[21]
Zhang R, Ou HY, Zhang CT. DEG: a database of essential genes. Nucleic Acids Res 2004; 32(90001 Pt 1): 271D-2.
[http://dx.doi.org/10.1093/nar/gkh024] [PMID: 14681410]
[22]
Bhagwat M, Aravind L. Psi-blast tutorial Comparative genomics. Springer: US 2007; pp. 177-86.
[23]
Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 2007; 35 (Suppl. 2): W182-5.
[http://dx.doi.org/10.1093/nar/gkm321] [PMID: 17526522]
[24]
Brandon MC, Ruiz-Pesini E, Mishmar D, et al. MITOMASTER: a bioinformatics tool for the analysis of mitochondrial DNA sequences. Hum Mutat 2009; 30(1): 1-6.
[http://dx.doi.org/10.1002/humu.20801] [PMID: 18566966]
[25]
Wishart DS, Feunang YD, Guo AC, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 2018; 46(D1): D1074-82.
[http://dx.doi.org/10.1093/nar/gkx1037] [PMID: 29126136]
[26]
Sussman JL, Lin D, Jiang J, et al. Protein Data Bank (PDB): database of three-dimensional structural information of biological macromolecules. Acta Crystallogr D Biol Crystallogr 1998; 54(6): 1078-84.
[http://dx.doi.org/10.1107/S0907444998009378] [PMID: 10089483]
[27]
Sabzi S, Shahbazi S, Noori Goodarzi N, Haririzadeh Jouriani F, Habibi M, Bolourchi N. Genome-wide subtraction analysis and reverse vaccinology to detect novel drug targets and potential vaccine candidates against Ehrlichia chaffeensis. Appl Biochem Biotechnol 2022; 195(1): 107-24.
[28]
Kalhor H, Sadeghi S, Marashiyan M, et al. Identification of new DNA gyrase inhibitors based on bioactive compounds from streptomyces: Structure-based virtual screening and molecular dynamics simulations approaches. J Biomol Struct Dyn 2020; 38(3): 791-806.
[http://dx.doi.org/10.1080/07391102.2019.1588784] [PMID: 30916622]
[29]
Xiong G, Wu Z, Yi J, et al. ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res 2021; 49(W1): W5-W14.
[http://dx.doi.org/10.1093/nar/gkab255] [PMID: 33893803]
[30]
Ganesan A. The impact of natural products upon modern drug discovery. Curr Opin Chem Biol 2008; 12(3): 306-17.
[http://dx.doi.org/10.1016/j.cbpa.2008.03.016] [PMID: 18423384]
[31]
Yuan S, Chan HCS, Hu Z. Using PyMOL as a platform for computational drug design. Wiley Interdiscip Rev Comput Mol Sci 2017; 7(2): e1298.
[http://dx.doi.org/10.1002/wcms.1298]
[32]
Studio D. Discovery studio. Accelrys 2008. Available from: https://discover.3ds.com/discovery-studio-visualizer-download.
[33]
Sweeney P, Galliford A, Kumar A, Raju D, Krishna NB, Sutherland E. Structure, dynamics, and molecular inhibition of the Staphylococcus aureus m1A22-tRNA methyltransferase TrmK. J Biol Chem 2022; 298(6): 102040.
[http://dx.doi.org/10.1016/j.jbc.2022.102040]
[34]
Cheung GYC, Bae JS, Otto M. Pathogenicity and virulence of Staphylococcus aureus. Virulence 2021; 12(1): 547-69.
[http://dx.doi.org/10.1080/21505594.2021.1878688] [PMID: 33522395]
[35]
Prieto-Martínez FD, López-López E, Juárez-Mercado KE, Medina-Franco JL. Chapter 2 - Computational Drug Design Methods-Current and Future Perspectives. In: In silico drug design repurposing techniques and methodologies. Amsterdam, Netherlands: Elsevier 2019; pp. 19-44.
[36]
Klementz D, Döring K, Lucas X, et al. StreptomeDB 2.0-an extended resource of natural products produced by streptomycetes. Nucleic Acids Res 2016; 44(D1): D509-14.
[http://dx.doi.org/10.1093/nar/gkv1319] [PMID: 26615197]
[37]
Lucas X, Senger C, Erxleben A, et al. StreptomeDB: a resource for natural compounds isolated from Streptomyces species. Nucleic Acids Res 2013; 41(D1): D1130-6.
[http://dx.doi.org/10.1093/nar/gks1253] [PMID: 23193280]
[38]
Hughes JP, Rees S, Kalindjian SB, Philpott KL. Principles of early drug discovery. Br J Pharmacol 2011; 162(6): 1239-49.
[http://dx.doi.org/10.1111/j.1476-5381.2010.01127.x] [PMID: 21091654]
[39]
Giuliodori AM, Spurio R, Milón P, Fabbretti A. Antibiotics targeting the 30S ribosomal subunit: A lesson from nature to find and develop new drugs. Curr Top Med Chem 2019; 18(24): 2080-96.
[http://dx.doi.org/10.2174/1568026618666181025092546] [PMID: 30360712]
[40]
Athamna A, Athamna M, Medlej B, Bast DJ, Rubinstein E. In vitro post-antibiotic effect of fluoroquinolones, macrolides, -lactams, tetracyclines, vancomycin, clindamycin, linezolid, chloramphenicol, quinupristin/dalfopristin and rifampicin on Bacillus anthracis. J Antimicrob Chemother 2004; 53(4): 609-15.
[http://dx.doi.org/10.1093/jac/dkh130] [PMID: 14998982]
[41]
Zhang L, He J, Bai L, Ruan S, Yang T, Luo Y. Ribosome targeting antibacterial agents: Advances, challenges, and opportunities. Med Res Rev 2021; 41(4): 1855-89.
[http://dx.doi.org/10.1002/med.21780] [PMID: 33501747]
[42]
Benson TE, Prince DB, Mutchler VT, et al. X-ray crystal structure of Staphylococcus aureus FemA. Structure 2002; 10(8): 1107-15.
[http://dx.doi.org/10.1016/S0969-2126(02)00807-9] [PMID: 12176388]
[43]
Maidhof H, Reinicke B, Blümel P, Berger-Bächi B, Labischinski H. femA, which encodes a factor essential for expression of methicillin resistance, affects glycine content of peptidoglycan in methicillin-resistant and methicillin-susceptible Staphylococcus aureus strains. J Bacteriol 1991; 173(11): 3507-13.
[http://dx.doi.org/10.1128/jb.173.11.3507-3513.1991] [PMID: 2045371]
[44]
Li X, Xiong Y, Fan X, et al. A study of the regulating gene of femA from methicillin-resistant Staphylococcus aureus clinical isolates. J Int Med Res 2008; 36(3): 420-33.
[http://dx.doi.org/10.1177/147323000803600306] [PMID: 18534123]
[45]
Raju R, Piggott AM, Huang XC, Capon RJ. Nocardioazines: a novel bridged diketopiperazine scaffold from a marine-derived bacterium inhibits P-glycoprotein. Org Lett 2011; 13(10): 2770-3.
[http://dx.doi.org/10.1021/ol200904v] [PMID: 21513295]
[46]
Desai J, Liu YL, Wei H, et al. Structure, function, and inhibition of Staphylococcus aureus heptaprenyl diphosphate synthase. Chem Med Chem 2016; 11(17): 1915-23.
[http://dx.doi.org/10.1002/cmdc.201600311] [PMID: 27457559]
[47]
Roovers M, Kaminska KH, Tkaczuk KL, Gigot D, Droogmans L, Bujnicki JM. The YqfN protein of Bacillus subtilis is the tRNA: m 1 A22 methyltransferase (TrmK). Nucleic Acids Res 2008; 36(10): 3252-62.
[http://dx.doi.org/10.1093/nar/gkn169] [PMID: 18420655]
[48]
Amézqueta S, Subirats X, Fuguet E, Rosés M, Ràfols C. Chapter 6 - Octanol-Water Partition Constant. In: Liquid-phase extraction handbooks in separation science. 2020; pp. 183-208. Available from: https://www.sciencedirect.com/
[http://dx.doi.org/10.1016/B978-0-12-816911-7.00006-2]
[49]
Hopp DC, Milanowski DJ, Rhea J, et al. Citreamicins with potent gram-positive activity. J Nat Prod 2008; 71(12): 2032-5.
[http://dx.doi.org/10.1021/np800503z] [PMID: 19053507]
[50]
Toda S, Sugawara K, Nlshiyama Y, et al. Quinaldopeptin, a novel antibiotic of the quinomycin family. J Antibiot 1990; 43(7): 796-808.
[http://dx.doi.org/10.7164/antibiotics.43.796] [PMID: 2387774]
[51]
Krueger WC, Prairie MD. Calf thymus DNA binding/bonding properties of CC-1065 and analogs as related to their biological activities and toxicities. Chem Biol Interact 1992; 82(1): 31-46.
[http://dx.doi.org/10.1016/0009-2797(92)90012-A] [PMID: 1312395]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy