Generic placeholder image

Current Chinese Science

Editor-in-Chief

ISSN (Print): 2210-2981
ISSN (Online): 2210-2914

Research Article Section: Materials Science

A Double-Emulsion Method for the Fabrication of PLA Single-Hole Hollow Particles

Author(s): Yanan Li, Liyun Zhang, Rui Tian, Dicky Pranantyo, Linfeng Chen* and Fan Xia

Volume 3, Issue 4, 2023

Published on: 12 May, 2023

Page: [285 - 292] Pages: 8

DOI: 10.2174/2210298103666230428092735

Price: $65

Abstract

Background: Polymeric hollow particles with a single-hole structure have attracted broad interest due to their combined advantages of a hollow cavity and an opening hole in the shell.

Aim: In the past decades, much progress has been made in the fabrication of such particles with various strategies. However, there is a lack of research on the easy fabrication of biodegradable polylactide (PLA) single hole particles (PLA SHHPs).

Methods: In this work, we reported a simple double emulsion method for the fabrication of PLA SHHPs. The W/O/W double emulsion was formed by homogenizing PLA chloroform and brilliant blue G (BBG) solution. Scanning electron microscopy and confocal laser scanning microscopy were used for the characterization. It was found that the concentrations of PLA chloroform and BBG solution both had a significant influence on the emulsion structure.

Results: PLA SHHPs with a percentage >85% were obtained from the emulsion composed of PLA chloroform (10.0 w%) and BBG solution (4 mM). The particle formation mechanism was also proposed based on the result of the low interfacial tension between PLA chloroform/BBG solution.

Conclusion: The results may inspire new development of PLA particles with unique structures, which are promising to be used in drug delivery, catalysis, microreaction and micromotors.

Graphical Abstract

[1]
Zou, H.; Shang, K. Synthetic strategies for hollow particles with open holes on their surfaces. Mater. Chem. Front., 2021, 5(10), 3765-3787.
[http://dx.doi.org/10.1039/D1QM00217A]
[2]
Si, Y.; Chen, M.; Wu, L. Syntheses and biomedical applications of hollow micro-/nano-spheres with large-through-holes. Chem. Soc. Rev., 2016, 45(3), 690-714.
[http://dx.doi.org/10.1039/C5CS00695C] [PMID: 26658638]
[3]
Wichaita, W.; Polpanich, D.; Tangboriboonrat, P. Review on synthesis of colloidal hollow particles and their applications. Ind. Eng. Chem. Res., 2019, 58(46), 20880-20901.
[http://dx.doi.org/10.1021/acs.iecr.9b02330]
[4]
Vlachopoulos, A.; Karlioti, G.; Balla, E.; Daniilidis, V.; Kalamas, T.; Stefanidou, M.; Bikiaris, N.D.; Christodoulou, E.; Koumentakou, I.; Karavas, E.; Bikiaris, D.N. Poly(lactic acid)-based microparticles for drug delivery applications: An overview of recent advances. Pharmaceutics, 2022, 14(2), 359.
[http://dx.doi.org/10.3390/pharmaceutics14020359] [PMID: 35214091]
[5]
Wang, S.; Chen, M.; Wu, L. One-step synthesis of cagelike hollow silica spheres with large through-holes for macromolecule delivery. ACS Appl. Mater. Interfaces, 2016, 8(48), 33316-33325.
[http://dx.doi.org/10.1021/acsami.6b11639] [PMID: 27934185]
[6]
Li, X.; Zhou, L.; Wei, Y.; El-Toni, A.M.; Zhang, F.; Zhao, D. Anisotropic encapsulation-induced synthesis of asymmetric single-hole mesoporous nanocages. J. Am. Chem. Soc., 2015, 137(18), 5903-5906.
[http://dx.doi.org/10.1021/jacs.5b03207] [PMID: 25909815]
[7]
Kim, D.H.; Woo, H.C.; Kim, M.H. Room-temperature synthesis of hollow polymer microparticles with an open hole on the surface and their application. Langmuir, 2019, 35(42), 13700-13710.
[http://dx.doi.org/10.1021/acs.langmuir.9b02780] [PMID: 31589450]
[8]
Parvate, S.; Dixit, P.; Chattopadhyay, S. Hierarchical polymeric hollow microspheres with size tunable single holes and their application as catalytic microreactor. Colloid Polym. Sci., 2022, 300(9), 1101-1109.
[http://dx.doi.org/10.1007/s00396-022-05008-7]
[9]
Yu, Q.; Li, D.; Tian, Z.; Zhu, C.; Jiao, C.; Zhang, Q.; Chen, Y.; Zhu, Y.; Jiang, H.; Liu, J.; Wang, G-H. Single-hole hollow carbon nanospheres via a poly(ethylene glycol)-assisted emulsion-templating strategy for intensified liquid-phase adsorption. Chem. Mater., 2022, 34(8), 3715-3723.
[http://dx.doi.org/10.1021/acs.chemmater.1c04419]
[10]
Sacanna, S.; Irvine, W.T.M.; Chaikin, P.M.; Pine, D.J. Lock and key colloids. Nature, 2010, 464(7288), 575-578.
[http://dx.doi.org/10.1038/nature08906] [PMID: 20336142]
[11]
Jing, W.; Du, S.; Zhang, Z. Synthesis of polystyrene particles with precisely controlled degree of concaveness. Polymers, 2018, 10(4), 458.
[http://dx.doi.org/10.3390/polym10040458] [PMID: 30966493]
[12]
Kim, H.J.; Pradyasti, A.; Kim, M.H. Polymer hollow particles with a size-tunable hole in their surfaces and their application. Mol. Cryst. Liq. Cryst. (Phila. Pa.), 2022, 742(1), 64-68.
[http://dx.doi.org/10.1080/15421406.2022.2046915]
[13]
Kim, K.T.; Meeuwissen, S.A.; Nolte, R.J.M.; van Hest, J.C.M. Smart nanocontainers and nanoreactors. Nanoscale, 2010, 2(6), 844-858.
[http://dx.doi.org/10.1039/b9nr00409b] [PMID: 20648280]
[14]
Hyuk Im, S.; Jeong, U.; Xia, Y. Polymer hollow particles with controllable holes in their surfaces. Nat. Mater., 2005, 4(9), 671-675.
[http://dx.doi.org/10.1038/nmat1448] [PMID: 16086022]
[15]
Xu, J.; Wu, Y.; Wang, K.; Shen, L.; Xie, X.; Zhu, J. The generation of polymeric nano-bowls through 3D confined assembly and disassembly. Soft Matter, 2016, 12(16), 3683-3687.
[http://dx.doi.org/10.1039/C5SM03071D] [PMID: 27063504]
[16]
Wang, Z.; Qiu, T.; Guo, L.; Ye, J.; He, L.; Li, X. The building of molecularly imprinted single hole hollow particles: A miniemulsion polymerization approach. Chem. Eng. J., 2019, 357, 348-357.
[http://dx.doi.org/10.1016/j.cej.2018.09.128]
[17]
Luo, S.C.; Yu, H.; Wan, A.C.A.; Han, Y.; Ying, J.Y. A general synthesis for PEDOT-coated nonconductive materials and PEDOT hollow particles by aqueous chemical polymerization. Small, 2008, 4(11), 2051-2058.
[http://dx.doi.org/10.1002/smll.200800033] [PMID: 18949792]
[18]
Zhou, F.L.; Chirazi, A.; Gough, J.E.; Hubbard Cristinacce, P.L.; Parker, G.J.M. Hollow polycaprolactone microspheres with/without a single surface hole by co-electrospraying. Langmuir, 2017, 33(46), 13262-13271.
[http://dx.doi.org/10.1021/acs.langmuir.7b01985] [PMID: 28901145]
[19]
Lv, H.; Lin, Q.; Zhang, K.; Yu, K.; Yao, T.; Zhang, X.; Zhang, J.; Yang, B. Facile fabrication of monodisperse polymer hollow spheres. Langmuir, 2008, 24(23), 13736-13741.
[http://dx.doi.org/10.1021/la802782w] [PMID: 18954151]
[20]
Rajeshkumar, G.; Arvindh Seshadri, S.; Devnani, G.L.; Sanjay, M.R.; Siengchin, S.; Prakash Maran, J.; Al-Dhabi, N.A.; Karuppiah, P.; Mariadhas, V.A.; Sivarajasekar, N.; Ronaldo Anuf, A. Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites – A comprehensive review. J. Clean. Prod., 2021, 310, 127483.
[http://dx.doi.org/10.1016/j.jclepro.2021.127483]
[21]
Tsuji, H. Poly(lactic acid) stereocomplexes: A decade of progress. Adv. Drug Deliv. Rev., 2016, 107, 97-135.
[http://dx.doi.org/10.1016/j.addr.2016.04.017] [PMID: 27125192]
[22]
Nofar, M.; Sacligil, D.; Carreau, P.J.; Kamal, M.R.; Heuzey, M.C. Poly (lactic acid) blends: Processing, properties and applications. Int. J. Biol. Macromol., 2019, 125, 307-360.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.002] [PMID: 30528997]
[23]
Singhvi, M.S.; Zinjarde, S.S.; Gokhale, D.V. Polylactic acid: Synthesis and biomedical applications. J. Appl. Microbiol., 2019, 127(6), 1612-1626.
[http://dx.doi.org/10.1111/jam.14290] [PMID: 31021482]
[24]
Nooeaid, P.; Chuysinuan, P.; Pitakdantham, W.; Aryuwananon, D.; Techasakul, S.; Dechtrirat, D. Eco-friendly polyvinyl alcohol/polylactic acid core/shell structured fibers as controlled-release fertilizers for sustainable agriculture. J. Polym. Environ., 2021, 29(2), 552-564.
[http://dx.doi.org/10.1007/s10924-020-01902-9]
[25]
Ilyas, R.A.; Zuhri, M.Y.M.; Aisyah, H.A.; Asyraf, M.R.M.; Hassan, S.A.; Zainudin, E.S.; Sapuan, S.M.; Sharma, S.; Bangar, S.P.; Jumaidin, R.; Nawab, Y.; Faudzi, A.A.M.; Abral, H.; Asrofi, M.; Syafri, E.; Sari, N.H. Natural fiber-reinforced polylactic acid, polylactic acid blends and their composites for advanced applications. Polymers, 2022, 14(1), 202.
[http://dx.doi.org/10.3390/polym14010202] [PMID: 35012228]
[26]
Wu, F.; Misra, M.; Mohanty, A.K. Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging. Prog. Polym. Sci., 2021, 117, 101395.
[http://dx.doi.org/10.1016/j.progpolymsci.2021.101395]
[27]
Reichert, C.L.; Bugnicourt, E.; Coltelli, M.B.; Cinelli, P.; Lazzeri, A.; Canesi, I.; Braca, F.; Martínez, B.M.; Alonso, R.; Agostinis, L.; Verstichel, S.; Six, L.; Mets, S.D.; Gómez, E.C.; Ißbrücker, C.; Geerinck, R.; Nettleton, D.F.; Campos, I.; Sauter, E.; Pieczyk, P.; Schmid, M. Bio-based packaging: Materials, modifications, industrial applications and sustainability. Polymers, 2020, 12(7), 1558.
[http://dx.doi.org/10.3390/polym12071558] [PMID: 32674366]
[28]
Wang, D.; Liao, S.; Zhang, S.; Wang, Y. A reversed photosynthesis-like process for light-triggered CO2 capture, release, and conversion. ChemSusChem, 2017, 10(12), 2573-2577.
[http://dx.doi.org/10.1002/cssc.201700365] [PMID: 28419724]
[29]
Qian, Q.; Huang, X.; Zhang, X.; Xie, Z.; Wang, Y. One-step preparation of macroporous polymer particles with multiple interconnected chambers: A candidate for trapping biomacromolecules. Angew. Chem. Int. Ed., 2013, 52(40), 10625-10629.
[http://dx.doi.org/10.1002/anie.201305003] [PMID: 23939808]
[30]
Liang, A.; Lu, Z.; Liu, Q.; Zhang, X.; Wen, G.; Jiang, Z. SERS quantitative analysis of trace HSA with a Coomassie brilliant blue G-250 molecular probe in nanogold sol substrate. RSC Advances, 2015, 5(8), 5711-5715.
[http://dx.doi.org/10.1039/C4RA11778F]
[31]
Georgiou, C.D.; Grintzalis, K.; Zervoudakis, G.; Papapostolou, I. Mechanism of Coomassie brilliant blue G-250 binding to proteins: A hydrophobic assay for nanogram quantities of proteins. Anal. Bioanal. Chem., 2008, 391(1), 391-403.
[http://dx.doi.org/10.1007/s00216-008-1996-x] [PMID: 18327568]
[32]
Song, B.; Springer, J. Determination of interfacial tension from the profile of a pendant drop using computer-aided image processing: 1. Theoretical. J. Colloid Interface Sci., 1996, 184(1), 64-76.
[http://dx.doi.org/10.1006/jcis.1996.0597] [PMID: 8954640]
[33]
Song, B.; Springer, J. Determination of interfacial tension from the profile of a pendant drop using computer-aided image processing: 2. Experimental. J. Colloid Interface Sci., 1996, 184(1), 77-91.
[http://dx.doi.org/10.1006/jcis.1996.0598] [PMID: 8954641]
[34]
Rotenberg, Y.; Boruvka, L.; Neumann, A.W. Determination of surface tension and contact angle from the shapes of axisymmetric fluid interfaces. J. Colloid Interface Sci., 1983, 93(1), 169-183.
[http://dx.doi.org/10.1016/0021-9797(83)90396-X]
[35]
Bashforth, F.; Adams, J.C. An Attempt to Test the Theory of Capillary Action; Cambridge University Press and Deighton, Bell & Co.: London, 1892.
[36]
Sheth, T.; Seshadri, S.; Prileszky, T.; Helgeson, M.E. Multiple nanoemulsions. Nat. Rev. Mater., 2020, 5(3), 214-228.
[http://dx.doi.org/10.1038/s41578-019-0161-9]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy