Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

General Research Article

LC-Q-TOF/MS-based Fragmentation Behavior Study and In vitro Metabolites Identification of Nine Benzodiazepines

Author(s): Shuhan Zhou, Xiaoting Song, Pengkai Fang, Jingyi Xu, Siqi Liu, Tian Zheng, Guoping Wu and Liang Wu*

Volume 24, Issue 3, 2023

Published on: 19 May, 2023

Page: [223 - 237] Pages: 15

DOI: 10.2174/1389200224666230419090733

Price: $65

Abstract

Background: Benzodiazepines (BZDs) are compounds that contain one diazepine ring and two benzene rings, and are widely used to treat central nervous system diseases. However, drug abuse and BZDs' illegal addition may affect normal life and even lead to grave social harm. As BZDs may be metabolized and eliminated quickly, it is of great theoretical and practical significance to clarify their metabolic profile.

Objective: In this paper, LC-Q-TOF/MS-based fragmentation behavior has been investigated for nine benzodiazepine drugs available and widely used in clinical treatment (diazepam, nitrazepam, clonazepam, oxazepam, lorazepam, alprazolam, estazolam, triazolam, and midazolam), and their metabolic profile has been studied by using in vitro human liver microsomal incubation.

Methods: A regular human liver microsomal system was used to investigate the potential biotransformation of the nine benzodiazepines in vitro, and an LC-Q/TOF-MS was used to perform fragmentation behavior studies and metabolite identification.

Results: As a result, characteristic fragmentation pathway and diagnostic fragment ions of the nine BZDs were analyzed, and 19 metabolites of the 9 benzodiazepines were found and identified, with glucuronidation and hydroxylation considered as their most important metabolic pathways.

Conclusion: These experimental data add to our knowledge of the nine benzodiazepine drugs and their metabolism study, which could provide useful information and evidence of their in vivo metabolic profile prediction and help promote their monitoring in both clinical use and social/illegal abuse.

« Previous
Graphical Abstract

[1]
Sadock, B.J.; Sadock, V.A. Kaplan and Sadock’s Comprehensive Textbook of Psychiatry, 8th ed; Loppincott Williams & Wilkins: Philadelphia, 2005.
[2]
Si, T.M.; Liu, T.Q.; Zhang, C.H.; Jia, F.J.; Guo, W.J.; Wang, G.H.; Wang, C.Y.; Niu, Y.J.; Liu, T.B.; Xiang, X.J.; Zhao, M. The pharmacology of benzodiazepines. Chin. J. Drug Abuse Prev. Treat., 2017, 23(02), 70-74.
[3]
Oreland, L. The benzodiazepines: A pharmacological overview. Acta Anaesthesiol. Scand., 1988, 32, 13-16.
[http://dx.doi.org/10.1111/j.1399-6576.1988.tb02826.x] [PMID: 3059743]
[4]
Zhao, M.; Liu, T.Q.; Hao, W.; Xiang, X.J.; Zhang, C.H.; Jia, F.J.; Guo, W.J.; Wang, G.H.; Wang, C.Y.; Niu, Y.J.; Liu, T.B.; Si, T.M. Rational application of benzodiazepines and prevention of addiction. Chin. J. Drug Abuse Prev. Treat., 2017, 23(06), 324-328.
[5]
Yang, X.Z.; Su, Z.H. Research progress of iatiogenic addiction to benzodiazepines. Chin. J. Drug Abuse Prev. Treat., 2021, 27(01), 8-12.
[6]
Wang, T.J.; Han, D.Q.; Lu, Y.; Yin, G.; Yan, Y.; Li, X.Q.; Wang, J.; Jiang, K.; Fu, X.S.; Zhang, Q.Y. HPLC determination of 17 additive chemical components in traditional Chinese medicines and health food. Yaowu Fenxi Zazhi, 2015, 35(07), 1223-1230.
[7]
Hang, W.H.; Xia, X.; Hu, M.H. Determination of 11 benzodiazepine drugs in urine with QuEChERS-on line gel permeation chromatography-gas chromatography/mass spectrometry. Chin. J. Anal. Lab., 2019, 38(01), 43-46.
[8]
Wang, Z.L.; Zhang, J.L.; Zhang, Y.N. Detection of eight sedative-hypnotic agents in nutriment products by GC/MS. J. Chin. Mass Spectrom. Soc., 2009, 30(05), 282-286.
[9]
Jiang, W.H.; Wang, Z.H.; Zhao, M.; Li, H.; Chu, J.X. Ultrasensitive analysis of 11 benzodiazepines in hair samples using microfluidic technology plus LC-MS/MS. Forensic Sci. Techno., 2020, 45(04), 358-367.
[10]
Dong, Z.; Li, M.Y.; Zhang, H.L.; Sun, S.S.; Ding, H.; Cao, J. Rapid screening and quantitative analysis of 18 kinds of illegally added drugs in improving sleep health foods by Q-Orbitrap high resolution mass spectrometry. Yaowu Fenxi Zazhi, 2019, 39(02), 310-318.
[11]
Ding, B.; Wang, Z.Y.; Chen, W.R.; Xie, J.J.; Zeng, G.F. Determination of 24 illicit anti-inflammatory and sedative drugs in health food samples by liquid chromatography coupled to quadrupole-time of flight mass spectrometry. J. Chin. Inst. Food Sci. Technol., 2019, 19(10), 251-258.
[12]
Bi, C.W.; Yang, L. Xie, d.; Hu, Y.M.; Yuan, H.J.; Li, Z.X. Determination of 8 kinds of benzodiazepines in human urine by UPLC-MS/MS and its clinical application. Chin. J. Clin. Pharmacol., 2020, 36(01), 80-84.
[13]
Wang, Z.H.; Zhang, L.; Zhao, M.; Liu, Y.; Chu, J.X.; Jiang, W.H. Simultaneous quantification of thirteen benzodiazepines and metabolites in whole blood by UPLC-MS/MS. Forestnsic Sci. Technol., 2016, 41(01), 46-49.
[14]
Wang, L.; Liu, C.Y.; Wang, Z.J.; Ren, X.D.; You, H.D.; Xiong, S.; Wu, D.D.; Tian, F.L. Simultaneous determination of 9 kinds of sedative hypnotic drugs in health foods using UPLC-MS/MS and ESI fragmentation studies. J. Instrument. Anal., 2016, 35(02), 219-224.
[15]
Li, X.W.; Shen, B.H.; Jiang, Z.; Zhuo, X.Y. Screening and confirmation of psychotropic drugs in blood and urine by HPLC-LTQ orbitrap MS. Fa Yi Xue Za Zhi, 2012, 28(1), 44-48.
[PMID: 22435338]
[16]
Li, G.P. Determination of benzodiazepines in serum by HPLC-triple quadrupole mass spectrometry. Jiangxi Chem. Ind., 2019, (05), 80-83.
[17]
Bi, C.W.; Zhang, J.C.; Yang, L.; Zhan, D.Q.; Li, Z.X.; Yuan, H.J. Fast determination of 7 benzodiazepines in human plasma by UPLC-MS/MS and its clinical application. Chin. Hosp. Pharm. J., 2019, 39(15), 1537-1542.
[18]
An, J.; Song, H.J.; Wei, X.; Dong, Z.J. Simultaneous determination of nine kinds of sedativehypnotics in the plasma using solid phase extraction coupled with UPLC-MS/MS. Huaxi Yaoxue Zazhi, 2018, 33(01), 72-76.
[19]
Xu, C.; Suo, R.; Zhang, F.; Chu, X.; Ding, F.; Ling, Y.; Yang, M.; Sun, L. Simultaneous determination of 10 unapproved sedative drugs in feeds by ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry. Se Pu, 2013, 30(5), 457-462.
[http://dx.doi.org/10.3724/SP.J.1123.2011.12032] [PMID: 22934407]
[20]
Lu, L.; Gong, X.; Tan, L. Fast screening of 24 sedative hypnotics illegally added in improving sleep health foods by high performance liquid chromatography-ion trap mass spectrometry. Se Pu, 2015, 33(3), 256-266.
[http://dx.doi.org/10.3724/SP.J.1123.2014.11001] [PMID: 26182467]
[21]
Wu, L.; Li, L.; Wang, M.; Shan, C.; Cui, X.; Wang, J.; Ding, N.; Yu, D.; Tang, Y. Target and non-target identification of chemical components in Lamiophlomis rotata by liquid chromatography/quadrupole time-of-flight mass spectrometry using a three-step protocol. Rapid Commun. Mass Spectrom., 2016, 30(19), 2145-2154.
[http://dx.doi.org/10.1002/rcm.7695] [PMID: 27470976]
[22]
Wu, L.; Tang, Y.; Shan, C.; Chai, C.; Zhou, Z.; Shi, X.; Ding, N.; Wang, J.; Lin, L.; Tan, R. A comprehensive in vitro and in vivo metabolism study of hydroxysafflor yellow A. J. Mass Spectrom., 2018, 53(2), 99-108.
[http://dx.doi.org/10.1002/jms.4041] [PMID: 29076598]
[23]
Wu, L.; Kang, A.; Shan, C.; Chai, C.; Zhou, Z.; Lin, Y.; Bian, Y. LC-Q-TOF/MS-oriented systemic metabolism study of pedunculoside with in vitro and in vivo biotransformation. J. Pharm. Biomed. Anal., 2019, 175, 112762.
[http://dx.doi.org/10.1016/j.jpba.2019.07.010] [PMID: 31336286]
[24]
Galaon, T.; Vacaresteanu, C.; Anghel, D.F.; David, V. Simultaneous ESI-APCI+ ionization and fragmentation pathways for nine benzodiazepines and zolpidem using single quadrupole LC-MS. Drug Test. Anal., 2014, 6(5), 439-450.
[PMID: 23943358]
[25]
Wang, L.P.; Zhao, H.X.; Qiu, Y.M.; Tang, Y.Z.; Wang, D.N.; Zhou, Z.Q. Analysis of methylated derivatives of nitrazepam and clonazepam by gas chromatography-mass spectrometry. J. Instrument. Anal., 2005, 24(06), 47-51.
[26]
Gao, F.Q. The in vitro metabolic study of five benzodiazepines drugs., 2014.
[27]
Wang, L.; Ren, X.; He, Y.; Cui, G.; Wei, Z.; Jia, J.; Cao, J.; Liu, Y.; Cong, B.; Niu, Y.; Yun, K. Study on the pharmacokinetics of diazepam and its metabolites in blood of Chinese people. Eur. J. Drug Metab. Pharmacokinet., 2020, 45(4), 477-485.
[http://dx.doi.org/10.1007/s13318-020-00614-8] [PMID: 32219697]
[28]
Umezawa, H.; Lee, X.P.; Arima, Y.; Hasegawa, C.; Marumo, A.; Kumazawa, T.; Sato, K. Determination of diazepam and its metabolites in human urine by liquid chromatography/tandem mass spectrometry using a hydrophilic polymer column. Rapid Commun. Mass Spectrom., 2008, 22(15), 2333-2341.
[http://dx.doi.org/10.1002/rcm.3613] [PMID: 18618924]
[29]
Huang, K.J.; Pan, Z.W.; Li, H.S.; Lin, C.W.; Liu, X.F.; Luo, Z.J.; Li, L.; Chen, E.L.; Zhu, D.J. Determination of the metabolites of nitrazepam in rat urine with GC-MS. J. Instrument. Anal., 2008, (S1), 28-30.
[30]
Xing, L.M.; Tan, J.Y.; Li, F.M.; Yao, L.J.; Jiang, Z.L.; Chen, Y.F.; Liu, J. Determination of clonazepam and 7-aminoclonazepam by GC-ECD in human plasma and urine. Chin. J. Anal. Lab., 2003, 22(01), 28-31.
[31]
Huang, K.J.; Li, H.S.; Zhu, D.J.; Lin, C.W.; Liu, X.F.; Li, L.; Luo, Z.J.; Chen, E.L. Studies on metabolic transformation of clonazepam in the body. Chin. J. Forensic Med., 2009, 24(05), 292-295.
[32]
Dinis-Oliveira, R.J. Metabolic profile of oxazepam and related benzodiazepines: Clinical and forensic aspects. Drug Metab. Rev., 2017, 49(4), 451-463.
[http://dx.doi.org/10.1080/03602532.2017.1377223] [PMID: 28903606]
[33]
Greenblatt, D.J. Clinical pharmacokinetics of oxazepam and lorazepam. Clin. Pharmacokinet., 1981, 6(2), 89-105.
[http://dx.doi.org/10.2165/00003088-198106020-00001] [PMID: 6111408]
[34]
Elliott, H.W. Metabolism of lorazepam. Br. J. Anaesth., 1976, 48(10), 1017-1023.
[http://dx.doi.org/10.1093/bja/48.10.1017] [PMID: 10938]
[35]
Mulé, S.J.; Casella, G.A. Quantitation and confirmation of the diazolo- and triazolobenzodiazepines in human urine by gas chromatography/mass spectrometry. J. Anal. Toxicol., 1989, 13(3), 179-184.
[http://dx.doi.org/10.1093/jat/13.3.179] [PMID: 2755091]
[36]
Black, D.A.; Clark, G.D.; Haver, V.M.; Garbin, J.A.; Saxon, A.J. Analysis of urinary benzodiazepines using solid-phase extraction and gas chromatography-mass spectrometry. J. Anal. Toxicol., 1994, 18(4), 185-188.
[http://dx.doi.org/10.1093/jat/18.4.185] [PMID: 7967537]
[37]
Zhang, J.L.; Wang, Z.L.; Zhang, Y.N. Determination of eleven benzodiazepines and their metabolites in urine by liquid chromatography-tandem mass spectrometry. Chin. J. Anal. Lab., 2014, 33(04), 479-482.
[38]
Deng, X.J.; Guo, D.H.; Zhu, J.; Wang, M.; Sheng, Y.G.; Fan, X.; Sheng, M.Q. Determination of benzodiazepines and metabolites residues in food stuffs of animal origin by liquid chromatography-tandem mass spectrometry. J. Instrument. Anal., 2008, 27(11), 1162-1166.
[39]
Toyo’oka, T.; Kumaki, Y.; Kanbori, M.; Kato, M.; Nakahara, Y. Determination of hypnotic benzodiazepines (alprazolam, estazolam, and midazolam) and their metabolites in rat hair and plasma by reversed-phase liquid-chromatography with electrospray ionization mass spectrometry. J. Pharm. Biomed. Anal., 2003, 30(6), 1773-1787.
[http://dx.doi.org/10.1016/S0731-7085(02)00520-4] [PMID: 12485719]
[40]
Jiang, Z.L. Study on triazolam, alprazolam and their main metabolites in blood and urine by GC; Shenyang Pharmaceutical University: Liaoning, 2001.
[41]
Guo, J.F.; Sun, L.; Zhong, D.F. Identification of alprazolam and its major metabolites in body fluids by liquid chromatography-electrospray ion trap mass spectrometry. J. Shenyang Pharm. Univ., 2000, 17(05), 358-360.
[42]
Gu, J.K.; Zhong, D.F.; Jiang, H.; Chen, X.Y. Identification of estazolam and its major metabolite in biological samples using electrospray ion trap mass spectrometry. Yaowu Fenxi Zazhi, 1999, 19(03), 150-154.
[43]
Wang, S.C.; Xin, R.K.; Dai, W.L.; Xu, S.Y.; Li, Q.; Cheng, Y.; Zhang, X.T. Determination of triazolam and α-hydroxy triazolam in blood and urine. Chin. J. Forensic Med., 2002, 17(05), 299-300.
[44]
Li, X.Q.; Zhong, D.F.; Song, M.; Yan, L.Z. Identification of triazolam and its metabolites in body fluids by liquid chromatography-mass spectrometry. J. Shenyang Pharm. Univ., 2001, 18(02), 120-124.
[45]
Shen, B.H.; Shen, M.; Zhuo, X.Y.; Zhao, Z.Q.; Jiang, Y.; Wu, H.J.; Liu, W.; Xiang, P.; Pu, J.; Huang, Z.J.; Ye, Y.H. The metabolism of midazolam in human bodies. Chin. J. Forensic Sci., 2001, (03), 19-23.
[46]
Liu, C.H.; Huang, X.T.; Zheng, X.; Li, N.; Li, Y.Y.; Mi, S.Q.; Wang, N.S. LC-MS/MS determination of midazolam and 1′-hydroxymidazolam, its main metabolite in rat plasma and its pharmacokinetics. Guangdong Yaoxueyuan Xuebao, 2012, 28(01), 61-64.
[47]
Wu, L.; Kang, A.; Jin, X.; Bao, Y.; Miao, P.; Lv, T.; Zhou, Z. Ilexsaponin A1: In vitro metabolites identification and evaluation of inhibitory drug-drug interactions. Drug Metab. Pharmacokinet., 2021, 40, 100415.
[http://dx.doi.org/10.1016/j.dmpk.2021.100415] [PMID: 34461570]
[48]
Kronbach, T.; Mathys, D.; Umeno, M.; Gonzalez, F.J.; Meyer, U.A. Oxidation of midazolam and triazolam by human liver cytochrome P450IIIA4. Mol. Pharmacol., 1989, 36(1), 89-96.
[PMID: 2787473]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy