Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Novel 1-H Phenyl Benzimidazole Derivatives for IBD Therapy - An in-vitro and in-silico Approach to Evaluate its Effects on the IL-23 Mediated Inflammatory Pathway

Author(s): V. Vishnu, P. R. Krishnendu, Subin Mary Zachariah* and Kanthlal S. K.*

Volume 20, Issue 1, 2024

Published on: 11 May, 2023

Page: [60 - 71] Pages: 12

DOI: 10.2174/1573409919666230417103413

Price: $65

Abstract

Objective: IBD is a chronic idiopathic gut condition characterised by recurring and remitting inflammation of the colonic mucosal epithelium. Benzimidazole is a prominent and attractive heterocyclic compound with diverse actions. Although seven locations in the benzimidazole nucleus can be changed with a number of chemical entities for biological activity, benzimidazole fused with a phenyl ring has caught our interest.

Methods: To find and optimize novel 1-H phenyl benzimidazole compounds with favorable physicochemical features and drug-like characteristics for the treatment of IBD, in-silico studies and in-vitro approach were being used to identify and optimize these derivatives as potent inhibitors of IL-23 mediated inflammatory signaling pathway.

Results: All six compounds exhibit favorable drug-like properties with good intestinal absorption properties. Its high affinity for the target JAK and TYK, which is thought to be a key immunological signaling cascade in the pathophysiology of IBD, is revealed by docking studies.

Conclusion: Because of their effects on decreasing iNOS-derived NO release and IL-23-mediated immune signaling by decreasing COX-2 and LOX activity, it's conceivable that the compounds CS3 and CS6 are better options for the treatment of IBD based on in-vitro cell line investigations.

Graphical Abstract

[1]
Gionchetti, P.; Rizzello, F.; Habal, F.; Morselli, C.; Amadini, C.; Romagnoli, R.; Campieri, M. Standard treatment of ulcerative colitis. Dig. Dis., 2003, 21(2), 157-167.
[http://dx.doi.org/10.1159/000073247] [PMID: 14571113]
[2]
Luo, C.X.; Wen, Z.H.; Zhen, Y.; Wang, Z.J.; Mu, J.X.; Zhu, M.; Ouyang, Q.; Zhang, H. Chinese research into severe ulcerative colitis has increased in quantity and complexity. World J. Clin. Cases, 2018, 6(3), 35-43.
[http://dx.doi.org/10.12998/wjcc.v6.i3.35] [PMID: 29564356]
[3]
Neurath, M.F. IL-23 in inflammatory bowel diseases and colon cancer. Cytokine Growth Factor Rev., 2019, 45, 1-8.
[http://dx.doi.org/10.1016/j.cytogfr.2018.12.002] [PMID: 30563755]
[4]
Atreya, R.; Neurath, M.F. Current and future targets for mucosal healing in inflammatory bowel disease. Visc. Med., 2017, 33(1), 82-88.
[http://dx.doi.org/10.1159/000458006] [PMID: 28612022]
[5]
Strober, W.; Fuss, I. Pro-inflammatory cytokines in the pathogenesis of IBD. Gastroenterology, 2013, 140(6), 1756-1767.
[http://dx.doi.org/10.1053/j.gastro.2011.02.016] [PMID: 21530742]
[6]
Cai, Y.; Zhang, L.; Zhang, Y.; Lu, R. Plant-derived exosomes as a drug-delivery approach for the treatment of inflammatory bowel disease and colitis-associated cancer. Pharmaceutics, 2022, 14(4), 822.
[http://dx.doi.org/10.3390/pharmaceutics14040822] [PMID: 35456656]
[7]
Elhag, D.A.; Kumar, M.; Saadaoui, M.; Akobeng, A.K.; Al-Mudahka, F.; Elawad, M.; Al Khodor, S. Inflammatory bowel disease treatments and predictive biomarkers of therapeutic response. Int. J. Mol. Sci., 2022, 23(13), 6966.
[http://dx.doi.org/10.3390/ijms23136966] [PMID: 35805965]
[8]
Subin, M.Z.; Vishnu, V. Chemistry and pharmacological activities benzimidazole derivatives - An overview of. Int. J. Pharm. Res., 2020, 12(1), 3348-3356.
[http://dx.doi.org/10.31838/ijpr/2020.SP1.364]
[9]
Woolley, D.W. Some biological effects produced by benzimidazole and their reversal by purines. J. Biol. Chem., 1944, 152(2), 225-232.
[http://dx.doi.org/10.1016/S0021-9258(18)72045-0]
[10]
Bansal, Y.; Silakari, O. The therapeutic journey of benzimidazoles: A review. Bioorg. Med. Chem., 2012, 20(21), 6208-6236.
[http://dx.doi.org/10.1016/j.bmc.2012.09.013] [PMID: 23031649]
[11]
Brink, N.G.; Folkers, K. Vitamin B12. X. 5,6-Dimethylbenzimidazole, a degradation product of vitamin B12. J. Am. Chem. Soc., 1950, 72(10), 4442-4443.
[http://dx.doi.org/10.1021/ja01166a027]
[12]
Shukla, N.M.; Chan, M.; Lao, F.S.; Chu, P.J.; Belsuzarri, M.; Yao, S.; Nan, J.; Sato-Kaneko, F.; Saito, T.; Hayashi, T.; Corr, M.; Carson, D.A.; Cottam, H.B. Structure-activity relationship studies in substituted sulfamoyl benzamidothiazoles that prolong NF-κB activation. Bioorg. Med. Chem., 2021, 43, 116242.
[http://dx.doi.org/10.1016/j.bmc.2021.116242] [PMID: 34274759]
[13]
Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem., 2014, 57(24), 10257-10274.
[http://dx.doi.org/10.1021/jm501100b] [PMID: 25255204]
[14]
Ajani, O.O.; Aderohunmu, D.V.; Ikpo, C.O.; Adedapo, A.E.; Olanrewaju, I.O. Functionalized benzimidazole scaffolds: Privileged heterocycle for drug design in therapeutic medicine. Arch. Pharm., 2016, 349(7), 475-506.
[http://dx.doi.org/10.1002/ardp.201500464] [PMID: 27213292]
[15]
Jampilek, J. Heterocycles in medicinal chemistry. Molecules, 2019, 24(21), 3839.
[http://dx.doi.org/10.3390/molecules24213839] [PMID: 31731387]
[16]
Pragi, A.; Varun, A.; Lamba, H.S.; Deepak, W. Importance of heterocyclic chemistry. RE:view, 2012, 3(09), 2947-2954.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.3(9).2947-54]
[17]
Kharitonova, M.I.; Konstantinova, I.D.; Miroshnikov, A.I. Benzimidazole nucleosides: Antiviral and antitumour activities and methods of synthesis. Russ. Chem. Rev., 2018, 87(11), 1111-1138.
[http://dx.doi.org/10.1070/RCR4832]
[18]
Noor, A.; Qazi, N.G.; Nadeem, H.; Khan, A.; Paracha, R.Z.; Ali, F.; Saeed, A. Synthesis, characterization, anti-ulcer action and molecular docking evaluation of novel benzimidazole-pyrazole hybrids. Chem. Cent. J., 2017, 11(1), 85.
[http://dx.doi.org/10.1186/s13065-017-0314-0] [PMID: 29086868]
[19]
Kazimierczuk, Z.; Andrzejewska, M.; Kaustova, J.; Klimešova, V. Synthesis and antimycobacterial activity of 2-substituted halogenobenzimidazoles. Eur. J. Med. Chem., 2005, 40(2), 203-208.
[http://dx.doi.org/10.1016/j.ejmech.2004.10.004] [PMID: 15694655]
[20]
Rao, A.; Chimirri, A.; De Clercq, E.; Monforte, A.M.; Monforte, P.; Pannecouque, C.; Zappalà, M. Synthesis and anti-HIV activity of 1-(2,6-difluorophenyl)-1H,3H-thiazolo[3,4-a]benzimidazole structurally-related 1,2-substituted benzimidazoles. Farmaco, 2002, 57(10), 819-823.
[http://dx.doi.org/10.1016/S0014-827X(02)01300-9] [PMID: 12420877]
[21]
Wang, X.J.; Xi, M.Y.; Fu, J.H.; Zhang, F.R.; Cheng, G.F.; Yin, D.L.; You, Q.D. Synthesis, biological evaluation and SAR studies of benzimidazole derivatives as H1-antihistamine agents. Chin. Chem. Lett., 2012, 23(6), 707-710.
[http://dx.doi.org/10.1016/j.cclet.2012.04.020]
[22]
Karaburun, AÇ grı; Çavuşo glu, BK; Çevik, UA; Osmaniye, D.; Sa glık, BN; Levent, S. Synthesis and antifungal potential of some novel benzimidazole-1,3,4-oxadiazole compounds. Molecules, 2019, 24(1), 1-14.
[http://dx.doi.org/10.3390/molecules24010191]
[23]
Anastassova, N.; Yancheva, D.; Hristova-Avakumova, N.; Hadjimitova, V.; Traykov, T.; Aluani, D.; Tzankova, V.; Kondeva-Burdina, M. New benzimidazole-aldehyde hybrids as neuroprotectors with hypochlorite and superoxide radical-scavenging activity. Pharmacol. Rep., 2020, 72(4), 846-856.
[http://dx.doi.org/10.1007/s43440-020-00077-3] [PMID: 32125683]
[24]
Florio, R; Veschi, S; Giacomo, V; Pagotto, S; Carradori, S.; Verginelli, F. The benzimidazole-based anthelmintic parbendazole: A repurposed drug candidate that synergizes with gemcitabine in pancreatic cancer. Cancers, 2019, 11(12), 2042.
[http://dx.doi.org/10.3390/cancers11122042]
[25]
Maghraby, M.T.E.; Abou-Ghadir, O.M.F.; Abdel-Moty, S.G.; Ali, A.Y.; Salem, O.I.A. Novel class of benzimidazole-thiazole hybrids: The privileged scaffolds of potent anti-inflammatory activity with dual inhibition of cyclooxygenase and 15-lipoxygenase enzymes. Bioorg. Med. Chem., 2020, 28(7), 115403.
[http://dx.doi.org/10.1016/j.bmc.2020.115403] [PMID: 32127262]
[26]
Leila, D.; Zengin, G.B.M.B. Cholinesterases Inhibitory Activity of 1 H -benzimidazole Derivatives. Biointerface Res. Appl. Chem., 2021, 11(3), 10739-10745.
[27]
Kumar, J.R.; Jawahar L, J.; Pathak, D.P. Synthesis of benzimidazole derivatives: As anti-hypertensive agents. E-J. Chem., 2006, 3(4), 278-285.
[http://dx.doi.org/10.1155/2006/765712]
[28]
Imran, M.; Al Kury, L.T.; Nadeem, H.; Shah, F.A.; Abbas, M.; Naz, S.; Khan, A.; Li, S. Benzimidazole containing acetamide derivatives attenuate neuroinflammation and oxidative stress in ethanol-induced neurodegeneration. Biomolecules, 2020, 10(1), 108.
[http://dx.doi.org/10.3390/biom10010108] [PMID: 31936383]
[29]
Can, Ö.D.; Osmaniye, D.; Demir Özkay, Ü.; Sağlık, B.N.; Levent, S.; Ilgın, S.; Baysal, M.; Özkay, Y.; Kaplancıklı, Z.A. MAO enzymes inhibitory activity of new benzimidazole derivatives including hydrazone and propargyl side chains. Eur. J. Med. Chem., 2017, 131, 92-106.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.009] [PMID: 28301816]
[30]
Tahlan, S.; Kumar, S.; Narasimhan, B. Pharmacological significance of heterocyclic 1H-benzimidazole scaffolds: A review. BMC Chem., 2019, 13(1), 101.
[http://dx.doi.org/10.1186/s13065-019-0625-4] [PMID: 31410412]
[31]
Zachariah, V.V. In silico drug design of some novel compounds as an alternative for the anti IBD drugTofacitinib. Res. J. Chem. Environ., 2020, 24(8), 11-17.
[32]
George, N; Asha, A.M. Design, synthesis, characterization and in vitro evaluation of some novel 3, 4-dihydropyrimidine2(1h)- one derivatives for the treatment of breast carcinoma. Int. J. Pharm. Res., 2020. 12 INCOMPLETE
[33]
Jagetia, G.C.; Baliga, M.S. The evaluation of nitric oxide scavenging activity of certain Indian medicinal plants in vitro: A preliminary study. J. Med. Food, 2004, 7(3), 343-348.
[http://dx.doi.org/10.1089/jmf.2004.7.343] [PMID: 15383230]
[34]
Mazzarino, L.; Loch-Neckel, G.; dos Santos, B.L.; Ourique, F.; Otsuka, I.; Halila, S.; Curi Pedrosa, R.; Santos-Silva, M.C.; Lemos-Senna, E.; Curti, M.E.; Borsali, R. Nanoparticles made from xyloglucan-block-polycaprolactone copolymers: Safety assessment for drug delivery. Toxicol. Sci., 2015, 147(1), 104-115.
[http://dx.doi.org/10.1093/toxsci/kfv114] [PMID: 26048652]
[35]
Adebayo, S.A.; Ondua, M.; Shai, L.J.; Lebelo, S.L. Inhibition of nitric oxide production and free radical scavenging activities of four South African medicinal plants. J. Inflamm. Res., 2019, 12, 195-203.
[http://dx.doi.org/10.2147/JIR.S199377] [PMID: 31496781]
[36]
Walker, M.C.; Gierse, J.K. in vitro assays for cyclooxygenase activity and inhibitor characterization. Methods Mol. Biol., 2010, 644(6), 131-144.
[http://dx.doi.org/10.1007/978-1-59745-364-6_11] [PMID: 20645170]
[37]
Nair, D.G.; Funk, C.D. A cell-based assay for screening lipoxygenase inhibitors. Prostaglandins Other Lipid Mediat., 2009, 90(3-4), 98-104.
[http://dx.doi.org/10.1016/j.prostaglandins.2009.09.006] [PMID: 19804839]
[38]
Pulli, B.; Ali, M.; Forghani, R.; Schob, S.; Hsieh, K.L.C.; Wojtkiewicz, G.; Linnoila, J.J.; Chen, J.W. Measuring myeloperoxidase activity in biological samples. PLoS One, 2013, 8(7), e67976.
[http://dx.doi.org/10.1371/journal.pone.0067976] [PMID: 23861842]
[39]
Farrokhfall, K.; Hashtroudi, M.S.; Ghasemi, A.; Mehrani, H. Comparison of inducible nitric oxide synthase activity in pancreatic islets of young and aged rats. Iran. J. Basic Med. Sci., 2015, 18(2), 115-121.
[PMID: 25810884]
[40]
v S, A.; S K, K. Phloretin ameliorates acetic acid induced colitis through modulation of immune and inflammatory reactions in rats. Endocr. Metab. Immune Disord. Drug Targets, 2021, 21(1), 163-172.
[http://dx.doi.org/10.2174/1871530320666200624120257] [PMID: 32579511]
[41]
Avdagić, N.; Zaćiragić, A.; Babić, N.; Hukić, M.; Šeremet, M.; Lepara, O.; Nakaš-Ićindić, E. Nitric oxide as a potential biomarker in inflammatory bowel disease. Bosn. J. Basic Med. Sci., 2013, 13(1), 5-9.
[http://dx.doi.org/10.17305/bjbms.2013.2402] [PMID: 23448603]
[42]
Kolios, G.; Valatas, V.; Ward, S.G. Nitric oxide in inflammatory bowel disease: A universal messenger in an unsolved puzzle. Immunology, 2004, 113(4), 427-437.
[http://dx.doi.org/10.1111/j.1365-2567.2004.01984.x] [PMID: 15554920]
[43]
Deeb, R.S.; Shen, H.; Gamss, C.; Gavrilova, T.; Summers, B.D.; Kraemer, R.; Hao, G.; Gross, S.S.; Lainé, M.; Maeda, N.; Hajjar, D.P.; Upmacis, R.K. Inducible nitric oxide synthase mediates prostaglandin h2 synthase nitration and suppresses eicosanoid production. Am. J. Pathol., 2006, 168(1), 349-362.
[http://dx.doi.org/10.2353/ajpath.2006.050090] [PMID: 16400036]
[44]
Funk, C.D. Prostaglandins and leukotrienes: Advances in eicosanoid biology. Science, 2001, 294(5548), 1871-1875.
[http://dx.doi.org/10.1126/science.294.5548.1871] [PMID: 11729303]
[45]
Charlier, C.; Michaux, C. Dual inhibition of cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) as a new strategy to provide safer non-steroidal anti-inflammatory drugs. Eur. J. Med. Chem., 2003, 38(7-8), 645-659.
[http://dx.doi.org/10.1016/S0223-5234(03)00115-6] [PMID: 12932896]
[46]
Lemos, H.P.; Grespan, R.; Vieira, S.M.; Cunha, T.M.; Verri, W.A., Jr; Fernandes, K.S.S.; Souto, F.O.; McInnes, I.B.; Ferreira, S.H.; Liew, F.Y.; Cunha, F.Q. Prostaglandin mediates IL-23/IL-17-induced neutrophil migration in inflammation by inhibiting IL-12 and IFNγ production. Proc. Natl. Acad. Sci. USA, 2009, 106(14), 5954-5959.
[http://dx.doi.org/10.1073/pnas.0812782106] [PMID: 19289819]
[47]
Mantovani, A.; Cassatella, M.A.; Costantini, C.; Jaillon, S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat. Rev. Immunol., 2011, 11(8), 519-531.
[http://dx.doi.org/10.1038/nri3024] [PMID: 21785456]
[48]
Arya, V.S.; Kanthlal, S.K.; Linda, G. The role of dietary polyphenols in inflammatory bowel disease: A possible clue on the molecular mechanisms involved in the prevention of immune and inflammatory reactions. J. Food Biochem., 2020, 44(11), e13369.
[http://dx.doi.org/10.1111/jfbc.13369] [PMID: 32885438]
[49]
Dudhgaonkar, S.P.; Tandan, S.K.; Kumar, D.; Raviprakash, V.; Kataria, M. Influence of simultaneous inhibition of cyclooxygenase-2 and inducible nitric oxide synthase in experimental colitis in rats. Inflammopharmacology, 2007, 15(5), 188-195.
[http://dx.doi.org/10.1007/s10787-007-1603-3] [PMID: 17943250]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy