Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Mini-Review Article

Research Progress on the Effect of Autophagy and Exosomes on Liver Fibrosis

Author(s): Yikuan Du, Silin Zhu, Haojie Zeng, Zhenjie Wang, Yixing Huang, Yuqi Zhou, Weichui Zhang, Jinfeng Zhu and Chun Yang*

Volume 19, Issue 6, 2024

Published on: 11 May, 2023

Page: [785 - 797] Pages: 13

DOI: 10.2174/1574888X18666230427112930

Price: $65

Abstract

Chronic liver disease is a known risk factor for the development of liver cancer, and the development of microRNA (miRNA) liver therapies has been hampered by the difficulty of delivering miRNA to damaged tissues. In recent years, numerous studies have shown that hepatic stellate cell (HSC) autophagy and exosomes play an important role in maintaining liver homeostasis and ameliorating liver fibrosis. In addition, the interaction between HSC autophagy and exosomes also affects the progression of liver fibrosis. In this paper, we review the research progress of mesenchymal stem cell-derived exosomes (MSC-EVs) loaded with specific miRNA and autophagy, and their related signaling pathways in liver fibrosis, which will provide a more reliable basis for the use of MSC-EVs for therapeutic delivery of miRNAs targeting the chronic liver disease.

Graphical Abstract

[1]
Baghaei K, Mazhari S, Tokhanbigli S, et al. Therapeutic potential of targeting regulatory mechanisms of hepatic stellate cell activation in liver fibrosis. Drug Discov Today 2022; 27(4): 1044-61.
[http://dx.doi.org/10.1016/j.drudis.2021.12.012] [PMID: 34952225]
[2]
Lucantoni F, Benedicto AM, Gruevska A, et al. Implication of autophagy in the antifibrogenic effect of Rilpivirine: when more is less. Cell Death Dis 2022; 13(4): 385.
[http://dx.doi.org/10.1038/s41419-022-04789-7] [PMID: 35443746]
[3]
Chen S, He Z, Xie W, et al. Ginsenoside Rh2 attenuates CDAHFD-induced liver fibrosis in mice by improving intestinal microbial composition and regulating LPS-mediated autophagy. Phytomedicine 2022; 101: 154121.
[http://dx.doi.org/10.1016/j.phymed.2022.154121] [PMID: 35489327]
[4]
Rong X, Liu J, Yao X, Jiang T, Wang Y, Xie F. Human bone marrow mesenchymal stem cells-derived exosomes alleviate liver fibrosis through the Wnt/β-catenin pathway. Stem Cell Res Ther 2019; 10(1): 98.
[http://dx.doi.org/10.1186/s13287-019-1204-2] [PMID: 30885249]
[5]
Ma L, Wei J, Zeng Y, et al. Mesenchymal stem cell-originated exosomal circDIDO1 suppresses hepatic stellate cell activation by miR-141-3p/PTEN/AKT pathway in human liver fibrosis. Drug Deliv 2022; 29(1): 440-53.
[http://dx.doi.org/10.1080/10717544.2022.2030428] [PMID: 35099348]
[6]
Lin Y, Yan M, Bai Z, et al. Huc-MSC-derived exosomes modified with the targeting peptide of aHSCs for liver fibrosis therapy. J Nanobiotechnology 2022; 20(1): 432.
[http://dx.doi.org/10.1186/s12951-022-01636-x] [PMID: 36183106]
[7]
Sakamoto T, Morishita A, Nomura T, et al. Identification of microRNA profiles associated with refractory primary biliary cirrhosis. Mol Med Rep 2016; 14(4): 3350-6.
[http://dx.doi.org/10.3892/mmr.2016.5606] [PMID: 27511723]
[8]
Friedman SL. Liver fibrosis – from bench to bedside. J Hepatol 2003; 38 (Suppl. 1): 38-53.
[http://dx.doi.org/10.1016/S0168-8278(02)00429-4] [PMID: 12591185]
[9]
Tsuchida T, Friedman SL. Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol 2017; 14(7): 397-411.
[http://dx.doi.org/10.1038/nrgastro.2017.38] [PMID: 28487545]
[10]
Cai X, Li Z, Zhang Q, et al. CXCL 6‐ EGFR ‐induced Kupffer cells secrete TGF ‐β1 promoting hepatic stellate cell activation via the SMAD 2/BRD 4/C‐ MYC/EZH 2 pathway in liver fibrosis. J Cell Mol Med 2018; 22(10): 5050-61.
[http://dx.doi.org/10.1111/jcmm.13787] [PMID: 30106235]
[11]
Pradere JP, Kluwe J, De Minicis S, et al. Hepatic macrophages but not dendritic cells contribute to liver fibrosis by promoting the survival of activated hepatic stellate cells in mice. Hepatology 2013; 58(4): 1461-73.
[http://dx.doi.org/10.1002/hep.26429] [PMID: 23553591]
[12]
Sung S, Kim J, Jung Y. Liver-Derived Exosomes and Their Implications in Liver Pathobiology. Int J Mol Sci 2018; 19(12): 3715.
[http://dx.doi.org/10.3390/ijms19123715] [PMID: 30469540]
[13]
Hu YB, Ye XT, Zhou QQ, et al. Sestrin 2 Attenuates Rat Hepatic Stellate Cell (HSC) Activation and Liver Fibrosis via an mTOR/AMPK-Dependent Mechanism. Mechanism. Cell Physiol Biochem 2018; 51(5): 2111-22.
[http://dx.doi.org/10.1159/000495829] [PMID: 30522100]
[14]
Lucantoni F, Martínez-Cerezuela A, Gruevska A, et al. Understanding the implication of autophagy in the activation of hepatic stellate cells in liver fibrosis: Are we there yet? J Pathol 2021; 254(3): 216-28.
[http://dx.doi.org/10.1002/path.5678] [PMID: 33834482]
[15]
Zaafan MA, Abdelhamid AM. Dasatinib ameliorates thioacetamide-induced liver fibrosis: Modulation of miR-378 and miR-17 and their linked Wnt/β-catenin and TGF-β/smads pathways. J Enzyme Inhib Med Chem 2022; 37(1): 118-24.
[http://dx.doi.org/10.1080/14756366.2021.1995379] [PMID: 34894966]
[16]
Wang X, He Y, Mackowiak B, Gao B. MicroRNAs as regulators, biomarkers and therapeutic targets in liver diseases. Gut 2021; 70(4): 784-95.
[http://dx.doi.org/10.1136/gutjnl-2020-322526] [PMID: 33127832]
[17]
Zhao Z, Lin CY, Cheng K. siRNA- and miRNA-based therapeutics for liver fibrosis. Transl Res 2019; 214: 17-29.
[http://dx.doi.org/10.1016/j.trsl.2019.07.007] [PMID: 31476281]
[18]
Wang L, Wang Y, Quan J. Exosomal miR-223 derived from natural killer cells inhibits hepatic stellate cell activation by suppressing autophagy. Mol Med 2020; 26(1): 81.
[http://dx.doi.org/10.1186/s10020-020-00207-w] [PMID: 32873229]
[19]
Wang A, Bu F, Li J, et al. MicroRNA-195-3p promotes hepatic stellate cell activation and liver fibrosis by suppressing PTEN expression. Toxicol Lett 2022; 355: 88-99.
[http://dx.doi.org/10.1016/j.toxlet.2021.11.014] [PMID: 34838997]
[20]
Wu SM, Li TH, Yun H, Ai HW, Zhang KH. MiR-140-3p knockdown suppresses cell proliferation and fibrogenesis in hepatic stellate cells via PTEN-Mediated AKT/mTOR Signaling. Yonsei Med J 2019; 60(6): 561-9.
[http://dx.doi.org/10.3349/ymj.2019.60.6.561] [PMID: 31124340]
[21]
Zheng J, Wu C, Xu Z, et al. Hepatic stellate cell is activated by microRNA-181b via PTEN/Akt pathway. Mol Cell Biochem 2015; 398(1-2): 1-9.
[http://dx.doi.org/10.1007/s11010-014-2199-8] [PMID: 25148875]
[22]
Fang B, Wen S, Li Y, et al. Prediction and verification of target of helenalin against hepatic stellate cell activation based on miR-200a-mediated PI3K/Akt and NF-κB pathways. Int Immunopharmacol 2021; 92: 107208.
[http://dx.doi.org/10.1016/j.intimp.2020.107208] [PMID: 33444919]
[23]
Huang YH, Yang YL, Wang FS. The role of miR-29a in the regulation, function, and signaling of liver fibrosis. Int J Mol Sci 2018; 19(7): 1889.
[http://dx.doi.org/10.3390/ijms19071889] [PMID: 29954104]
[24]
Ye M, Wang S, Sun P, Qie J. Integrated microRNA expression profile reveals dysregulated miR-20a-5p and miR-200a-3p in liver fibrosis. BioMed Res Int 2021; 2021: 1-10.
[http://dx.doi.org/10.1155/2021/9583932] [PMID: 34235224]
[25]
Kouroumalis E, Voumvouraki A, Augoustaki A, Samonakis DN. Autophagy in liver diseases. World J Hepatol 2021; 13(1): 6-65.
[http://dx.doi.org/10.4254/wjh.v13.i1.6] [PMID: 33584986]
[26]
Mastoridou EM, Goussia AC, Glantzounis GK, Kanavaros P, Charchanti AV. Autophagy and exosomes: Cross-regulated pathways playing major roles in hepatic stellate cells activation and liver fibrosis. Front Physiol 2022; 12: 801340.
[http://dx.doi.org/10.3389/fphys.2021.801340] [PMID: 35185602]
[27]
Seo HY, Lee SH, Han E, Hwang JS, Kim MK, Jang BK. Increased levels of phosphorylated ERK Induce CTGF expression in autophagy-deficient mouse hepatocytes. Cells 2022; 11(17): 2704.
[http://dx.doi.org/10.3390/cells11172704] [PMID: 36078110]
[28]
Ruart M, Chavarria L, Campreciós G, et al. Impaired endothelial autophagy promotes liver fibrosis by aggravating the oxidative stress response during acute liver injury. J Hepatol 2019; 70(3): 458-69.
[http://dx.doi.org/10.1016/j.jhep.2018.10.015] [PMID: 30367898]
[29]
Wu H, Chen G, Wang J, Deng M, Yuan F, Gong J. TIM‐4 interference in Kupffer cells against CCL4‐induced liver fibrosis by mediating Akt1/Mitophagy signalling pathway. Cell Prolif 2020; 3(1): e12731.
[http://dx.doi.org/10.1111/cpr.12731] [PMID: 31755616]
[30]
Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem 2000; 275(4): 2247-50.
[http://dx.doi.org/10.1074/jbc.275.4.2247] [PMID: 10644669]
[31]
Hernández-Gea V, Ghiassi-Nejad Z, Rozenfeld R, et al. Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology 2012; 142(4): 938-46.
[http://dx.doi.org/10.1053/j.gastro.2011.12.044] [PMID: 22240484]
[32]
Zhang Z, Zhao S, Yao Z, et al. Autophagy regulates turnover of lipid droplets via ROS-dependent Rab25 activation in hepatic stellate cell. Redox Biol 2017; 11: 322-34.
[http://dx.doi.org/10.1016/j.redox.2016.12.021] [PMID: 28038427]
[33]
Hu Z, Su H, Zeng Y, et al. Tetramethylpyrazine ameliorates hepatic fibrosis through autophagy-mediated inflammation. Biochem Cell Biol 2020; 98(3): 327-37.
[http://dx.doi.org/10.1139/bcb-2019-0059] [PMID: 32383631]
[34]
Zhang Z, Guo M, Li Y, et al. RNA-binding protein ZFP36/TTP protects against ferroptosis by regulating autophagy signaling pathway in hepatic stellate cells. Autophagy 2020; 16(8): 1482-505.
[http://dx.doi.org/10.1080/15548627.2019.1687985] [PMID: 31679460]
[35]
Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 2012; 149(5): 1060-72.
[http://dx.doi.org/10.1016/j.cell.2012.03.042]
[36]
Wang Y, Wang M, Liu Y, et al. Integrated regulation of stress responses, autophagy and survival by altered intracellular iron stores. Redox Biol 2022; 55: 102407.
[http://dx.doi.org/10.1016/j.redox.2022.102407] [PMID: 35853304]
[37]
Yi J, Wu S, Tan S, et al. Berberine alleviates liver fibrosis through inducing ferrous redox to activate ROS-mediated hepatic stellate cells ferroptosis. Cell Death Discov 2021; 7(1): 374.
[http://dx.doi.org/10.1038/s41420-021-00768-7] [PMID: 34864819]
[38]
Shen M, Li Y, Wang Y, et al. N6-methyladenosine modification regulates ferroptosis through autophagy signaling pathway in hepatic stellate cells. Redox Biol 2021; 47: 102151.
[http://dx.doi.org/10.1016/j.redox.2021.102151] [PMID: 34607160]
[39]
Cho SS, Yang JH, Lee JH, et al. Ferroptosis contribute to hepatic stellate cell activation and liver fibrogenesis. Free Radic Biol Med 2022; 193(Pt 2): 620-37.
[http://dx.doi.org/10.1016/j.freeradbiomed.2022.11.011] [PMID: 36370962]
[40]
Zhang J, Ping J, Jiang N, Xu L. Resveratrol inhibits hepatic stellate cell activation by regulating autophagy and apoptosis through the SIRT1 and JNK signaling pathways. J Food Biochem 2022; 6(12): e14463.
[http://dx.doi.org/10.1111/jfbc.14463] [PMID: 36314441]
[41]
Zhang J, Jiang N, Ping J, Xu L. TGF β1 induced autophagy activates hepatic stellate cells via the ERK and JNK signaling pathways. Int J Mol Med 2020; 47(1): 256-66.
[http://dx.doi.org/10.3892/ijmm.2020.4778] [PMID: 33236148]
[42]
Yu Q, Cheng P, Wu J, Guo C. PPARγ/NF‐κB and TGF‐β1/Smad pathway are involved in the anti‐fibrotic effects of levo‐tetrahydropalmatine on liver fibrosis. J Cell Mol Med 2021; 25(3): 1645-60.
[http://dx.doi.org/10.1111/jcmm.16267] [PMID: 33438347]
[43]
Liu N, Feng J, Lu X, et al. Isorhamnetin inhibits liver fibrosis by reducing autophagy and inhibiting extracellular matrix formation via the TGF-β1/Smad3 and TGF-β1/p38 MAPK Pathways. Mediators Inflamm 2019; 2019: 6175091.
[http://dx.doi.org/10.1155/2019/6175091] [PMID: 31467486]
[44]
Zhang XL, Chen ZN, Huang QF, et al. Methyl helicterate inhibits hepatic stellate cell activation through modulation of apoptosis and autophagy. Cell Physiol Biochem 2018; 51(2): 897-908.
[http://dx.doi.org/10.1159/000495390] [PMID: 30466104]
[45]
Lee SW, Kim SM, Hur W, et al. Tenofovir disoproxil fumarate directly ameliorates liver fibrosis by inducing hepatic stellate cell apoptosis via downregulation of PI3K/Akt/mTOR signaling pathway. PLoS One 2021; 16(12): e0261067.
[http://dx.doi.org/10.1371/journal.pone.0261067] [PMID: 34879114]
[46]
Wu X, Liu X, Liu Z N, et al. CD73 aggravates alcohol-related liver fibrosis by promoting autophagy mediated activation of hepatic stellate cells through AMPK/AKT/mTOR signaling pathway. Int Immunopharmacol 2022; 113(Pt A): 109229.
[47]
Chen D, Chen J, Chen Y, Chen F, Wang X, Huang Y. Interleukin-10 regulates starvation-induced autophagy through the STAT3-mTOR-p70s6k axis in hepatic stellate cells. Exp Biol Med (Maywood) 2022; 247(10): 832-41.
[http://dx.doi.org/10.1177/15353702221080435] [PMID: 35196893]
[48]
Zhou L. Study of the pathogenic role and targeted therapy of PI3K/Akt/mTOR signaling pathway in hepatocellular carcinoma PhD dissertation 2010.
[49]
Wang H, Liu Y, Wang D, et al. The upstream pathway of mTOR-mediated autophagy in liver diseases. Cells 2019; 8(12): 1597.
[http://dx.doi.org/10.3390/cells8121597] [PMID: 31835352]
[50]
Li J, Deng X, Wang S, Jiang Q, Xu K. Resolvin D1 attenuates CCl4 induced liver fibrosis by inhibiting autophagy-mediated HSC activation via AKT/mTOR pathway. Front Pharmacol 2021; 12: 792414.
[http://dx.doi.org/10.3389/fphar.2021.792414] [PMID: 34987404]
[51]
Xiu AY, Ding Q, Li Z, Zhang CQ. Doxazosin attenuates liver fibrosis by inhibiting autophagy in hepatic stellate cells via activation of the PI3K/Akt/mTOR signaling pathway. Drug Des Devel Ther 2021; 15: 3643-59.
[http://dx.doi.org/10.2147/DDDT.S317701] [PMID: 34456560]
[52]
Shen Y, Malik SA, Amir M, et al. Decreased hepatocyte autophagy leads to synergistic IL-1β and TNF mouse liver injury and inflammation. Hepatology 2020; 72(2): 595-608.
[http://dx.doi.org/10.1002/hep.31209] [PMID: 32108953]
[53]
Li Q, Tan Y, Chen S, et al. Irisin alleviates LPS-induced liver injury and inflammation through inhibition of NLRP3 inflammasome and NF-κB signaling. J Recept Signal Transduct Res 2021; 41(3): 294-303.
[http://dx.doi.org/10.1080/10799893.2020.1808675] [PMID: 32814473]
[54]
Barnabei L, Laplantine E, Mbongo W, Rieux-Laucat F, Weil R. NF- κB: At the borders of autoimmunity and inflammation. Front Immunol 2021; 12: 716469.
[http://dx.doi.org/10.3389/fimmu.2021.716469] [PMID: 34434197]
[55]
Urtasun R, Lopategi A, George J, et al. Osteopontin, an oxidant stress sensitive cytokine, up-regulates collagen-I via integrin αVβ3 engagement and PI3K/pAkt/NFκB signaling. Hepatology 2012; 55(2): 594-608.
[http://dx.doi.org/10.1002/hep.24701] [PMID: 21953216]
[56]
Liu X, Mi X, Wang Z, Zhang M, et al. Ginsenoside Rg3 promotes regression from hepatic fibrosis through reducing inflammation-mediated autophagy signaling pathway. Cell Death Dis 2020 Jun 12; 11(6): 454.
[http://dx.doi.org/10.1038/s41419-020-2597-7] [PMID: 32532964]
[57]
Jiang M, Wu YL, Li X, et al. Oligomeric proanthocyanidin derived from grape seeds inhibited NF-κB signaling in activated HSC: Involvement of JNK/ERK MAPK and PI3K/Akt pathways. Biomed Pharmacother 2017; 93: 674-80.
[http://dx.doi.org/10.1016/j.biopha.2017.06.105] [PMID: 28692939]
[58]
Fishman P, Cohen S, Itzhak I, et al. The A3 adenosine receptor agonist, namodenoson, ameliorates non alcoholic steatohepatitis in mice. Int J Mol Med 2019; 44(6): 2256-64.
[http://dx.doi.org/10.3892/ijmm.2019.4364] [PMID: 31638172]
[59]
Lu L, Guo Q, Zhao L. Overview of Oroxylin A: A promising flavonoid compound. Phytother Res 2016; 30(11): 1765-74.
[http://dx.doi.org/10.1002/ptr.5694] [PMID: 27539056]
[60]
Shen M, Guo M, Wang Z, et al. ROS-dependent inhibition of the PI3K/Akt/mTOR signaling is required for Oroxylin A to exert anti-inflammatory activity in liver fibrosis. Int Immunopharmacol 2020; 85: 106637.
[http://dx.doi.org/10.1016/j.intimp.2020.106637] [PMID: 32512269]
[61]
Zhang Z-L, Chen F-S, Tong X-Y, Fang B, Wang D, Li X-Q. The roles of microRNAs in spinal cord ischemia-reperfusion injury. Neural Regen Res 2022; 17(12): 2593-9.
[http://dx.doi.org/10.4103/1673-5374.339471] [PMID: 35662187]
[62]
Tekirdag KA, Korkmaz G, Ozturk DG, Agami R, Gozuacik D. MIR181A regulates starvation- and rapamycin-induced autophagy through targeting of ATG5. Autophagy 2013; 9(3): 374-85.
[http://dx.doi.org/10.4161/auto.23117] [PMID: 23322078]
[63]
Shao W, Wang S, Wang X, et al. miRNA-29a inhibits atherosclerotic plaque formation by mediating macrophage autophagy via PI3K/AKT/mTOR pathway. Aging (Albany NY) 2022; 14(5): 2418-31.
[http://dx.doi.org/10.18632/aging.203951] [PMID: 35288486]
[64]
Qu Y, Zhang Q, Cai X, et al. Exosomes derived from miR-181-5p-modified adipose-derived mesenchymal stem cells prevent liver fibrosis via autophagy activation. J Cell Mol Med 2017; 21(10): 2491-502.
[http://dx.doi.org/10.1111/jcmm.13170] [PMID: 28382720]
[65]
Liu X, Ma H, Wu R, et al. Identification of liver fibrosis-related microRNAs in human primary hepatic stellate cells using high-throughput sequencing. Genes (Basel) 2022; 13(12): 2201.
[http://dx.doi.org/10.3390/genes13122201] [PMID: 36553468]
[66]
Hyun J, Jung Y. MicroRNAs in liver fibrosis: Focusing on the interaction with hedgehog signaling. World J Gastroenterol 2016; 22(29): 6652-62.
[http://dx.doi.org/10.3748/wjg.v22.i29.6652] [PMID: 27547008]
[67]
Yari H, Mikhailova MV, Mardasi M, et al. Emerging role of mesenchymal stromal cells (MSCs)-derived exosome in neurodegeneration-associated conditions: A groundbreaking cell-free approach. Stem Cell Res Ther 2022; 13(1): 423.
[http://dx.doi.org/10.1186/s13287-022-03122-5] [PMID: 35986375]
[68]
Hu G, Drescher KM, Chen XM. Exosomal miRNAs: Biological Properties and Therapeutic Potential. Front Genet 2012; 3: 56.
[http://dx.doi.org/10.3389/fgene.2012.00056] [PMID: 22529849]
[69]
You M, Liu GY, Cheng J, Li YJ, Yu H. Adipose stem cells and their derived exosomes alleviate liver fibrosis in rats by reducing apoptosis. Chin J Comp Med 2020; 30(07): 30-7.
[70]
Liu C, Bu SZ. Relationship of autophagy and exosome. Chem Life 2020; 40(02): 173-9.
[71]
Luo Y, Chen Q, Lyu T QU PQ, Cao Z, Duan X. Role of exosomes in the development, progression, diagnosis, and treatment of liver fibrosis. Chin Med J 2021; 37(12): 2919-23.
[72]
Willms E, Johansson HJ, Mäger I, et al. Cells release subpopulations of exosomes with distinct molecular and biological properties. Sci Rep 2016; 6(1): 22519.
[http://dx.doi.org/10.1038/srep22519] [PMID: 26931825]
[73]
Lou G, Song X, Yang F, et al. Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma. J Hematol Oncol 2015; 8(1): 122.
[http://dx.doi.org/10.1186/s13045-015-0220-7] [PMID: 26514126]
[74]
Zhang X, Chen Y, Xu K, Li Y, Mao D, Hu Z. Research progress of exosomes in liver diseases. Weichangbingxue He Ganbingxue Zazhi 2022; 31(05): 583-9.
[75]
Ma J, Li Y, Chen M, et al. hMSCs-derived exosome circCDK13 inhibits liver fibrosis by regulating the expression of MFGE8 through miR-17-5p/KAT2B. Cell Biol Toxicol 2022; 2022: 10565.
[http://dx.doi.org/10.1007/s10565-022-09714-4] [PMID: 35484432]
[76]
Wang N, Li X, Zhong Z, et al. 3D hESC exosomes enriched with miR-6766-3p ameliorates liver fibrosis by attenuating activated stellate cells through targeting the TGFβRII-SMADS pathway. J Nanobiotechnology 2021; 19(1): 437.
[http://dx.doi.org/10.1186/s12951-021-01138-2] [PMID: 34930304]
[77]
Wei S, Zhang Z, Yan L, et al. miR-20a Overexpression in Adipose-Derived Mesenchymal Stem Cells Promotes Therapeutic Efficacy in Murine Lupus Nephritis by Regulating Autophagy. Stem Cells Int 2021; 2021: 3746335.
[http://dx.doi.org/10.1155/2021/3746335] [PMID: 34721589]
[78]
Tan Y, Huang Y, Mei R, et al. HucMSC-derived exosomes delivered BECN1 induces ferroptosis of hepatic stellate cells via regulating the xCT/GPX4 axis. Cell Death Dis 2022; 13(4): 319.
[http://dx.doi.org/10.1038/s41419-022-04764-2] [PMID: 35395830]
[79]
Feng Y, Li Y, Xu M, et al. Bone marrow mesenchymal stem cells inhibit hepatic fibrosis via the AABR07028795.2/rno-miR-667-5p axis. Stem Cell Res Ther 2022; 13(1): 375.
[http://dx.doi.org/10.1186/s13287-022-03069-7] [PMID: 35902883]
[80]
Liu Z, Zhou S, Zhang Y, Zhao M. Rat bone marrow mesenchymal stem cells (BMSCs) inhibit liver fibrosis by activating GSK3β and inhibiting the Wnt3a/β-catenin pathway. Infect Agent Cancer 2022; 17(1): 17.
[http://dx.doi.org/10.1186/s13027-022-00432-4] [PMID: 35440002]
[81]
Sun XE, Zhang XQ, Liu MM. Effect of bone marrow mesenchymal stem cells on the TGF-β1/Smad signaling pathway of hepatic stellate. Genet Mol Res 2015; 14(3): 8744-54.
[http://dx.doi.org/10.4238/2015.July.31.23] [PMID: 26345806]
[82]
Gharbia S, Nazarie SR, Dinescu S, et al. Adipose-derived stem cells (ADSCs) supplemented with hepatocyte growth factor (HGF) attenuate hepatic stellate cell activation and liver fibrosis by inhibiting the TGF-β/Smad signaling pathway in chemical-induced liver fibrosis associated with diabetes. Cells 2022; 11(21): 3338.
[http://dx.doi.org/10.3390/cells11213338] [PMID: 36359733]
[83]
Zhang LT, Peng XB, Fang XQ, Li JF, Chen H, Mao XR. Human umbilical cord mesenchymal stem cells inhibit proliferation of hepatic stellate cells in vitro. Int J Mol Med 2018; 41(5): 2545-52.
[http://dx.doi.org/10.3892/ijmm.2018.3500] [PMID: 29484382]
[84]
Zhao W, Ren G, Zhang L, et al. Efficacy of mesenchymal stem cells derived from human adipose tissue in inhibition of hepatocellular carcinoma cells in vitro. Cancer Biother Radiopharm 2012; 27(9): 606-13.
[http://dx.doi.org/10.1089/cbr.2011.1150] [PMID: 22917212]
[85]
Zhang L, Song Y, Chen L, et al. MiR‐20a‐containing exosomes from umbilical cord mesenchymal stem cells alleviates liver ischemia/reperfusion injury. J Cell Physiol 2020; 235(4): 3698-710.
[http://dx.doi.org/10.1002/jcp.29264] [PMID: 31566731]
[86]
Lai P, Chen X, Guo L, et al. A potent immunomodulatory role of exosomes derived from mesenchymal stromal cells in preventing cGVHD. J Hematol Oncol 2018; 11(1): 135.
[http://dx.doi.org/10.1186/s13045-018-0680-7] [PMID: 30526632]
[87]
Chen L, Lu F, Chen D, et al. BMSCs-derived miR-223-containing exosomes contribute to liver protection in experimental autoimmune hepatitis. Mol Immunol 2018; 93: 38-46.
[http://dx.doi.org/10.1016/j.molimm.2017.11.008] [PMID: 29145157]
[88]
Chiabotto G, Ceccotti E, Tapparo M, Camussi G, Bruno S. Human Liver Stem Cell-Derived Extracellular Vesicles Target Hepatic Stellate Cells and Attenuate Their Pro-fibrotic Phenotype. Front Cell Dev Biol 2021; 9777462.
[http://dx.doi.org/10.3389/fcell.2021.777462] [PMID: 34796180]
[89]
Li ZJ, Wang LQ, Li YZ, et al. Application of adipose-derived stem cells in treating fibrosis. World J Stem Cells 2021; 13(11): 1747-61.
[http://dx.doi.org/10.4252/wjsc.v13.i11.1747] [PMID: 34909121]
[90]
Du Z, Wu T, Liu L, Luo B, Wei C. Extracellular vesicles‐derived miR‐150‐5p secreted by adipose‐derived mesenchymal stem cells inhibits CXCL1 expression to attenuate hepatic fibrosis. J Cell Mol Med 2021; 25(2): 701-15.
[http://dx.doi.org/10.1111/jcmm.16119] [PMID: 33342075]
[91]
Li D, Qu J, Yuan X, et al. Mesenchymal stem cells alleviate renal fibrosis and inhibit autophagy via Exosome Transfer of miRNA-122a. Stem Cells Int 2022; 2022: 1981798.
[http://dx.doi.org/10.1155/2022/1981798] [PMID: 35859725]
[92]
Ebrahim N, Ahmed I, Hussien N, et al. Mesenchymal Stem Cell-Derived Exosomes Ameliorated Diabetic Nephropathy by Autophagy Induction through the mTOR Signaling Pathway. Cells 2018; 7(12): 226.
[http://dx.doi.org/10.3390/cells7120226] [PMID: 30467302]
[93]
Kuse N, Kamio K, Azuma A, et al. Exosome-derived microRNA-22 ameliorates pulmonary fibrosis by regulating fibroblast-to-myofibroblast differentiation in vitro and in vivo. J Nippon Med Sch 2020; 87(3): 118-28.
[http://dx.doi.org/10.1272/jnms.JNMS.2020_87-302] [PMID: 31776321]
[94]
Kadota T, Fujita Y, Yoshioka Y, Araya J, Kuwano K, Ochiya T. Emerging role of extracellular vesicles as a senescence-associated secretory phenotype: Insights into the pathophysiology of lung diseases. Mol Aspects Med 2018; 60: 92-103.
[http://dx.doi.org/10.1016/j.mam.2017.11.005] [PMID: 29146100]
[95]
Chen L, Yang Y, Yue R, Peng X, Yu H, Huang X. Exosomes derived from hypoxia-induced alveolar epithelial cells stimulate interstitial pulmonary fibrosis through a HOTAIRM1-dependent mechanism. Lab Invest 2022; 102(9): 935-44.
[http://dx.doi.org/10.1038/s41374-022-00782-y]
[96]
Ren W, Yang L, Deng T, et al. Calcitonin gene related peptide regulates FOSL2 expression and cell proliferation of BMSCs via mmu_circRNA_003795. Mol Med Rep 2019; 19(5): 3732-42.
[http://dx.doi.org/10.3892/mmr.2019.10038] [PMID: 30896827]
[97]
Yang H, Wang J, Zhang Z, et al. Sp1-Induced lncRNA Rmrp Promotes Mesangial Cell Proliferation and Fibrosis in Diabetic Nephropathy by Modulating the miR-1a-3p/JunD Pathway. Front Endocrinol 2021; 12: 690784.
[http://dx.doi.org/10.3389/fendo.2021.690784] [PMID: 34512545]
[98]
Zhu M, Liu X, Li W, Wang L. Exosomes derived from mmu_circ_0000623-modified ADSCs prevent liver fibrosis via activating autophagy. Hum Exp Toxicol 2020; 39(12): 1619-27.
[http://dx.doi.org/10.1177/0960327120931152] [PMID: 32633558]
[99]
Zhou S, Zhu Y, Li Z, Zhu Y, He Z, Zhang C. Exosome‐derived long non‐coding RNA ADAMTS9‐AS2 suppresses progression of oral submucous fibrosis via AKT signalling pathway. J Cell Mol Med 2021; 25(4): 2262-73.
[http://dx.doi.org/10.1111/jcmm.16219] [PMID: 33345447]
[100]
Liu L, Jin X, Hu CF, Li R, Zhou Z, Shen CX. Exosomes derived from mesenchymal stem cells rescue myocardial ischaemia/reperfusion injury by inducing cardiomyocyte autophagy via AMPK and Akt pathways. Cell Physiol Biochem 2017; 43(1): 52-68.
[http://dx.doi.org/10.1159/000480317] [PMID: 28848091]
[101]
Cho HJ, Baek GO, Seo CW, et al. Exosomal microRNA‐4661‐5p–based serum panel as a potential diagnostic biomarker for earlystage hepatocellular carcinoma. Cancer Med 2020; 9(15): 5459-72.
[http://dx.doi.org/10.1002/cam4.3230] [PMID: 32537885]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy